JP2721557B2 - Coiled carbon fiber and carbon composite - Google Patents

Coiled carbon fiber and carbon composite

Info

Publication number
JP2721557B2
JP2721557B2 JP1234853A JP23485389A JP2721557B2 JP 2721557 B2 JP2721557 B2 JP 2721557B2 JP 1234853 A JP1234853 A JP 1234853A JP 23485389 A JP23485389 A JP 23485389A JP 2721557 B2 JP2721557 B2 JP 2721557B2
Authority
JP
Japan
Prior art keywords
carbon
coiled
fiber
gas
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1234853A
Other languages
Japanese (ja)
Other versions
JPH03104927A (en
Inventor
雅之 川口
浩二 野崎
康 喜田
栖二 元島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to GB9014271A priority Critical patent/GB2233971B/en
Priority to FR9008121A priority patent/FR2650270B1/en
Priority to DE19904020621 priority patent/DE4020621A1/en
Publication of JPH03104927A publication Critical patent/JPH03104927A/en
Application granted granted Critical
Publication of JP2721557B2 publication Critical patent/JP2721557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は本質的に炭素からなるコイル状の繊維および
およびこれを用いた炭素複合材料に関する。
Description: TECHNICAL FIELD The present invention relates to a coiled fiber consisting essentially of carbon and a carbon composite material using the same.

炭素繊維は高温高強度複合材料の強化用原料として有
用であり、種々応用されているが、本発明は特に、その
形状がコイル状でスプリング特性を有し、ミクロメカニ
カル素子、クッション材、スイッチング素子等として適
用し得る全く新規な炭素繊維に関し、またこの炭素繊維
と炭素との複合材料に関するものである。
Carbon fiber is useful as a raw material for reinforcement of high-temperature high-strength composite materials, and various applications have been made. In particular, the present invention has a coil-like shape having a spring property, and has a micromechanical element, a cushioning material, a switching element, The present invention relates to a completely new carbon fiber applicable as such, and a composite material of the carbon fiber and carbon.

[従来技術] 炭素繊維としてはPAN系、ピッチ系等の有機繊維(前
駆体)の炭化、黒鉛化処理によるものが一般的である
が、炭化水素の気相熱分解によって直接的に繊維を形成
する方法も提案されており、従来要求された強度以外の
導電性、熱伝導率あるいは吸着性等の種々の機能を利用
した機能材料として注目されている。この気相熱分解法
による炭素繊維の製造法として特公昭51−33210号公報
には炭化水素とキャリアガスの混合ガスを1030〜1300℃
に保持された炉心管内に先ず100〜1500cm/分の流速で導
入し繊維成長の核を形成させ、次いで流速を10〜30cm/
分として繊維を成長させる方法が開示されている。この
ほかに効率的に炭素繊維を製造するための触媒に特徴を
有するもの、あるいは触媒の分散方法を特徴とするもの
等種々の提案がなされているが、コイル状の炭素繊維が
得られた例はない。
[Prior art] Carbon fibers are generally obtained by carbonizing or graphitizing organic fibers (precursors) such as PAN-based or pitch-based organic fibers, but the fibers are formed directly by gas phase pyrolysis of hydrocarbons. A method has been proposed, and attention has been paid to functional materials utilizing various functions such as conductivity, thermal conductivity, and adsorptivity other than the conventionally required strength. As a method for producing carbon fiber by this gas phase pyrolysis method, Japanese Patent Publication No. 51-33210 discloses a mixed gas of hydrocarbon and carrier gas at 1030 to 1300 ° C.
Into the core tube held at a flow rate of 100 to 1500 cm / min to form nuclei for fiber growth, and then increase the flow rate to 10 to 30 cm / min.
A method for growing fibers as a fraction is disclosed. In addition, various proposals have been made, such as those characterized by a catalyst for efficiently producing carbon fibers, or those characterized by a method for dispersing the catalyst, but examples in which coiled carbon fibers were obtained There is no.

