JP3584266B2 - Method for producing organic microcrystal for optoelectronic function - Google Patents

Method for producing organic microcrystal for optoelectronic function Download PDF

Info

Publication number
JP3584266B2
JP3584266B2 JP2000080413A JP2000080413A JP3584266B2 JP 3584266 B2 JP3584266 B2 JP 3584266B2 JP 2000080413 A JP2000080413 A JP 2000080413A JP 2000080413 A JP2000080413 A JP 2000080413A JP 3584266 B2 JP3584266 B2 JP 3584266B2
Authority
JP
Japan
Prior art keywords
organic
microcrystal
organic material
solvent
optoelectronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000080413A
Other languages
Japanese (ja)
Other versions
JP2001262137A (en
Inventor
宏雄 松田
隆史 福田
耕一 馬場
均 笠井
修司 岡田
英俊 及川
八郎 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000080413A priority Critical patent/JP3584266B2/en
Publication of JP2001262137A publication Critical patent/JP2001262137A/en
Application granted granted Critical
Publication of JP3584266B2 publication Critical patent/JP3584266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光電子機能材料に用いられる有機微結晶の簡易な製造方法に関する。
【0002】
【従来の技術】
従来、エレクトロニクスや非線形光学等の分野において、高機能の光電子機能材料として期待できる有機微結晶を作製する方法としては、再沈法、気相法等が知られている。なかでも、再沈法は、溶解度の差を利用して有機微結晶を析出させるものであるから、簡便でかつ効果的な手法であるが、ある種の有機化合物では、貧溶媒中で分子またはクラスターを形成した後に、数時間から数十時間という長時間に亘って、徐々に結晶化が進行するという事例があった。
【0003】
さらに、再沈法では、単分散サイズの有機超微結晶を作製することは困難である場合が多く、また、その結晶化には長時間を要するという問題があった。さらに、その微結晶化に多大の時間を要する場合、微結晶の粒径が増して大粒径化するとともに、その粒径分布は幅広い範囲に分布する傾向があるため、均一で良質な微結晶粒子を得ることは極めて困難であった。
【0004】
【発明が解決しようとする課題】
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、粒径が500nm以下の良好な単分散性を有する超微粒子結晶を短時間で容易に得ることのできる光電子機能用有機微結晶の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上述した問題を解決するべく鋭意検討を重ねた結果、再沈法によって有機結晶を溶液中に形成させる操作後に、その混合溶液にマイクロ波を照射すると結晶化が促進されて短時間で単分散した超微結晶が得られることを知見し、本発明を完成するに至った。
【0006】
すなわち、本発明の光電子機能用有機微結晶の製造方法は、良溶媒に溶解した光電子機能用有機材料を、該溶媒と相溶する前記有機材料の貧溶媒中に混入し、得られた混合物にマイクロ波を照射して加熱することにより、粒径500nm以下の微結晶または会合体を得ることを特徴とするものである。
また、本発明の他の光電子機能用有機微結晶の製造方法は、良溶媒に溶解した光電子機能用有機材料を、該溶媒と相溶する前記有機材料の貧溶媒中に混入し、得られた混合物にマイクロ波を照射して加熱した後、ガンマ線、電子線、X線または光線を照射することにより、粒径500nm以下の微結晶または会合体を得ることを特徴とするものである。
【0007】
【発明の実施の形態】
本発明は、光電子機能用有機材料の結晶を作製する再沈法の操作後に、貧溶媒中で分子またはクラスターを形成した状態に、マイクロ波加熱することにより、今まで達成が困難とされていた、単分散で微小サイズの超微結晶を簡易に作製するものである。
【0008】
本発明に用いられる有機材料としては、光電子の分野において有機結晶が利用されるものであれば低分子化合物及び高分子化合物を問わず使用可能であって、例えば、電界発光材料、非線形光学材料、蛍光発生材料、光導電材料、光記録材料等として用いられるものであって、具体的には、1,1,4,4−テトラフェニル−1,3−ブタジエン (TPB)、フタロシアニン類、アルミキノリシール錯体等の電界発光材料、1,6−ジ(N−カルバゾリル)−2,4−ヘキサジイン(DCHD)、5,7−(ビス−1,12−n−ブチルカルボキシメチレン−ウレタン)ドデカジイン等のポリジアセチレン系化合物、p−トルエンスルホン酸・1−メチル−4−[2−(4−N,N−ジメチルアミノフェニル)ビニル]ピリジニウム、メロシアニン、イソシアニン等の色素類の非線形光学材料、ペリレン等の多環芳香族化合物、スチルベン化合物等の蛍光発生材料等が例示される。
【0009】
上記の電界発光材料に用いられるTPBは、青色発色を示す化合物であって、有機El素子においては色素ドープ材料として、高分子化合物等に0.1〜1.0重量%程度を混合して使用される。これは、TPBが高い量子収率 (ヘキサン中、0.78)を有するものであるため、高濃度で使用すると濃度消光を生じさせるからである。この色素ドーピングの利点は、ホストの有機層からドーパント色素へ発光中心を移動させることにより発光色を制御できるばかりでなく、レーザー色素のような高い蛍光量子収量を有する材料を発光中心とすることで、励起状態からの熱的失活を抑制し、素子からの発光量子効率を向上できることにある。そこで、本発明の方法により得られるTPBの微結晶化物は、微結晶化によるサイズ効果及び界面効果等によって新たな発光特性の発現を期待できるものである。
【0010】
本発明の方法において、光電子機能用有機材料を溶解させる良溶媒としては、アルコール類、ケトン類、エステル類、芳香族炭化水素類、有機ハロゲン化物等の様々な溶媒が用いられる。また、貧溶媒としては、光電子機能用有機材料を溶解させることなく、上記良溶媒と相溶するものであれば使用可能であって、水、シクロヘキサン、デカリン等の飽和炭化水素類が好ましい。
有機材料の濃度としては、飽和濃度からその1/100程度の範囲が好ましい。また、貧溶媒に対する良溶媒溶液の量は、飽和溶解量からその1/10程度の範囲が好ましい。また、有機材料を溶解させた良溶媒を、貧溶媒の撹拌中にシリンジ等を用いて滴下注入する方法等によって混合分散液を得る。その際、貧溶媒の温度としては、0〜90℃の範囲が使用可能であるが、最小粒径のものを得るには常温付近が好ましい。
【0011】
次に、本発明では、上記の混合分散液にマイクロ波を照射する加熱処理を行う。このマイクロ波照射には、マイクロ波を照射すれば加熱できる公知のものであれば何ら制限されることなく使用できるが、例えば、電子レンジ等の利用が便利である。その照射には、0.3〜30GHz、好ましくは2.45GHzのマイクロ波を0.1〜60分間程度で行うことが好ましい。この混合分散液がマイクロ波で加熱処理されると、結晶化が促進されて、粒径500nm以下の、好ましくは300nm以下、より好ましくは100nm以下の超微小粒子が単分散した微結晶が得られる。図1には、有機材料の混合分散液にマイクロ波を照射して加熱することによる有機微結晶作製の模式図を示す。
【0012】
本発明においては、その混合分散液にマイクロ波照射による加熱処理をした後に、さらに、ガンマ線、電子線、X線または光線を照射して重合等を行うことによっても、同様に粒径500nm以下の、好ましくは300nm以下、より好ましくは100nm以下の超微小粒子が単分散した微結晶を得ることができる。また、シアニン色素化合物等については、アミン等の酸性度変化剤を配合する処理を行うことによりJ会合体を形成した超微粒子を得ることができる。
【0013】
【実施例】
以下、実施例等により本発明を具体的に説明するが、これらにより本発明の内容は何ら限定されるものではない。
