JPS62215016A - Sic-c based inorganic filament and production thereof - Google Patents

Sic-c based inorganic filament and production thereof

Info

Publication number
JPS62215016A
JPS62215016A JP5139886A JP5139886A JPS62215016A JP S62215016 A JPS62215016 A JP S62215016A JP 5139886 A JP5139886 A JP 5139886A JP 5139886 A JP5139886 A JP 5139886A JP S62215016 A JPS62215016 A JP S62215016A
Authority
JP
Japan
Prior art keywords
sic
continuous inorganic
producing
fibers
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5139886A
Other languages
Japanese (ja)
Other versions
JPH0737684B2 (en
Inventor
Yoshio Hasegawa
良雄 長谷川
Kiyoto Okamura
清人 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU MUKI ZAIRYO KENKYUSHO
Original Assignee
TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU MUKI ZAIRYO KENKYUSHO filed Critical TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority to JP61051398A priority Critical patent/JPH0737684B2/en
Priority to US07/131,139 priority patent/US4879334A/en
Priority to PCT/JP1987/000147 priority patent/WO1987005612A1/en
Priority to DE3744872A priority patent/DE3744872C2/en
Priority to DE3790151A priority patent/DE3790151C2/de
Priority to DE19873790151 priority patent/DE3790151T/de
Priority to GB8726078A priority patent/GB2198446B/en
Publication of JPS62215016A publication Critical patent/JPS62215016A/en
Publication of JPH0737684B2 publication Critical patent/JPH0737684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fibers, having improved heat resistance and mechanical characteristic and suitable as a reinforcing material for composite materials, by spinning a specific organopolyarylsilane, infusibilizing the resultant filaments and firing the infusibilized filaments in an unreactive atmosphere at a high temperature. CONSTITUTION:An organopolyarylsilane, obtained by randomly linking aromatic ring segments having a skeletal part consisting of an aromatic ring condensed structure to organosilane segments having a skeletal part consisting of carbosilane and polysilane structure through silicon-carbon linking groups and soluble in organic solvents is spun into filaments, which are then infusibilized and fired in an unreactive atmosphere at 800-3,000 deg.C to afford the aimed filaments, containing 5-55wt% silicon, 40-95wt% carbon and 0.01-15wt% oxygen, exhibiting 10-10<-3>OMEGA.cm volume resistivity and having improved heat- resistant strength and antioxidant property.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、SiC−C系連続無機繊維、詳しくはオルガ
ノポリアリールシランを紡糸、不溶化後、非反応性雰囲
気中で焼成してなる新規なSiC−C系連続無機繊維お
よびその製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a novel fiber produced by spinning SiC-C continuous inorganic fibers, specifically organopolyarylsilane, insolubilizing it, and then firing it in a non-reactive atmosphere. The present invention relates to a SiC-C continuous inorganic fiber and a method for producing the same.