[問題点を解決するための具体的手段] 本発明者らは炭化水素の気相熱分解により炭素繊維を
得る方法について検討の過程で特定の反応条件下では従
来全く知られていなかったコイル状を呈する炭素繊維が
得られることを見出し本発明に到達した。すなわち本発
明は、繊維直径が0.05〜5μmの実質的に非晶質な炭素
からなる気相熱分解反応で得られたままでコイル状の繊
維で、コイル外径が繊維直径の2〜10倍で、巻数が10μ
mあたりコイル外径(μm)の逆数の5〜50倍の範囲で
あることを特徴とするコイル状炭素繊維で、さらにその
コイル状炭素繊維を含有する炭素からなる炭素複合材料
であり、Ni金属が存在する系内にて、アセチレンガスと
モル比で1〜5倍の水素ガスまたは希釈ガスを含む混合
ガスを400〜900℃の範囲で気相熱分解反応させることに
より、炭素繊維を析出させる該コイル状炭素繊維の製造
方法および樹脂中に該コイル状炭素繊維を分散した成型
体を焼成し、気孔を充填する緻密化処理を行う炭素複合
材料の製造方法を提供するものである。
[Specific Means for Solving the Problems] In the course of studying a method for obtaining carbon fibers by gas phase pyrolysis of hydrocarbons, the present inventors have found that a coiled shape which has never been known before under specific reaction conditions. The present inventors have found that a carbon fiber exhibiting the following formula is obtained, and have reached the present invention. That is, the present invention is a coil-shaped fiber obtained as a result of a gas phase pyrolysis reaction consisting of substantially amorphous carbon having a fiber diameter of 0.05 to 5 μm, wherein the outer diameter of the coil is 2 to 10 times the fiber diameter. , Turns 10μ
A coiled carbon fiber characterized by being in the range of 5 to 50 times the reciprocal of the coil outer diameter (μm) per m, and a carbon composite material composed of carbon containing the coiled carbon fiber, Ni metal In a system where is present, a carbon fiber is deposited by causing a gas phase pyrolysis reaction of a mixed gas containing hydrogen gas or a diluent gas in a molar ratio of 1 to 5 times with an acetylene gas in a range of 400 to 900 ° C. An object of the present invention is to provide a method for producing the coiled carbon fiber and a method for producing a carbon composite material in which a molded body in which the coiled carbon fiber is dispersed in a resin is subjected to a densification treatment for filling pores.

本発明において用いる炭化水素としてはアセチレン、
エチレン、プロピレン等の不飽和炭化水素、エタン、プ
ロパン、ブタン等の飽和炭化水素等が挙げられ、Ni金属
の触媒作用の点等からアセチレンが最も好ましい。メタ
ンのような低分子の場合気相熱分解に1200〜1300℃を必
要とし、また、ベンゼンも同様に1000℃を越える温度が
必要であり、コイル状の炭素繊維は得られない。
As the hydrocarbon used in the present invention, acetylene,
Examples thereof include unsaturated hydrocarbons such as ethylene and propylene, and saturated hydrocarbons such as ethane, propane and butane. Among them, acetylene is most preferable from the viewpoint of the catalytic action of Ni metal. In the case of a low-molecular substance such as methane, 1200 to 1300 ° C. is required for gas phase pyrolysis, and benzene also requires a temperature exceeding 1000 ° C., so that coiled carbon fibers cannot be obtained.

アセチレンガスと水素を混合して用い、モル比で10倍
までの範囲が推奨され、より好ましくは1〜5倍であ
る。水素の添加により熱分解反応温度を制御することが
でき、その結果としてコイルの形状のコントロールがで
きるものである。この範囲を超える場合にはアセチレン
ガスの熱分解反応を抑制し過ぎることとなる。このほか
にアルゴン、窒素、ヘリウム等の希釈ガスを用いること
も勿論可能であり、コイル形状のコントロールに有用で
ある。希釈ガスの量はアセチレンガスに対してモル比で
10倍までの範囲が好ましく、より好ましくは1〜5倍で
ある。
A mixture of acetylene gas and hydrogen is used, and the molar ratio is preferably up to 10 times, more preferably 1 to 5 times. By adding hydrogen, the pyrolysis reaction temperature can be controlled, and as a result, the shape of the coil can be controlled. If it exceeds this range, the thermal decomposition reaction of acetylene gas will be excessively suppressed. In addition, it is of course possible to use a diluting gas such as argon, nitrogen or helium, which is useful for controlling the coil shape. The amount of diluent gas is a molar ratio to acetylene gas.
The range is preferably up to 10 times, more preferably 1 to 5 times.