実施例1
[電界発光有機材料の1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)]
TPBをアセトンに溶解させたTPBアセトン溶液(TPB濃度 6mM) 100μlを、貧溶媒である水20ml中に注入した混合分散液に、室温において2.45GHzのマイクロ波を約20秒間照射し、水が沸点に達するより前に照射を止めた。その後、その混合分散液を氷水で再び室温まで冷却すると、分散液中に平均粒径約200nmのTPB超微結晶が得られた。
なお、マイクロ波照射は、一般に市販されている家庭用電子レンジ (SANYO オーブンレンジ EMO−C4 (TB)型) を用いた。
【0014】
[本発明方法と従来法との粒径の比較及び評価]
(1)実施例1のマイクロ波照射による加熱により作製されたTPB微結晶
図2には、実施例1で得られたTPB微結晶の走査電子顕微鏡(SEM)写真を示す。図2に見られるように、実施例1ではマイクロ波照射により短時間で単分散粒径の微結晶が作製された。
(2)従来の再沈法のみにより作製されたTPB微結晶
マイクロシリンジを用いて、6mMのTPBアセトン溶液100μlを室温で、撹拌中の水20mlに再沈澱させ、水温45℃で220時間静置させた。得られたTPB微結晶のSEM写真を図3に示す。図3では、結晶粒径が大きく、また多分散サイズの微結晶であることが判明した。
【0015】
実施例2
[非線形光学材料の1,6−ジ(N−カルバゾリル)−2,4−ヘキサジイン(DCHD)]
まず、ジアセチレン類であるDCHD濃度10mMのアセトン溶液 250μlを、シリンジを用いて10mlの撹拌された水中に注入する再沈法を行った。初期状態ではアモルファス微粒子が生成し、これを、そのままひき続いて約20分程静置させる間にアモルファス微粒子が固相重合可能な微結晶への形態変化を遂げた。
この再沈操作後の分散液に、マイクロ波を照射 (350W)して加熱を行うと、約30秒で単分散性の良好な固相重合可能なDCHDの微結晶を含む分散液が得られた。DCHDは、通常光や熱により容易に固相重合が進行するものであるから、この分散液にUVを照射すると、DCHDポリマー微結晶に特有の青色を呈したことから、固相重合して共役ポリマーが生成したことを確認した。この結晶粒径は、DLS測定により約100nmであった。このようにマイクロ波による加熱を行うことで、従来の再沈法によるDCHD微結晶の作製に比べて微少時間での微結晶化が可能になった。図4は、実施例2で作製されたDCHDポリマー微結晶のSEM写真を示す。
【0016】
実施例3
[蛍光発生材料のペリレン]
ペリレン濃度1mMのアセトン溶液200μlを10mlの水中に再沈殿させたところ、結晶サイズ分布100〜500nm、平均粒径約200nmの微結晶を含む分散液を得た。次いで、従来法と同様に再沈殿を行って、これにマイクロ波を照射して加熱することによりペリレン微結晶を作製した。このマイクロ波照射は50Wで5分間行うと微結晶が得られ、その作成時間は大幅に短縮された。得られた微結晶の粒径分布は約100nmの単分散であることが分かった。図5には、実施例3で得られたペリレン微結晶のSEM写真を示す。
一般に、ペリレンは再沈殿した後、直ちに微結晶化を起こさず、一度水中にクラスターとなって一時的に安定化状態を経由し、徐々に結晶化が進行することから、最終的には結晶の粒径分布は幅広くなるものであることを考慮すると、実施例3の優位性が理解できるものである。
【0017】
【発明の効果】
本発明によれば、有機材料の結晶を作製する再沈操作の後に、マイクロ波による加熱処理を行うという簡易な方法で、良好な単分散性を有する超微粒子結晶を短時間で得られるから、光電子機能用に求められる有機超微粒子結晶を容易に作製できるものであり、極めて有用な有機微結晶の製造方法である。特に、本発明は、粒径が500nm以下の単分散した均一な超微粒子からなる光電子機能用有機微結晶の製造方法であるから、工業的に利用価値の高いものである。
【図面の簡単な説明】
【図1】本発明における有機材料の混合分散液にマイクロ波を照射して有機微結晶を作製する模式図を示す。
【図2】実施例1で得られたTPBの微結晶粒子のSEM写真である。
【図3】従来の方法により作製された有機材料の結晶粒子のSEM写真である。
【図4】実施例2で得られたDCHDポリマーの超微結晶粒子のSEM写真である。
【図5】実施例3で得られたペリレンの超微結晶粒子のSEM写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a simple method for producing organic microcrystals used for optoelectronic functional materials.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, reprecipitation methods, gas phase methods, and the like have been known as methods for producing organic microcrystals that can be expected as high-performance optoelectronic functional materials in the fields of electronics and nonlinear optics. Above all, the reprecipitation method is a simple and effective method because organic microcrystals are precipitated by utilizing the difference in solubility.However, in the case of certain organic compounds, molecules or In some cases, crystallization progresses gradually over a long period of time of several hours to several tens of hours after forming a cluster.
[0003]
Further, in the reprecipitation method, it is often difficult to produce monodispersed organic ultrafine crystals, and there is a problem that crystallization requires a long time. Furthermore, when a large amount of time is required for the microcrystallization, the particle size of the microcrystal increases and the particle size increases, and the particle size distribution tends to be distributed over a wide range. Obtaining the particles was extremely difficult.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation in the related art. That is, an object of the present invention is to provide a method for producing an organic microcrystal for an optoelectronic function, which can easily and easily obtain ultrafine particle crystals having a good monodispersity having a particle diameter of 500 nm or less in a short time.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-described problems, and as a result, after the operation of forming organic crystals in the solution by the reprecipitation method, crystallization is promoted by irradiating the mixed solution with microwaves. The inventors have found that monodispersed ultrafine crystals can be obtained in a short time, and have completed the present invention.