(従来の技術) 従来知られているSiC系連続無機繊維は、有機ケイ素
化合物を熱重合して得られる重合体を原料するもので、
特開昭51−139929号、同51−130324号
、同51−130325号、同51−149925号、
同51−149926号、同51−147623号、同
51−147624号、同52−1136号、同52−
5321号、同52−31126号、同52−1035
29号、同52−59724号、同52−63427号
、同52−70122号、同52−96237号、同5
2−103529号、同53−103025号および同
54−82435号各公報に開示されている。一方、炭
素繊維は、レーヨン、ポリアクリロニトリル、ピッチ等
を原料として得られ、これらの繊維やその製造方法およ
び応用については膨大な特許出願がなされ、工業的にも
大量生産がなされるに至っている。しかしながら前者は
、耐熱性や耐酸化性、金属との複合特性には優れている
ものの、電気伝導性が低く、体積抵抗率が102Ω・1
程度で、その制御が困難であること、また機械的特性面
でも、例えば弾性率の制御は焼成温度に顛らざるを得す
、組成変更による品質の制御はほとんど不可能であるこ
と、更に高価であることなど種々の欠点があった。一方
後者は、耐熱性や電気伝導性が高く、プラスチックとの
複合特性等に優れた特長を有するものの耐空気酸化性に
劣り、また金属との複合には反応性の面で問題を存し、
特にピッチを原料とする場合、優れた特性の繊維とする
ためには、特殊な処理を施したピッチを用いることが必
要で、必ずしも経済的ではなかった。
(Prior Art) Conventionally known SiC-based continuous inorganic fibers are made from polymers obtained by thermally polymerizing organosilicon compounds.
JP 51-139929, JP 51-130324, JP 51-130325, JP 51-149925,
No. 51-149926, No. 51-147623, No. 51-147624, No. 52-1136, No. 52-
No. 5321, No. 52-31126, No. 52-1035
No. 29, No. 52-59724, No. 52-63427, No. 52-70122, No. 52-96237, No. 5
It is disclosed in the following publications: No. 2-103529, No. 53-103025, and No. 54-82435. On the other hand, carbon fibers are obtained using rayon, polyacrylonitrile, pitch, etc. as raw materials, and numerous patent applications have been filed regarding these fibers, their manufacturing methods, and applications, and they are now being mass-produced industrially. However, although the former has excellent heat resistance, oxidation resistance, and composite properties with metal, it has low electrical conductivity and a volume resistivity of 102Ω・1.
In addition, in terms of mechanical properties, for example, controlling the elastic modulus depends on the firing temperature, it is almost impossible to control quality by changing the composition, and it is also expensive. There were various drawbacks, such as the fact that On the other hand, the latter has high heat resistance and electrical conductivity, and has excellent properties in combination with plastics, but has poor air oxidation resistance, and has problems in terms of reactivity when combined with metals.
In particular, when pitch is used as a raw material, it is necessary to use specially treated pitch in order to obtain fibers with excellent properties, which is not necessarily economical.

(発明が解決しようとする問題点) 本発明は、前記、在来のSiC繊維や炭素繊維の欠点を
克服し、従来にない新しい機械的、電気的特性等を具え
、優れた新規な無機繊維を提供することを目的とするも
のである。
(Problems to be Solved by the Invention) The present invention provides an excellent new inorganic fiber that overcomes the drawbacks of the conventional SiC fibers and carbon fibers, has new mechanical and electrical properties, etc. The purpose is to provide the following.

本発明者等は別途、ポリシランとピッチとの共熱分解縮
金物であるオルガノポリアリールシランを発明し特許出
願したが、本発明者等は更に、上記出願明細書に開示さ
れた新規なオルガノポリアリールシランを用いて、これ
からSiC−C系連続無機繊維を製造することにより、
上記本発明の目的を達成することに成功した。即ち、上
記オルガノポリアリールシランを原料として紡糸した繊
維を焼成して得られる繊維は、SiC繊維と炭素繊維と
の間の電気伝導性を有し、しかも組成を自由に制御でき
るため、電気伝導性や機械的特性を広い範囲で制御し得
るばかりでなく、炭素繊維に比べて、耐空気酸化性に優
れていることを確認し、これに基づいて本発明を完成し
たものである。
The present inventors have separately invented and filed a patent application for organopolyarylsilane, which is a co-thermal decomposition product of polysilane and pitch. By producing SiC-C continuous inorganic fibers using arylsilane,
The above objects of the present invention have been successfully achieved. That is, the fibers obtained by firing fibers spun using the organopolyarylsilane as a raw material have electrical conductivity comparable to that of SiC fibers and carbon fibers, and the composition can be freely controlled. It was confirmed that not only the carbon fibers and mechanical properties can be controlled over a wide range, but also that they have superior air oxidation resistance compared to carbon fibers, and based on this, the present invention was completed.

(問題点を解決するための手段) 本発明方法は、骨格部分が主として芳香族縮合環構造よ
りなる芳香環セグメントと骨格部分が主としてカルボシ
ランおよびポリシラン構造よりなるオルガノシランセグ
メントとがケイ素−炭素連結基を介してランダム結合し
てなり、且つ有機溶媒に可溶であるオルガノポリアリー
ルシランの紡糸原液を造って紡糸し、得られた紡糸繊維
を不融化し、不融化した繊維を非反応性雰囲気、例えば
真空中あるいは不活性ガス雰囲気中、800〜3000
℃の温度範囲で焼成することを特徴とするSiC−C系
連続無機繊維の製造方法である。
(Means for Solving the Problems) In the method of the present invention, an aromatic ring segment whose skeleton portion is mainly composed of an aromatic condensed ring structure and an organosilane segment whose skeleton portion is mainly composed of a carbosilane and polysilane structure are silicon-carbon linking groups. A spinning solution of organopolyarylsilane, which is randomly bonded through organic solvents and is soluble in organic solvents, is prepared and spun, the resulting spun fibers are made infusible, and the infusible fibers are placed in a non-reactive atmosphere, For example, in a vacuum or inert gas atmosphere, 800 to 3000
This is a method for producing SiC-C continuous inorganic fibers, which is characterized by firing at a temperature range of .degree.

