JPS6262188B2 - - Google Patents

Info

Publication number
JPS6262188B2
JPS6262188B2 JP57165498A JP16549882A JPS6262188B2 JP S6262188 B2 JPS6262188 B2 JP S6262188B2 JP 57165498 A JP57165498 A JP 57165498A JP 16549882 A JP16549882 A JP 16549882A JP S6262188 B2 JPS6262188 B2 JP S6262188B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
fiber
fibers
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57165498A
Other languages
Japanese (ja)
Other versions
JPS5959976A (en
Inventor
Morinobu Endo
Minoru Takamizawa
Tatsuhiko Motomya
Yasushi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16549882A priority Critical patent/JPS5959976A/en
Priority to US06/533,649 priority patent/US4560589A/en
Publication of JPS5959976A publication Critical patent/JPS5959976A/en
Publication of JPS6262188B2 publication Critical patent/JPS6262188B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素繊維表面をβ型炭化けい素で被覆
してなる炭化けい素被覆炭素繊維の製造方法に関
するものである。 炭素繊維がレーヨン、ポリアクリロニトリル、
リグニン、レジナスビツチなどの不活性ガス中で
の加熱分解で作られることはすでによく知られた
ところであり、これは高強度、耐熱性であるとい
うことから近年工業材料としても注目を集め、こ
れについてはプラスチツク、金属との複合材料へ
の応用も試みられている。しかし、この炭素繊維
には高温での耐酸化性に限度があり、プラスチツ
ク、金属との濡れ性がわるく、金属とは高温で反
応するという欠点があるため、これには種々の複
雑な表面処理が行なわれている。 他方、この種の耐熱性繊維として近年開発され
た炭化けい素繊維は高温における耐酸化性が強
く、プラスチツク、金属との濡れもよく、金属と
反応しないという特性をもつものであるけれど
も、これにはその製造原料が特殊な有機けい素重
合体とされること、その製造にはかゝる重合体を
合成し、ついでこれを紡糸、不融化、焼成という
複雑な工程が必要とされるために、これは非常に
高価なものになるという欠点がある。 そのために、この耐熱性繊維については、予じ
め製造した炭素繊維の表面上でSiCl4,HSiCl3
どのけい素化合物を熱分解させて、この繊維の表
面に金属けい素を析出させ、ついでこれを高温で
焼成して炭化けい素繊維とする方法(特開昭50−
38700号公報参照)が提案されているが、これは
工程が複雑であり、高温を必要とするということ
から未だ実用化されていない。 本発明はこのような不利を解決した炭化けい素
被覆炭素繊維の製造方法に関するもので、これは
炭素繊維上でSiX(Xはハロゲン原子または酸素
原子を示す)結合を含まない、分子中に少なくと
も1個の水素―けい素結合を有する有機けい素化
合物を700〜1400℃の温度で気相熱分解させて、
炭素繊維表面にβ型―炭化けい素を主体とする皮
膜を形成させることを特徴とするものである。 これを説明すると、本発明者らはさきに上記し
たSiX結合を含有しない有機けい素化合物を金属
または金属化合物の微粒子を種触媒として気相熱
分解させれば炭化けい素繊維を得ることができる
ことを見出した(特願昭57−113689号参照)が、
この有機けい素化合物を予じめ製造した炭素繊維
上で気相熱分解させたところ、β型炭化けい素を
主体とする被膜が炭素繊維上に形成され、得られ
た繊維は強度の低下が殆んどなく、耐酸化性、プ
ラスチツク金属との濡れ性にすぐれ、金属との反
応性もなく、耐熱材料、FRM、FRPなどの材料
として有用であることを確認して本発明を完成さ
せた。 本発明の方法で使用される炭素繊維はポリアク
リロニトリル、レーヨン、ピツチ、、リグニンな
どの焼成によつて得られる有機系炭素繊維はもと
より、気相熱分解法により得られる繊維状炭素で
あつてもよく、本発明の方法はこの炭素繊維の製
造工程で使用される焼成炉中での始発材料の炭化
または黒鉛化工程に続いて、同じ焼成炉中に後記
する有機けい素化合物を導入し、気相熱分解させ
ればよいので、これによれば極めて容易に炭化け
い素を主体とする被覆炭素繊維を得ることができ
るという利点が与えられる。 他方、本発明の方法で使用される有機けい素化
合物は、その分子中にSiX結合を含むものとする
と、これが1500℃以上の高温でないと充分な熱分
解が行なわれず、この場合にはその熱分解によつ
て得られる炭化けい素が均一な被覆とならず、こ
れには微量のSiXが残留し、得られた被覆繊維が
強度劣化を起すので、これはその分子中にSiX結
合を含まないものとする必要がある。この有機け
い素化合物は例えば一般式 R2n+(Si)n〔ここにRは水素原子、また
はメチル基、エチル基、プロピル基、フエニル
基、ビニル基などから選ばれる1価の炭化水素
基、nは1〜4の正数〕で示されるシランまたは
ポリシラン類、および一般式
The present invention relates to a method for producing silicon carbide-coated carbon fibers in which the surfaces of carbon fibers are coated with β-type silicon carbide. Carbon fiber is rayon, polyacrylonitrile,
It is already well known that lignin, lignin, etc. can be made by thermal decomposition in an inert gas, and due to its high strength and heat resistance, it has recently attracted attention as an industrial material. Applications to composite materials with plastics and metals are also being attempted. However, this carbon fiber has a limited oxidation resistance at high temperatures, has poor wettability with plastics and metals, and reacts with metals at high temperatures, so it requires various complex surface treatments. is being carried out. On the other hand, silicon carbide fibers, which have been developed in recent years as this type of heat-resistant fiber, have strong oxidation resistance at high temperatures, good wettability with plastics and