[0006]
That is, the method for producing an organic microcrystal for optoelectronic functions of the present invention comprises mixing an organic material for optoelectronic functions dissolved in a good solvent into a poor solvent of the organic material compatible with the solvent, and adding the resulting mixture. The method is characterized by obtaining microcrystals or aggregates having a particle size of 500 nm or less by irradiating a microwave and heating.
In addition, another method for producing an organic microcrystal for optoelectronic functions of the present invention is obtained by mixing an organic material for optoelectronic functions dissolved in a good solvent into a poor solvent of the organic material compatible with the solvent. The mixture is heated by irradiating the mixture with microwaves and then irradiated with a gamma ray, an electron beam, an X-ray or a light beam to obtain microcrystals or aggregates having a particle size of 500 nm or less.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention has been considered difficult to achieve by microwave heating to a state in which molecules or clusters are formed in a poor solvent after the operation of the reprecipitation method for producing crystals of the organic material for optoelectronic functions. In this method, a monodisperse and ultrafine crystal having a very small size is easily produced.
[0008]
As the organic material used in the present invention, any low-molecular compound or high-molecular compound can be used as long as an organic crystal is used in the field of photoelectrons. For example, an electroluminescent material, a nonlinear optical material, It is used as a fluorescence generating material, a photoconductive material, an optical recording material, and the like. Specifically, 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), phthalocyanines, aluminum quino Electroluminescent materials such as resealed complexes, 1,6-di (N-carbazolyl) -2,4-hexadiyne (DCHD), 5,7- (bis-1,12-n-butylcarboxymethylene-urethane) dodecadiyne, etc. Polydiacetylene compound, 1-methyl-4- [2- (4-N, N-dimethylaminophenyl) vinyl] pyridinium p-toluenesulfonate, meloxi Non-linear optical materials such as dyes such as anine and isocyanine, polycyclic aromatic compounds such as perylene, and fluorescent materials such as stilbene compounds are exemplified.
[0009]
The TPB used in the above electroluminescent material is a compound that exhibits blue color. In an organic EL device, about 0.1 to 1.0% by weight of a polymer compound or the like is used as a dye-doping material. Is done. This is because TPB has a high quantum yield (in hexane, 0.78), so that when used at a high concentration, concentration quenching occurs. The advantage of this dye doping is that not only can the emission color be controlled by moving the emission center from the organic layer of the host to the dopant dye, but also that a material having a high fluorescence quantum yield such as a laser dye is used as the emission center. Another object of the present invention is to suppress thermal deactivation from an excited state and improve the quantum efficiency of light emission from the device. Therefore, the microcrystallized TPB obtained by the method of the present invention can be expected to exhibit new light emission characteristics due to the size effect and the interfacial effect due to the microcrystallization.
[0010]
In the method of the present invention, various solvents such as alcohols, ketones, esters, aromatic hydrocarbons, and organic halides are used as the good solvent for dissolving the organic material for optoelectronic functions. As the poor solvent, any solvent can be used as long as it is compatible with the above-mentioned good solvent without dissolving the organic material for optoelectronic functions. Saturated hydrocarbons such as water, cyclohexane, and decalin are preferable.