更に上記本発明方法によれば、・非晶質および/もしく
は結晶質炭素と非晶質および/もしくは結晶質SiCと
を主たる構成成分とする分子よりなり、5〜55重量%
のケイ素、40〜95重Nχの炭素および0.01〜1
5重量2の酸素を含む組成を有しており、優れた耐熱性
と耐酸化性とを具えると共に10〜10−3Ω・値の体
積抵抗率を示すことを特徴とするSiC−C系連続無機
繊維が提供される。
Further, according to the above-mentioned method of the present invention, - 5 to 55% by weight of molecules consisting of amorphous and/or crystalline carbon and amorphous and/or crystalline SiC as main constituents;
of silicon, 40 to 95 Nx carbon and 0.01 to 1
A continuous SiC-C system having a composition containing 5% by weight of 2% oxygen, having excellent heat resistance and oxidation resistance, and exhibiting a volume resistivity of 10 to 10-3 Ω. Inorganic fibers are provided.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明方法に使用する出発原料である上記オルガノポリ
アリールシランは、ポリシランと有機溶媒に可溶なピン
チとを混合し、不活性雰囲気下で加熱して共熱分解縮合
させることによって得られる。このポリシランは、 なる構造を有し、環状あるいは分岐状であってもよい。
The above-mentioned organopolyarylsilane, which is a starting material used in the method of the present invention, can be obtained by mixing polysilane and pinch soluble in an organic solvent, and heating the mixture in an inert atmosphere to cause cothermal decomposition and condensation. This polysilane has the following structure and may be cyclic or branched.

n≧2ならばよく、また、R1およびR2は、それぞれ
水素、ハロゲン、炭素数6個までの低級アルキル基ある
いは炭素数12個までのアリール基であり、特に好適な
ポリシランは、R1およびRtの50%以上がメチル基
であるか、ポリシランの混合物を用いる場合は、全ての
R,およびR2の50X以上がメチル基であるポリシラ
ンである。これらのポリシランは任意の公知方法により
合成される。
It is sufficient if n≧2, and R1 and R2 are each hydrogen, halogen, a lower alkyl group having up to 6 carbon atoms, or an aryl group having up to 12 carbon atoms. Particularly suitable polysilanes are R1 and Rt. The polysilane is a polysilane in which 50% or more are methyl groups, or, when a mixture of polysilanes is used, all R and 50X or more of R2 are methyl groups. These polysilanes are synthesized by any known method.

更に本発明方法の出発原料であるオルガノポリアリール
シランを製造するために使用するもう一つの原料である
ピッチは、通常の、石炭、石油等の有機物を熱分解した
時に得られる、芳香族縮合環を主に骨格としている固体
あるいは半固体のもので、例えば、石炭系ピッチや石油
系ピッチを用いることができる。ピッチは通常の有機溶
媒、例えばベンゼン、トルエン、キシレン、テトラヒド
ロフラン等に溶解するものが好ましい。勿論、溶媒に不
溶の成分を含むピッチも用いることができるが、合成後
生成した重合体から溶媒不溶の不純物を除去する際、溶
媒に不溶のピッチ中の成分から生成した、溶媒不溶の生
成物も不純物と共に除去される。また後述する如く合成
の収率がこの不溶成分により低下する。また、ピッチ類
似物として、芳香族縮合環を有する化合物、例えば室温
で液状のタール等も用いることができる。また単離され
た芳香族化合物も用いることができるが経済的ではない
Furthermore, pitch, which is another raw material used to produce organopolyarylsilane, which is the starting material for the method of the present invention, is an aromatic condensed ring obtained when thermally decomposing organic substances such as coal and petroleum. It is a solid or semi-solid material whose main skeleton is, for example, coal-based pitch or petroleum-based pitch can be used. The pitch is preferably one that is soluble in common organic solvents such as benzene, toluene, xylene, tetrahydrofuran, and the like. Of course, pitch containing components insoluble in the solvent can also be used, but when removing solvent-insoluble impurities from the polymer produced after synthesis, a solvent-insoluble product generated from the components in the pitch that is insoluble in the solvent is removed. is also removed along with impurities. Furthermore, as will be described later, the yield of synthesis is reduced by these insoluble components. Further, as a pitch analog, a compound having an aromatic condensed ring, such as tar that is liquid at room temperature, can also be used. It is also possible to use isolated aromatic compounds, but this is not economical.