反応温度は300〜1000℃の範囲、より好ましくは400〜
900℃の範囲である。この温度より低いと熱分解反応が
起こらない。またこの温度を越えると得られる繊維は直
線状となりコイル状の繊維は得られない。
The reaction temperature is in the range of 300 to 1000 ° C., more preferably 400 to
It is in the range of 900 ° C. If the temperature is lower than this, no thermal decomposition reaction occurs. On the other hand, when the temperature exceeds this temperature, the obtained fiber becomes linear, and a coiled fiber cannot be obtained.

反応圧力は200mmHg〜大気圧の範囲が好ましく、この
範囲をはずれると反応の制御が困難となる。
The reaction pressure is preferably in the range of 200 mmHg to atmospheric pressure, and if it is out of this range, it becomes difficult to control the reaction.

本発明においては、Ni金属触媒が存在することが必要
であり、またその合金であっても差し支えない。Ni金属
触媒が存在しない場合コイル化が困難である。
In the present invention, it is necessary that a Ni metal catalyst be present, and an alloy thereof may be used. In the absence of a Ni metal catalyst, coiling is difficult.

このNi金属触媒そのものを基板として用いることがで
きる。この場合表面を研磨することが好ましい。このほ
かNi金属あるいはその合金の微粒子を基板上あるいは反
応系内に散布する。Ni金属の有機化合物をアセチレンガ
スとともに反応系内に導入し高温部で熱分解反応させ
る。Ni金属の塩の溶液等を基板上あるいは反応系内に塗
布あるいは散布する等の手段を用いることができる。
This Ni metal catalyst itself can be used as a substrate. In this case, it is preferable to polish the surface. In addition, fine particles of Ni metal or its alloy are sprayed on the substrate or in the reaction system. An organic compound of Ni metal is introduced into the reaction system together with acetylene gas, and a thermal decomposition reaction is performed in a high temperature part. Means such as applying or spraying a solution of a Ni metal salt on the substrate or in the reaction system can be used.

本発明の反応温度範囲内であってもより低温側におい
ては、Ni金属触媒が反応系に粉末状に存在するようにす
ることが必要である。かかる手段により、より低温でコ
イル状炭素繊維を製造することができるが、この理由に
ついては必ずしも定かではないが、粉末状のNi触媒が極
めて活性が高く、この活性により、より低温においても
効率的な熱分解が進行し、コイル状化されるものと推定
される。
On the lower temperature side even within the reaction temperature range of the present invention, it is necessary that the Ni metal catalyst be present in the reaction system in powder form. By such means, coiled carbon fibers can be produced at lower temperatures, although the reason for this is not always clear, but powdered Ni catalysts are extremely active, and due to this activity, they are efficient even at lower temperatures. It is presumed that the thermal decomposition proceeds and turns into a coil.

本発明においては、原料ガスとしてホウ素源、窒素
源、シリコン源となる各種のガスを混合添加することに
より、繊維の成長を妨げることなく0〜10wt%のB、
N、Siを含有させることができる。
In the present invention, a boron source, a nitrogen source, and various gases serving as a silicon source are mixed and added as raw material gases, so that 0 to 10 wt% of B,
N and Si can be contained.

本発明のコイル状炭素繊維は従来、炭素繊維が用いら
れている種々の用途に応用できるものであるが、特にそ
の形状に由来するスプリング特性を利用してミクロメカ
ニカル素子、クッション材、スイッチング素子等として
有用である。また、強度、摩擦、摺動特性に優れた材料
として注目されている炭素繊維と炭素との複合材料の原
料として有用であり、以下、その複合材料について説明
する。
Although the coiled carbon fiber of the present invention can be applied to various uses in which carbon fiber is conventionally used, in particular, micromechanical elements, cushioning materials, switching elements, etc., utilizing the spring characteristics derived from the shape. Useful as Further, it is useful as a raw material for a composite material of carbon fiber and carbon, which has attracted attention as a material having excellent strength, friction, and sliding characteristics. The composite material will be described below.