The concentration of the organic material is preferably in the range from the saturation concentration to about 1/100. Further, the amount of the good solvent solution with respect to the poor solvent is preferably in the range of about 1/10 5 from the saturated dissolution amount. In addition, a mixed dispersion is obtained by, for example, dropping a good solvent in which an organic material is dissolved using a syringe or the like while stirring the poor solvent. In this case, the temperature of the poor solvent may be in the range of 0 to 90 ° C., but is preferably around room temperature in order to obtain the minimum particle size.
[0011]
Next, in the present invention, a heat treatment for irradiating the mixed dispersion liquid with microwaves is performed. The microwave irradiation can be used without any limitation as long as it can be heated by irradiating the microwave, but for example, use of a microwave oven or the like is convenient. It is preferable that the irradiation be performed with a microwave of 0.3 to 30 GHz, preferably 2.45 GHz, for about 0.1 to 60 minutes. When this mixed dispersion is heat-treated with microwaves, crystallization is promoted to obtain microcrystals in which ultrafine particles having a particle size of 500 nm or less, preferably 300 nm or less, more preferably 100 nm or less are monodispersed. Can be FIG. 1 is a schematic diagram showing the preparation of an organic microcrystal by irradiating a mixed dispersion of an organic material with microwaves and heating.
[0012]
In the present invention, after the mixed dispersion is subjected to heat treatment by microwave irradiation, and further subjected to polymerization or the like by irradiating gamma rays, electron beams, X-rays or light rays, similarly, the particle size of 500 nm or less It is possible to obtain microcrystals in which ultrafine particles of preferably 300 nm or less, more preferably 100 nm or less are monodispersed. Also, with respect to the cyanine dye compound and the like, ultrafine particles having a J-aggregate can be obtained by performing a treatment of mixing an acidity changing agent such as an amine.
[0013]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and the like, but the present invention is not limited thereto.
Example 1
[Electroluminescent organic material 1,1,4,4-tetraphenyl-1,3-butadiene (TPB)]
A mixed dispersion obtained by injecting 100 μl of a TPB acetone solution (TPB concentration: 6 mM) in which TPB was dissolved in acetone into 20 ml of water, which is a poor solvent, was irradiated with microwaves of 2.45 GHz at room temperature for about 20 seconds. The irradiation was stopped before reaching the boiling point. Thereafter, when the mixed dispersion was cooled again to room temperature with ice water, ultrafine crystals of TPB having an average particle size of about 200 nm were obtained in the dispersion.
In addition, the microwave irradiation used the household microwave oven (SANYO microwave oven EMO-C4 (TB) type) generally marketed.
[0014]
[Comparison and evaluation of particle size between method of the present invention and conventional method]
(1) TPB microcrystal produced by heating by microwave irradiation in Example 1 FIG. 2 shows a scanning electron microscope (SEM) photograph of the TPB microcrystal obtained in Example 1. As shown in FIG. 2, in Example 1, microcrystals having a monodispersed particle size were produced in a short time by microwave irradiation.
(2) Using a TPB microcrystal microsyringe prepared only by the conventional reprecipitation method, 100 μl of a 6 mM TPB acetone solution was reprecipitated in 20 ml of stirring water at room temperature, and allowed to stand at a water temperature of 45 ° C. for 220 hours. I let it. FIG. 3 shows an SEM photograph of the obtained TPB microcrystal. In FIG. 3, it was found that the crystal grains were large and polycrystals of polydispersed size.