metals, and do not react with metals. The raw material for its production is a special organosilicon polymer, and its production requires a complicated process of synthesizing such a polymer, then spinning it, making it infusible, and firing it. , which has the disadvantage of being very expensive. To this end, this heat-resistant fiber is produced by thermally decomposing silicon compounds such as SiCl 4 and HSiCl 3 on the surface of pre-manufactured carbon fibers to precipitate metallic silicon on the surface of the fiber. A method of producing silicon carbide fiber by firing this at high temperature
38700) has been proposed, but it has not yet been put into practical use because the process is complicated and requires high temperatures. The present invention relates to a method for producing silicon carbide-coated carbon fibers that solves these disadvantages, and is a method for producing carbon fibers coated with silicon carbide, which does not contain SiX (X represents a halogen atom or an oxygen atom) bond on the carbon fibers and has at least one carbon fiber in the molecule. An organosilicon compound having one hydrogen-silicon bond is thermally decomposed in the gas phase at a temperature of 700 to 1400°C.
It is characterized by forming a film mainly composed of β-type silicon carbide on the surface of carbon fibers. To explain this, the present inventors previously found that silicon carbide fibers can be obtained by subjecting the above-mentioned organosilicon compound that does not contain SiX bonds to vapor phase pyrolysis using metal or metal compound fine particles as a seed catalyst. We found that
When this organosilicon compound was subjected to vapor phase pyrolysis on carbon fibers prepared in advance, a film mainly composed of β-type silicon carbide was formed on the carbon fibers, and the resulting fibers showed no decrease in strength. The present invention was completed after confirming that it has almost no oxidation resistance, excellent wettability with plastic metals, and no reactivity with metals, and is useful as a material for heat-resistant materials, FRM, FRP, etc. . The carbon fibers used in the method of the present invention include not only organic carbon fibers obtained by firing polyacrylonitrile, rayon, pitch, lignin, etc., but also fibrous carbon obtained by vapor phase pyrolysis. Often, the method of the present invention involves, following the carbonization or graphitization step of the starting material in the firing furnace used in the carbon fiber manufacturing process, introducing the organosilicon compound described later into the same firing furnace, and Since it is sufficient to perform phase thermal decomposition, this method has the advantage that coated carbon fibers mainly composed of silicon carbide can be obtained very easily. On the other hand, if the organosilicon compound used in the method of the present invention contains SiX bonds in its molecules, sufficient thermal decomposition will not occur unless it is at a high temperature of 1500°C or higher; The silicon carbide obtained by this method does not form a uniform coating, and a trace amount of SiX remains, causing strength deterioration of the resulting coated fiber. It is necessary to do so. This organosilicon compound has, for example, the general formula R 2 n+ 2 (Si)n [where R is a hydrogen atom, or a monovalent hydrocarbon group selected from a methyl group, an ethyl group, a propyl group, a phenyl group, a vinyl group, etc. , n is a positive number of 1 to 4], and the general formula