炭素繊維/炭素複合材料は炭素繊維層の繊維間空隙を
炭素で充填した材料であり、一般には炭素繊維に樹脂や
タールピッチを含浸して炭化することにより得られる
が、炭化により生成する気孔を充填し緻密化するためエ
チレン等の炭素源ガスの熱CVDにより処理をおこなうも
のである。
The carbon fiber / carbon composite material is a material in which the interfiber space of the carbon fiber layer is filled with carbon, and is generally obtained by impregnating carbon fiber with a resin or tar pitch and carbonizing. The process is performed by thermal CVD of a carbon source gas such as ethylene in order to fill and densify.

本発明のコイル状炭素繊維はその形状に由来するスプ
リング特性に優れ、かかる炭素繊維/炭素複合材料にお
いてはグリップ特性が向上し、複合材料としての曲げ強
度、引張弾性率等の機械的強度の優れた材料を提供でき
るものである。
The coiled carbon fiber of the present invention has excellent spring properties derived from its shape, and in such a carbon fiber / carbon composite material, the grip properties are improved, and the composite material has excellent mechanical strength such as bending strength and tensile modulus. Material can be provided.

以下本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 内径40mm、長さ1000mmの石英管からなる熱CVD装置の
中央に500mm×20mm×3mmtのNi基板を設置し、アセチレ
ンおよび水素を原料としてアルゴンガスをキャリヤーガ
スとして反応管中央を750℃に加熱した炉内に導入し
た。それぞれのガス流量は次のとおりである。
Example 1 A 500 mm × 20 mm × 3 mmt Ni substrate was placed at the center of a thermal CVD apparatus consisting of a quartz tube having an inner diameter of 40 mm and a length of 1000 mm, and the center of the reaction tube was heated to 750 ° C. using acetylene and hydrogen as raw materials and argon gas as a carrier gas. Was introduced into the furnace. The respective gas flow rates are as follows.

アセチレン;40cc/min 水素 ;140cc/min アルゴン ;225cc/min 炉内圧力は大気圧でおこなった。Acetylene; 40 cc / min Hydrogen; 140 cc / min Argon; 225 cc / min The furnace pressure was set at atmospheric pressure.

5時間反応後Ni基板を取り出すと電気炉前方部(反応
時520〜750℃)に3.7gの生成物が得られた。生成物は繊
維状を呈し、その約10%がコイル状であった。このコイ
ル状繊維の繊維形状を示すSEM写真を第2図に示した。
When the Ni substrate was taken out after the reaction for 5 hours, 3.7 g of a product was obtained in the front part of the electric furnace (520 to 750 ° C. during the reaction). The product was fibrous, of which about 10% was coiled. FIG. 2 shows an SEM photograph showing the fiber shape of the coiled fiber.

このコイル状炭素繊維の直径は0.1〜1μmで長さ約3
00μm、アスペクト比30〜3000、コイルの直径0.2〜10
μmで、いずれもコイル外径は繊維の直径の2〜10倍の
範囲であった。またコイルの巻数は10μm当りコイル外
径(μm)の逆数の5〜30倍の範囲であった。
The diameter of this coiled carbon fiber is 0.1-1 μm and the length is about 3
00μm, aspect ratio 30-3000, coil diameter 0.2-10
μm, the coil outer diameter was in the range of 2 to 10 times the fiber diameter in each case. The number of turns of the coil was in the range of 5 to 30 times the reciprocal of the coil outer diameter (μm) per 10 μm.

このコイル状繊維をメノウ乳鉢で粉砕して測定したX
線回折図を第3図に示した。002回折線のピーク位置は
2θで24.9゜であり、半値幅が7゜というかなり非晶質
な炭素繊維である。
X measured by crushing this coiled fiber in an agate mortar
The X-ray diffraction pattern is shown in FIG. The peak position of the 002 diffraction line is 24.9 ° at 2θ, and is a fairly amorphous carbon fiber having a half width of 7 °.