[0015]
Example 2
[Non-linear optical material 1,6-di (N-carbazolyl) -2,4-hexadiyne (DCHD)]
First, a reprecipitation method was performed in which 250 μl of an acetone solution having a DCHD concentration of 10 mM, which is a diacetylene, was injected into 10 ml of stirred water using a syringe. In the initial state, amorphous fine particles were generated, and while the amorphous fine particles were allowed to stand still for about 20 minutes, the amorphous fine particles changed their morphology into microcrystals capable of solid phase polymerization.
When the dispersion after the reprecipitation operation is irradiated with microwaves (350 W) and heated, a dispersion containing DCHD microcrystals having good monodispersibility and capable of solid phase polymerization can be obtained in about 30 seconds. Was. In general, solid phase polymerization of DCHD easily proceeds by light or heat. Therefore, when this dispersion is irradiated with UV, a blue color peculiar to DCHD polymer microcrystals is exhibited. It was confirmed that a polymer was formed. The crystal grain size was about 100 nm as measured by DLS. By performing heating by microwaves in this way, microcrystallization can be performed in a very short time as compared with the preparation of DCHD microcrystals by a conventional reprecipitation method. FIG. 4 shows an SEM photograph of the DCHD polymer microcrystals produced in Example 2.
[0016]
Example 3
[Perylene, a fluorescent generating material]
When 200 μl of an acetone solution having a perylene concentration of 1 mM was reprecipitated in 10 ml of water, a dispersion containing microcrystals having a crystal size distribution of 100 to 500 nm and an average particle size of about 200 nm was obtained. Next, reprecipitation was carried out in the same manner as in the conventional method, and this was irradiated with microwaves and heated to produce perylene microcrystals. When this microwave irradiation was performed at 50 W for 5 minutes, microcrystals were obtained, and the preparation time was greatly reduced. The particle size distribution of the obtained microcrystal was found to be monodisperse of about 100 nm. FIG. 5 shows an SEM photograph of the perylene microcrystals obtained in Example 3.
In general, perylene does not immediately crystallize immediately after reprecipitation, but once forms a cluster in water, temporarily goes through a stabilized state, and gradually progresses in crystallization. Considering that the particle size distribution is broad, the superiority of Example 3 can be understood.
[0017]
【The invention's effect】
According to the present invention, after a reprecipitation operation for producing a crystal of an organic material, an ultrafine crystal having good monodispersity can be obtained in a short time by a simple method of performing heat treatment by microwave, This is an extremely useful method for producing organic microcrystals, which can easily produce organic ultrafine particle crystals required for optoelectronic functions. In particular, the present invention is a method for producing organic microcrystals for optoelectronic functions comprising monodispersed uniform ultrafine particles having a particle size of 500 nm or less, and therefore has high industrial value.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a method for irradiating a mixed liquid dispersion of an organic material according to the present invention with microwaves to produce organic microcrystals.
FIG. 2 is a SEM photograph of TPB microcrystalline particles obtained in Example 1.
FIG. 3 is an SEM photograph of crystal particles of an organic material produced by a conventional method.
FIG. 4 is an SEM photograph of ultra-fine crystal particles of the DCHD polymer obtained in Example 2.
FIG. 5 is a SEM photograph of the ultrafine crystal particles of perylene obtained in Example 3.