【式】〔こゝにRは前記に同じ、 R′はメチレン基またはフエニレン基、mは1〜
2の正数〕で示されるシルアルキレン化合物また
はシルフエニレン化合物あるいは同一分子中にこ
の両者の主骨格をもつ化合物などがあげられる
が、これはその分子中に少なくとも1個の水素―
けい素結合を含むものとすると、これが比較的低
い温度で熱分解することができるので、この≡
SiH基を含むものとすることが必要とされる。な
お、この有機けい素化合物としては次式: CH3SiH3、(CH32SiH2、(CH33SiH、
(C2H52SiH2、C3H6SIH3、 CH2=CHCH3SiH2、C6H5SiH3 で示されるシラル、ポリシランが例示され、これ
らはその1種または2種かあるいは2種以上の混
合物として使用されるが、これらについては式 (ここにXは正数)で示されるジメチルポリシ
ランを350℃以上の温度で熱分解させて得られる
メチルハイドロジエンポリシラン類が好ましいも
のとされる。 本発明の方法は上記した有機けい素化合物を所
定温度に加熱した炭素繊維を含む反応帯域に導入
して気相熱分解させるのであるが、この反応帯域
温度は700℃以下では有機けい素化合物の熱分解
が遅く、1400℃以上ではこの熱分解が速くなつて
炭素繊維上でのβ型炭化けい素被覆の形成が均一
になりにくゝなり、繊維の物性が低下するので、
これは700〜1400℃の範囲とすることが必要とさ
れるが、好ましくは900〜1300℃の範囲とするこ
とがよい。また、この有機けい素化合物の反応帯
域への導入は、キヤリヤーガスとして水素ガスま
たは窒素、ヘリウムなどの不活性ガスを使用して
行なえばよい。この有機けい素化合物の熱分解に
よつて生成するβ型炭素けい素皮膜の厚さは、そ
れが0.01μm以下ではそれが充分な耐酸化性を示
さないし、これが3μm以上になると繊維径が太
くなつてその物性低下をもたらすので、この実施
に当つてはβ型炭化けい素皮膜が0.01〜3μmの
範囲となるようにこの有機けい素化合物の導入
量、反応温度、反応時間を調整することがよい。 なお、本発明の方法は上記した有機けい素化合
物に熱分解性の炭化水素化合物を混合して、これ
らを同時に熱分解させて、炭素繊維上にβ型炭化
けい素と炭素の混合被覆を設けるようにしてもよ
い。この場合の炭化水素化合物は沸点が250℃以
下であれば飽和、不飽和のいずれであつてもよ
く、メタン、エタン、プロパン、アセチレン、ベ
ンゼン、トルエンなどが例示されるが、この添加
量は炭素繊維上に形成されるβ型炭化けい素・炭
素の混合被覆中における炭素/炭化けい素のモル
比が1以下となる範囲とすることがよく、この範
囲であればこれによつて被覆された炭素繊維が耐
酸化性において、また金属との反応性において本
発明の目的を損なうことはない。 つぎに本発明の実施例をあげる。 実施例 1 管状電気炉の中に内径50mm、長さ1000mmの石英
製炉心管を水平に保ち、この炉心管の中に平均直
径10μm、比重1.75のポリアクリロニトリル系高
強度炭素長繊維トレカT―300A〔東レ(株)社製・
商品名〕0.213gを充填し、窒素ガス中で1030℃
に加熱した。つぎにこの炉心管にジメチルシラン
〔(CH32SiH2〕を10容量%含む水素ガスを100c.c./
分の割合で30分間導入したのち、加熱を止めて炉
内に水素ガスだけを導入し、冷却後に繊維を取り
出した。 この繊維はやゝ艶のない黒色を呈しており、こ
れを電子顕微鏡で観察すると共にX線回折でしら
べたところ、これは炭素繊維表面に約0.4μmの
β―SiC被覆をもつものであり、これについての
物性を測定したところ、このものの引張り強度は
始発剤としての炭素繊維の引張り強度265Kg/mm2
と殆んど変りない263Kg/mm2であり、これは800℃
で24時間加熱後も258Kg/mm2の値を示し、耐酸化
性にすぐれたものであつた。 実施例 2 実施例1と同じ反応装置を使用し、この炉心管
中にピツチ系の高弾性炭素長繊維KCF―200〔呉
羽化学(株)社製・商品名〕を約0.2g充填し、これ
を980℃に加熱した。つぎに、この炉心管にテト
ラメチルジシラン 5容量%を含む水素ガスを100c.c./分の割合で40
分間導入したのち、加熱を止めて炉内に水素ガス
だけ導入し、冷却後にこの繊維を取り出した。 この繊維を電子顕微鏡およびX線回折でしらべ
たところ、これは炭素繊維表面に約0.3μmのβ
―SiC被覆をもつものであり、このものは炭素繊
維の初期の引張り強さ280Kg/mm2にくらべて210
Kg/mm2の引張り強さを示し、これはまたこれを
800℃で24時間加熱した後の引張り強さも198Kg/
mm2で耐酸化性のすぐれたものであつた。 なお、この処理繊維はこれを680℃で加熱溶融
している金属アルミニウム浴中に30分間浸漬し、
冷却後その破断面を走査型電子顕微鏡で観察した
が、この繊維表面には全く異常が認められず、こ
れはアルミニウムと反応しないものであることが
確認された。 なお、比較のために同様の装置と原料を用いた
が、この反応温度を680℃としたところ、炭素繊
維表面には殆んど炭化けい素の被覆が得られず、
このものは強度劣化はないけれども空気中で800
℃に加熱すると激しく酸化されて繊維形状を失な
つた。また、同様な方法でこの反応温度を1450℃
としたところ、この場合にはβ型炭化けい素で被
覆された炭素繊維が得られたが、これはその強度
が130Kg/mm2と大巾に低下したものであり、この
繊維表面を電子顕微鏡で観察したところ、これは
不均一に炭化けい素で被覆されているものであつ
た。 実施例 3 実施例1と同じ反応装置を使用し、この炉心管
の中に種触媒としての鉄の粉末をその表面に均一
に散布した巾30mm×長さ200mm×厚さ3mmのアル
ミナ基板を設置して、これを1080℃に加熱し、こ
こにベンゼンを10容量含有する水素ガスを700
c.c./分の割合で1時間導入したところ、この種触
媒上に炭素繊維の生成されていることが認められ
た。 つぎに、この反応帯域の温度を1210℃に上げ、
こゝにジメチルシランを5容量%含む水素ガスを
200c.c./分の割合で1時間導入してから、加熱を
止め、水素ガスだけを導入して冷却後、得られた
繊維状物をとり出してその物性をしらべたとこ
ろ、これは平均繊維径14μm、平均長さ10.5μ
m、引張り強さ248Kg/mm2のもので、X線回折で
しらべた結果、炭素繊維の表面に約1μmのβ―
SiC層が被覆されたものであつた。 また、この繊維は800℃の空気中での24時間加
熱後の引張り強さは242Kg/mm2で加熱前と殆んど
変化がなく、これはまた680℃に保持されている
溶融アルミニウム浴中に30分間浸漬後も異常がな
く、アルミニウムと反応しないものであつた。 実施例 4 実施例1と同様の反応装置を使用し、この炉心
管の中にポリアクリロニトリル系高強度炭素長繊
維(前出)約2.5gを充填し、これを1170℃に加
熱してから、ここにメチルシラン(CH3SiH3)と
メタンとをそれぞれ5容量含有する水素ガスを
200c.c./分の割合で30分間導入したのち、加熱を
止めて水素ガスだけを導入して冷却させ、つい
で、この繊維を取り出して、これを電子顕微鏡と
X線回折でしらべたところ、これは炭素繊維の表
面に約0.3μmのβ―SiCとCとモル比が2/1で
ある炭化けい素―炭素の混合物で被覆されたもの
であることが確認された。 つぎに、この物性をしらべたところ、これは
270Kg/mm2の引張り強さを示し、これはまた、800
℃、24時間の空気中での加熱後もその引張り強さ
が262Kg/mm2で、耐酸化性にすぐれたものであつ
た。 なお、比較のために上記における反応ガスをジ
メチルシランとベンゼンとをそれぞれ5容量%含
有する水素ガス200c.c./分としたところ、得られ
た繊維は炭素繊維の表面にβ―SiCとCのモル比
が1/3.5と炭素分の多い炭化けい素―炭素の混
合物で被覆されたものとなり、このものは800
℃、24時間の空気中での加熱後は熱酸化されて著
しく劣化し、繊維形状は保つていたが強度は全く
なくなり、これはまた溶融アルミニウム浴中に浸
漬するとアルミニウムと激しく反応して繊維形状
を失つた。
[Formula] [where R is the same as above, R' is a methylene group or a phenylene group, m is 1-
Examples include silalkylene compounds or silphenylene compounds represented by the positive number 2, or compounds having the main skeletons of both in the same molecule.
If it contains a silicon bond, it can be thermally decomposed at a relatively low temperature, so this ≡
It is required to contain a SiH group. The organic silicon compounds have the following formula: CH 3 SiH 3 , (CH 3 ) 2 SiH 2 , (CH 3 ) 3 SiH,