実施例2 実施例1と同じ装置を用い、反応管の中央150mmの間
にNi粉末5gを設置し、アセチレンを原料とし、アルゴン
ガスをキャリヤーガスとして反応管中央を700℃に加熱
した炉内に導入した。それぞれのガス流量は次のとおり
である。
Example 2 Using the same apparatus as in Example 1, 5 g of Ni powder was placed between 150 mm in the center of the reaction tube, and acetylene was used as a raw material, and argon gas was used as a carrier gas. Introduced. The respective gas flow rates are as follows.

アセチレン:50cc/min アルゴン :50cc/min 炉内圧力はな大気圧でおこなった。Acetylene: 50 cc / min Argon: 50 cc / min The furnace pressure was set at atmospheric pressure.

1時間反応後、電気炉前方部(650〜700℃)に0.8gの
生成物が得られた。生成物のほとんどはコイル状炭素繊
維であった。
After 1 hour of reaction, 0.8 g of product was obtained at the front of the electric furnace (650-700 ° C). Most of the products were coiled carbon fibers.

このコイル状炭素繊維の直径は0.5〜1μmで長さ約1
000μm、アスペクト比1000〜2000、コイルの直径2〜1
0μmで、いずれもコイル外径は繊維の直径の2〜10倍
の範囲であった。またコイルの巻数は10μm当りコイル
外径(μm)の逆数の5〜30倍の範囲であった。
The diameter of this coiled carbon fiber is 0.5-1 μm and the length is about 1
000 μm, aspect ratio 1000-2000, coil diameter 2-1
At 0 μm, the coil outer diameter was in the range of 2 to 10 times the fiber diameter in each case. The number of turns of the coil was in the range of 5 to 30 times the reciprocal of the coil outer diameter (μm) per 10 μm.

このコイル状繊維はX線回折によりかなり非晶質な炭
素繊維であることを確認した。
It was confirmed by X-ray diffraction that the coiled fiber was a considerably amorphous carbon fiber.

実施例3 反応管中央を400℃に加熱した以外は実施例2と同じ
条件で反応をおこなった。
Example 3 A reaction was performed under the same conditions as in Example 2 except that the center of the reaction tube was heated to 400 ° C.

1時間反応後、電気炉前方部(350〜400℃)に1.7gの
生成物が得られた。生成物は繊維状を呈し、その約5%
がコイル状であった。
After reacting for 1 hour, 1.7 g of product was obtained at the front of the electric furnace (350 to 400 ° C.). The product is fibrous, of which about 5%
Was coiled.

このコイル状炭素繊維の直径は0.2〜2.6μmで、長さ
10〜1000μm、アスペクト比50〜1000、コイルの外径は
0.8〜10μmでかなり不均一であったが、いずれも繊維
直径の2〜10倍の範囲であった。また、コイルの巻数は
10μm当りコイル外径(μm)の逆数の5〜50倍の範囲
であった。このコイル状炭素繊維はX線回折によりかな
り非晶質な炭素繊維であることを確認した。
The diameter of this coiled carbon fiber is 0.2 to 2.6 μm and the length is
10-1000μm, aspect ratio 50-1000, coil outer diameter is
Although it was considerably non-uniform at 0.8 to 10 μm, each range was 2 to 10 times the fiber diameter. The number of turns of the coil is
The range was 5 to 50 times the reciprocal of the coil outer diameter (μm) per 10 μm. X-ray diffraction confirmed that the coiled carbon fiber was a considerably amorphous carbon fiber.

実施例4 合成したコイル状炭素繊維100gを3のフェノール樹
脂−アルコール溶液中に均一に分散させ、スラリー状と
した後、このスラリーを網目250メッシュ(62μm)の
スクリーンを通し、溶液を除去することにより、コイル
状炭素繊維が均一に分散したプリフォームを得た。この
プリフォームを乾燥し、繊維含有率40%の成型体を得
た。
Example 4 100 g of the synthesized coiled carbon fiber was uniformly dispersed in a phenol resin-alcohol solution 3 to form a slurry, and the slurry was passed through a 250-mesh (62 μm) screen to remove the solution. As a result, a preform in which the coiled carbon fibers were uniformly dispersed was obtained. The preform was dried to obtain a molded body having a fiber content of 40%.