Claims (2)

良溶媒に溶解した光電子機能用有機材料を、該溶媒と相溶する前記有機材料の貧溶媒中に混入し、得られた混合物にマイクロ波を照射して加熱することにより、粒径500nm以下の単分散した微結晶または会合体を得ることを特徴とする光電子機能用有機微結晶の製造方法。The organic material for optoelectronic functions dissolved in a good solvent is mixed into a poor solvent of the organic material compatible with the solvent, and the resulting mixture is irradiated with microwaves and heated to have a particle size of 500 nm or less. A method for producing an organic microcrystal for an optoelectronic function, comprising obtaining a monodispersed microcrystal or an aggregate. 良溶媒に溶解した光電子機能用有機材料を、該溶媒と相溶する前記有機材料の貧溶媒中に混入し、得られた混合物にマイクロ波を照射して加熱した後、ガンマ線、電子線、X線または光線を照射することにより、粒径500nm以下の単分散した微結晶または会合体を得ることを特徴とする光電子機能用有機微結晶の製造方法。An organic material for an optoelectronic function dissolved in a good solvent is mixed into a poor solvent of the organic material compatible with the solvent, and the obtained mixture is heated by irradiating a microwave, and then gamma ray, electron beam, X ray A method for producing an organic microcrystal for an optoelectronic function, wherein a monodispersed microcrystal or an aggregate having a particle size of 500 nm or less is obtained by irradiating a line or a light beam.
JP2000080413A 2000-03-22 2000-03-22 Method for producing organic microcrystal for optoelectronic function Expired - Lifetime JP3584266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080413A JP3584266B2 (en) 2000-03-22 2000-03-22 Method for producing organic microcrystal for optoelectronic function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080413A JP3584266B2 (en) 2000-03-22 2000-03-22 Method for producing organic microcrystal for optoelectronic function