( C2H5 ) 2SiH2 , C3H6SIH3 , CH2 = CHCH3SiH2 , C6H5SiH3 , Examples include silals and polysilanes represented by the formula: Methylhydrodienepolysilanes obtained by thermally decomposing dimethylpolysilane represented by (where X is a positive number) at a temperature of 350° C. or higher are preferred. In the method of the present invention, the above-mentioned organosilicon compound is introduced into a reaction zone containing carbon fibers heated to a predetermined temperature and subjected to gas phase thermal decomposition. Thermal decomposition is slow, and at temperatures above 1400°C, this thermal decomposition becomes faster, making it difficult to form a β-type silicon carbide coating on the carbon fibers uniformly, and the physical properties of the fibers deteriorate.
This is required to be in the range of 700-1400°C, preferably in the range of 900-1300°C. The organosilicon compound may be introduced into the reaction zone using hydrogen gas or an inert gas such as nitrogen or helium as a carrier gas. If the thickness of the β-type carbon silicon film produced by thermal decomposition of this organosilicon compound is less than 0.01 μm, it will not exhibit sufficient oxidation resistance, and if it exceeds 3 μm, the fiber diameter will increase. When carrying out this process, it is necessary to adjust the amount of the organosilicon compound introduced, the reaction temperature, and the reaction time so that the β-type silicon carbide film has a thickness in the range of 0.01 to 3 μm. good. The method of the present invention involves mixing a thermally decomposable hydrocarbon compound with the above-mentioned organosilicon compound and simultaneously thermally decomposing them to form a mixed coating of β-type silicon carbide and carbon on the carbon fiber. You can do it like this. The hydrocarbon compound in this case may be either saturated or unsaturated as long as the boiling point is 250°C or less, and examples include methane, ethane, propane, acetylene, benzene, and toluene, but the amount of carbon The molar ratio of carbon/silicon carbide in the mixed coating of β-type silicon carbide and carbon formed on the fiber is often set to a range of 1 or less, and within this range, the coating with this Carbon fiber does not impair the object of the present invention in terms of oxidation resistance or reactivity with metals. Next, examples of the present invention will be given. Example 1 A quartz core tube with an inner diameter of 50 mm and a length of 1000 mm was held horizontally in a tubular electric furnace, and inside the core tube was a polyacrylonitrile-based high-strength carbon long fiber trading card T-300A with an average diameter of 10 μm and a specific gravity of 1.75. [Manufactured by Toray Industries, Inc.]
Product name: Filled with 0.213g and heated to 1030℃ in nitrogen gas.
heated to. Next, 100 c.c. of hydrogen gas containing 10% by volume of dimethylsilane [(CH 3 ) 2 SiH 2 ] was added to this furnace tube.
After 30 minutes of hydrogen gas, heating was stopped and only hydrogen gas was introduced into the furnace, and the fibers were taken out after cooling. This fiber had a rather matte black color, and when it was observed using an electron microscope and examined by X-ray diffraction, it was found that this fiber had a β-SiC coating of approximately 0.4 μm on its surface. When the physical properties of this material were measured, the tensile strength of this material was 265 kg/mm 2
It is 263Kg/mm 2 , which is almost the same as that at 800℃.
Even after heating for 24 hours, it still showed a value of 258 Kg/mm 2 , indicating excellent oxidation resistance. Example 2 Using the same reactor as in Example 1, approximately 0.2 g of pitch-based high-elastic long carbon fiber KCF-200 (manufactured by Kureha Chemical Co., Ltd., trade name) was filled into the core tube. was heated to 980°C. Next, add tetramethyldisilane to this core tube. Hydrogen gas containing 5% by volume at a rate of 100 c.c./min 40
After being introduced for a minute, the heating was stopped and only hydrogen gas was introduced into the furnace, and the fibers were taken out after cooling. When this fiber was examined using an electron microscope and X-ray diffraction, it was found that approximately 0.3 μm of β was formed on the surface of the carbon fiber.