この成型体を2000℃で焼成した後、1000℃に加熱し、
エチレンガスを導入し、CVD法により気孔を充填する緻
密化処理をおこなった。さらに2000℃の熱処理をおこな
って気孔率15%の炭素繊維/炭素複合材料を得た。この
ものの曲げ強度は15Kg/mm2、引張弾性率は6×103Kg/mm
2と強度特性が優れていた。
After firing this molded body at 2000 ° C, it is heated to 1000 ° C,
Ethylene gas was introduced, and the pores were densified by CVD. Further, heat treatment at 2000 ° C. was performed to obtain a carbon fiber / carbon composite material having a porosity of 15%. Its bending strength is 15 kg / mm 2 and its tensile modulus is 6 × 10 3 kg / mm
2 and strength characteristics were excellent.

[発明の効果] 本発明の炭素繊維はコイル状を呈するものであり、高
温高強度複合材料、高温・腐食性雰囲気下でスプリング
特性が要求されるミクロメカニカル素子やクッション材
として有用であり、また、炭素繊維の導電性を利用し
て、伸縮時の接触断面積の変化により流れる電流値を制
御するスイッチング素子等としても応用できるものであ
る。また、炭素との複合材料においてもそのスプリング
性能によるグリップ特性が優れ、各種物性の向上が図れ
るものである。
[Effect of the Invention] The carbon fiber of the present invention has a coil shape, and is useful as a high-temperature high-strength composite material, a micromechanical element or a cushion material that requires spring characteristics under a high-temperature and corrosive atmosphere, and It can also be applied as a switching element or the like that controls the value of a current flowing by changing the contact cross-sectional area during expansion and contraction by utilizing the conductivity of carbon fibers. Also, the composite material with carbon has excellent grip characteristics due to its spring performance, and can improve various physical properties.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は本発明のコイル状炭素繊維の形状
を示すSEM写真である。 第3図は本発明のコイル状炭素繊維のX線回折図を示
す。
1 and 2 are SEM photographs showing the shape of the coiled carbon fiber of the present invention. FIG. 3 shows an X-ray diffraction diagram of the coiled carbon fiber of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】繊維直径が0.05〜5μmの実質的に非晶質
な炭素からなる気相熱分解反応で得られたままでコイル
状の繊維で、コイル外径が繊維直径の2〜10倍で、巻数
が10μmあたりコイル外径(μm)の逆数の5〜50倍の
範囲であることを特徴とするコイル状炭素繊維。
1. A coiled fiber as obtained by a gas phase pyrolysis reaction of substantially amorphous carbon having a fiber diameter of 0.05 to 5 μm, wherein the outer diameter of the coil is 2 to 10 times the fiber diameter. The coiled carbon fiber, wherein the number of turns is in the range of 5 to 50 times the reciprocal of the coil outer diameter (μm) per 10 μm.
【請求項2】請求項(1)記載のコイル状炭素繊維を含
有する炭素からなる炭素複合材料。
2. A carbon composite material comprising carbon containing the coiled carbon fiber according to claim 1.
【請求項3】Ni金属が存在する系内にて、アセチレンガ
スとモル比で1〜5倍の水素ガスまたは希釈ガスを含む
混合ガスを400〜900℃の範囲で気相熱分解反応させるこ
とにより、炭素繊維を析出させることを特徴とする請求
項(1)記載のコイル状炭素繊維の製造方法。
3. A gas-phase pyrolysis reaction of a mixed gas containing a hydrogen gas or a diluent gas in a molar ratio of 1 to 5 times with an acetylene gas in a system in which Ni metal is present at a temperature of 400 to 900 ° C. The method for producing coiled carbon fibers according to claim 1, wherein the carbon fibers are precipitated by the method.
【請求項4】樹脂中にコイル状炭素繊維を分散した成型
体を焼成し、気孔を充填する緻密化処理を行うことを特
徴とする請求項(2)記載の炭素複合材料の製造方法。
4. The method for producing a carbon composite material according to claim 2, wherein the molded body in which the coiled carbon fibers are dispersed in the resin is baked to perform a densification treatment for filling pores.
JP1234853A 1989-06-28 1989-09-11 Coiled carbon fiber and carbon composite Expired - Lifetime JP2721557B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB9014271A GB2233971B (en) 1989-06-28 1990-06-27 Carbonaceous fibers having coil-like filaments and method of producing same
FR9008121A FR2650270B1 (en) 1989-06-28 1990-06-27 CARBON FIBERS HAVING COIL FILAMENTS AND PROCESS FOR THE PRODUCTION THEREOF
DE19904020621 DE4020621A1 (en) 1989-06-28 1990-06-28 CARBON FIBER FIBERS WITH SPIRAL THREADS AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16642889 1989-06-28
JP1-166428 1989-06-28