Publications (2)

Publication Number Publication Date
JP2001262137A JP2001262137A (en) 2001-09-26
JP3584266B2 true JP3584266B2 (en) 2004-11-04

Family

ID=18597518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080413A Expired - Lifetime JP3584266B2 (en) 2000-03-22 2000-03-22 Method for producing organic microcrystal for optoelectronic function

Country Status (1)

Country Link
JP (1) JP3584266B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084851A (en) 2005-09-20 2007-04-05 Japan Science & Technology Agency Method for producing organic crystal coated with metal
CN110265549B (en) * 2019-06-19 2023-01-06 苏州大学 Preparation method of few-layer organic crystalline film and organic field effect transistor
CN115074117A (en) * 2022-06-02 2022-09-20 天津大学 Environment-stable type pure organic long-afterglow material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2001262137A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
Zheng et al. Aggregation‐induced nonlinear optical effects of AIEgen nanocrystals for ultradeep in vivo bioimaging
He et al. Ultrasmall Pb: Ag2S Quantum Dots with Uniform Particle Size and Bright Tunable Fluorescence in the NIR‐II Window
Qaid et al. Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films
JP2723200B2 (en) Manufacturing method of organic microcrystal for nonlinear optics
Li et al. Heterogeneous nucleation toward polar‐solvent‐free, fast, and one‐pot synthesis of highly uniform perovskite quantum dots for wider color gamut display
Song et al. Highly uniform and monodisperse Gd2O2S: Ln3+ (Ln= Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties
Nelson et al. Nanocrystalline Y2O3: Eu phosphors prepared by alkalide reduction
Cao et al. Cryogenic‐Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr3 Quantum Dots for Deeply Blue Light‐Emitting Diodes
Yang et al. Thermal polymerization synthesis of CsPbBr3 perovskite-quantum-dots@ copolymer composite: towards long-term stability and optical phosphor application
Rodarte et al. Tuning Quantum‐Dot Organization in Liquid Crystals for Robust Photonic Applications
Smirnov et al. Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye
CN108774520B (en) Preparation method of cesium-lead-bromine quantum dots based on liquid-phase laser irradiation of halogen perovskite
JP4457439B2 (en) Method for producing fine particles of organic compound
Mingbin et al. Trivalent Yb/Ho/Ce tri-doped core/shell NaYF4 nanoparticles for tunable upconversion luminescence from green to red
Li et al. Photoswitchable fluorescent liquid crystal Nanoparticles and their inkjet‐printed patterns for information encrypting and anti‐counterfeiting
Xing et al. Temperature-dependent photoluminescence of Mn doped CsPbCl3 perovskite nanocrystals in mesoporous silica
Getachew et al. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives
Matsubara et al. A low-symmetry cubic mesophase of dendronized CdS nanoparticles and their structure-dependent photoluminescence
Mori et al. Stopped-flow analysis on the mechanism of perylene nanoparticle formation by the reprecipitation method
JP3584266B2 (en) Method for producing organic microcrystal for optoelectronic function
Zvyagin et al. Nonlinear refraction in colloidal silver sulfide quantum dots
Sugiyama et al. Size and phase control in quinacridone nanoparticle formation by laser ablation in water
Yang et al. Electrohydrodynamically printed high‐resolution arrays based on stabilized CsPbBr3 quantum dot inks
Ng et al. Synthesis of cesium copper bromide nanorods with strong linearly polarized emission
Zhao et al. Morphology-controllable synthesis, energy transfer and luminescence properties of Ce 3+/Tb 3+/Eu 3+-doped CaF 2 microcrystals

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040511

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

R150 Certificate of patent or registration of utility model

Ref document number: 3584266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term