- It has a SiC coating, which has a tensile strength of 210 kg/ mm2 compared to the initial tensile strength of carbon fiber of 280 kg/mm2.
Kg/mm 2 tensile strength, which also
The tensile strength after heating at 800℃ for 24 hours is also 198Kg/
mm 2 and had excellent oxidation resistance. In addition, this treated fiber is immersed for 30 minutes in a metal aluminum bath heated and melted at 680℃.
After cooling, the fractured surface was observed using a scanning electron microscope, and no abnormalities were observed on the fiber surface, confirming that it did not react with aluminum. For comparison, similar equipment and raw materials were used, but when the reaction temperature was set to 680°C, almost no silicon carbide coating was obtained on the carbon fiber surface.
Although this product does not deteriorate in strength, it has a resistance of 800% in the air
When heated to ℃, it was violently oxidized and lost its fibrous shape. In addition, the reaction temperature was increased to 1450℃ using the same method.
In this case, a carbon fiber coated with β-type silicon carbide was obtained, but its strength was significantly reduced to 130 kg/ mm2 , and the surface of this fiber was examined using an electron microscope. When observed, it was found to be non-uniformly coated with silicon carbide. Example 3 Using the same reactor as in Example 1, an alumina substrate with a width of 30 mm x length of 200 mm x thickness of 3 mm with iron powder as a seed catalyst uniformly sprinkled on its surface was installed in the core tube. This was then heated to 1080°C, and 700 volumes of hydrogen gas containing 10 volumes of benzene was added to it.
When the catalyst was introduced at a rate of cc/min for 1 hour, it was observed that carbon fibers were produced on this type of catalyst. Next, the temperature of this reaction zone was increased to 1210℃,
Here, hydrogen gas containing 5% by volume of dimethylsilane is added.
After introducing hydrogen gas at a rate of 200c.c./min for 1 hour, heating was stopped and only hydrogen gas was introduced and cooled, the obtained fibrous material was taken out and its physical properties were examined. Fiber diameter 14μm, average length 10.5μm
m, tensile strength 248Kg/ mm2 , and as a result of X-ray diffraction analysis, approximately 1μm of β-
It was coated with a SiC layer. In addition, the tensile strength of this fiber after heating in air at 800℃ for 24 hours was 242Kg/mm 2 , which was almost unchanged from before heating, and this was also the same in a molten aluminum bath maintained at 680℃. There were no abnormalities after immersion in water for 30 minutes, and the material did not react with aluminum. Example 4 Using the same reactor as in Example 1, about 2.5 g of polyacrylonitrile high-strength carbon long fibers (mentioned above) were filled into the furnace tube, heated to 1170°C, and then Here, hydrogen gas containing 5 volumes each of methylsilane (CH 3 SiH 3 ) and methane is added.
After introducing the fibers at a rate of 200c.c./min for 30 minutes, the heating was stopped and only hydrogen gas was introduced to cool the fibers.The fibers were then taken out and examined using an electron microscope and X-ray diffraction. It was confirmed that the surface of the carbon fiber was coated with a mixture of silicon carbide and carbon having a molar ratio of about 0.3 μm to β-SiC and C to 2/1. Next, I investigated this physical property and found that it is
It exhibits a tensile strength of 270Kg/ mm2 , which is also 800
Even after heating in air at ℃ for 24 hours, its tensile strength was 262 Kg/mm 2 and it had excellent oxidation resistance. For comparison, when the above reaction gas was hydrogen gas containing 5% by volume of each of dimethylsilane and benzene at 200 c.c./min, the resulting fibers had β-SiC and C on the surface of the carbon fibers. It is coated with a silicon carbide-carbon mixture with a high carbon content, with a molar ratio of 1/3.5.
℃, after heating in air for 24 hours, it was thermally oxidized and deteriorated significantly, and although the fiber shape was maintained, it lost all strength. When immersed in a molten aluminum bath, it reacted violently with aluminum, causing the fiber shape to deteriorate. I lost.