Publications (2)

Publication Number Publication Date
JPH03104927A JPH03104927A (en) 1991-05-01
JP2721557B2 true JP2721557B2 (en) 1998-03-04

Family

ID=15831235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234853A Expired - Lifetime JP2721557B2 (en) 1989-06-28 1989-09-11 Coiled carbon fiber and carbon composite

Country Status (1)

Country Link
JP (1) JP2721557B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064514B2 (en) * 1998-02-19 2008-03-19 栖二 元島 Vapor phase production method and production apparatus for coiled carbon fiber
JP3734400B2 (en) * 2000-02-25 2006-01-11 双葉電子工業株式会社 Electron emitter
JP4643852B2 (en) * 2001-05-09 2011-03-02 日本特殊陶業株式会社 Sensor
CN101018737A (en) * 2004-07-16 2007-08-15 独立行政法人科学技术振兴机构 Process for producing catalyst patricle diameter control type carbon nanostructure production, production apparatus therefor, and carbon nanostructure
JP2006233395A (en) * 2005-02-28 2006-09-07 Kitami Institute Of Technology Carbon fiber and method for producing the same
JP2011093758A (en) * 2009-10-30 2011-05-12 Ibiden Co Ltd Carbonaceous material
CN108998861B (en) * 2018-06-08 2020-09-01 四川理工学院 Preparation method of spiral carbon nanofiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398423A (en) * 1977-02-04 1978-08-28 Toshiba Corp Method of shaping carbon fibers
JPS61225319A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber
JPS61225322A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Production of carbonaceous fiber
JPS61194223A (en) * 1985-02-22 1986-08-28 Showa Denko Kk Production of carbon fiber by gaseous phase method

Also Published As

Publication number Publication date
JPH03104927A (en) 1991-05-01

Similar Documents

Publication Publication Date Title
JP2944246B2 (en) Method for producing coiled carbon fiber
US5726116A (en) Fibril aggregates and method for making same
US6423288B2 (en) Fibrils
KR960015658B1 (en) Carbon fibrils
KR0137224B1 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
KR101746260B1 (en) Supported catalysts, carbon nanotube agglomerates, and process for preparing same
JPS62500943A (en) carbon fibril
JP2020508959A (en) Method for producing multi-walled carbon nanotubes using a continuous process
JP2721557B2 (en) Coiled carbon fiber and carbon composite
JPH0142885B2 (en)
JP2002004134A (en) Carbon fiber and method for producing the same
JP6422779B2 (en) An improved method for synthesizing carbon nanotubes on multiple supports
JP2733788B2 (en) Manufacturing method of carbon fiber coated with carbide ceramics
JPH0310566B2 (en)
GB2233971A (en) Carbonaceous fibres having coil-like filaments and method of producing same
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
JPH11124740A (en) Carbon micro-coil and its production
JPS6330433B2 (en)
JP2643984B2 (en) Manufacturing method of carbon fiber molded heat insulating material and heat insulating material
JP5242124B2 (en) Fine carbon fiber and composite material
JPS6262188B2 (en)
JP2521795B2 (en) Method for producing carbon fiber reinforced composite material having oxidation resistance
CA2005642C (en) Fibrils
JPH03227412A (en) Coiled fiber and production thereof
Hough Continuous silicon carbide filaments

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12