Claims (1)

【特許請求の範囲】 1 炭素繊維上でSiX(Xはハロゲン原子または
酸素原子を示す)結合を含まない、分子中に少な
くとも1個の水素―けい素結合を有する有機けい
素化合物を700〜1400℃の温度で気相熱分解させ
て、炭素繊維表面にβ型―炭化けい素を主体とす
る皮膜を形成させることを特徴とする炭化けい素
被覆炭素繊維の製造方法。 2 有機けい素化合物に炭化水素化合物をそれら
の気相熱分解により生成する炭素と炭化けい素と
のモル比が1以下となる範囲で添加することを特
徴とする特許請求の範囲第1項記載の炭化けい素
被覆炭素繊維の製造方法。
[Claims] 1. An organosilicon compound having at least one hydrogen-silicon bond in its molecule, which does not contain SiX (X represents a halogen atom or an oxygen atom) bond, on carbon fibers and has 700 to 1400 A method for producing silicon carbide-coated carbon fibers, characterized by forming a film mainly composed of β-type silicon carbide on the surface of carbon fibers by vapor-phase pyrolysis at a temperature of °C. 2. Claim 1, characterized in that a hydrocarbon compound is added to the organosilicon compound in such a range that the molar ratio of carbon to silicon carbide produced by their vapor phase thermal decomposition is 1 or less. A method for producing silicon carbide-coated carbon fiber.
JP16549882A 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber Granted JPS5959976A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16549882A JPS5959976A (en) 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber
US06/533,649 US4560589A (en) 1982-09-22 1983-09-19 Method for providing a coating layer of silicon carbide on substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16549882A JPS5959976A (en) 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber

Publications (2)

Publication Number Publication Date
JPS5959976A JPS5959976A (en) 1984-04-05
JPS6262188B2 true JPS6262188B2 (en) 1987-12-25

Family

ID=15813534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16549882A Granted JPS5959976A (en) 1982-09-22 1982-09-22 Production of silicon carbide coated carbon fiber

Country Status (1)

Country Link
JP (1) JPS5959976A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPH01229874A (en) * 1988-03-02 1989-09-13 Agency Of Ind Science & Technol Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
US4980202A (en) * 1989-07-03 1990-12-25 United Technologies Corporation CVD SiC matrix composites containing carbon coated fibers
FR2801906B1 (en) * 1999-12-06 2002-03-01 Snecma CARBONIZATION OF FIBROUS CELLULOSIC MATERIALS IN THE PRESENCE OF AN ORGANOSILICIAL COMPOUND

Also Published As

Publication number Publication date
JPS5959976A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
CA1175300A (en) Metal-matrix composite containing oxide coated carbon fibres
US4220600A (en) Polycarbosilane, process for its production, and its use as material for producing silicon carbide fibers
CA1095672A (en) Silicon carbide fibers having a high strength and a method for producing said fibers
US5143709A (en) Process for production of graphite flakes and films via low temperature pyrolysis
EP0021844A1 (en) Continuous inorganic fibers and process for their production
US4560589A (en) Method for providing a coating layer of silicon carbide on substrate surface
US4399232A (en) Continuous inorganic fibers and process for production thereof
JPS6353293B2 (en)
JPH0142885B2 (en)
JPH0541727B2 (en)
JPS59106572A (en) Surface treatment of carbon fiber
US4948763A (en) Preparation of hollow ceramic fibers
JPS6262188B2 (en)
WO1987005612A1 (en) Organopolyarylsilane, process for its production, and fibers prepared therefrom
EP0477297A1 (en) Process for production of graphite flakes and films via low temperature pyrolysis
JPS62215016A (en) Sic-c based inorganic filament and production thereof
JPS5947424A (en) Manufacture of carbon-silicon carbide composite fiber
SU680639A3 (en) Composition material
JPH08504738A (en) Boron carbide coating
JPS6330433B2 (en)
JPS5944403B2 (en) Manufacturing method of continuous inorganic fiber
JPS6252051B2 (en)
JP2586083B2 (en) Manufacturing method of fiber molding
JPH0237926B2 (en) DODENSEISOSEIBUTSUNOSEIZOHOHO
JP2792749B2 (en) Oxidation resistant carbon material and method for producing the same