上記の方法においては、前記ポリシラン類の少なくとも
一種の100重量部に対して前記ピンチを2〜500重
量部混重量部上の混合物を反応に対して不活性な雰囲気
において加熱して共熱分解縮合させる。
In the above method, a mixture of 2 to 500 parts by weight of the pinch to 100 parts by weight of at least one of the polysilanes is heated in an atmosphere inert to the reaction to carry out co-thermal decomposition condensation. let

かくして、骨格部分が主として芳香族縮合環構造よりな
る芳香環セグメントと、骨格部分が主としてカルボシラ
ンおよびポリシラン構造よりなオルガノシランセグメン
トとが、ケイ素−炭素連結基を介してランダム結合して
なり且つ有機溶媒に可溶であるオルガノポリアリールシ
ランが提供される。
Thus, an aromatic ring segment whose skeleton part is mainly composed of an aromatic condensed ring structure and an organosilane segment whose skeleton part is mainly composed of carbosilane and polysilane structures are randomly bonded via silicon-carbon linking groups, and the organic solvent Organopolyarylsilanes are provided that are soluble in .

上記の方法において最も好ましい態様としては、混合物
の共熱分解縮合反応を液相と気相の両方で行わせること
である。すなわち反応装置は液相で反応を行わせる反応
容器と、反応容器中で生成した混合物の蒸気および混合
物の熱分解により生じた低沸点成分の蒸気を反応容器中
の反応温度以上に保持又は加熱して気相で反応を行わせ
る反応塔より成り、反応塔を通過した蒸気および生成物
は冷却されて再び反応容器にもどされる。
The most preferred embodiment of the above method is to carry out the cothermal decomposition and condensation reaction of the mixture in both the liquid phase and the gas phase. In other words, the reactor includes a reaction vessel in which the reaction is carried out in the liquid phase, and a vapor of the mixture produced in the reaction vessel and the vapor of low-boiling components produced by thermal decomposition of the mixture, which is maintained or heated to a temperature higher than the reaction temperature in the reaction vessel. It consists of a reaction tower in which the reaction is carried out in the gas phase, and the vapor and products that have passed through the reaction tower are cooled and returned to the reaction vessel.

すなわち本発明の出発物質であるオルガノポリアリール
シランの製造方法においては、液相および気相の両方で
熱分解縮合を行わせるために、反応が速やかに進行する
と同時に、従来のポリシランの熱分解縮合により行われ
ていたポリカルボシランの合成の際の低分子量の気相部
分の存在による重合体の低収率という問題を解決し、ピ
ンチの添加量の少ない場合にも高収率でオルガノポリア
リールシラン重合体が得られる。
In other words, in the method for producing organopolyarylsilane, which is the starting material of the present invention, the thermal decomposition condensation is carried out in both the liquid phase and the gas phase. This solution solves the problem of low yield of polymer due to the presence of low molecular weight gas phase part during the synthesis of polycarbosilane, which was carried out by A silane polymer is obtained.

上記の方法においては、共熱分解縮合を、反応に不活性
なガス雰囲気下において行うことが必要であり、例えば
窒素、アルゴン等が好適である。
In the above method, it is necessary to carry out the cothermal decomposition and condensation in an atmosphere of a gas inert to the reaction, and for example, nitrogen, argon, etc. are suitable.

また反応は常圧のガス気流下で行うことが好ましく、温
度上昇や反応中に生成する例えば水素のようなガスによ
る圧力上昇を防ぐための配慮が望まれる。
Further, the reaction is preferably carried out under a gas stream at normal pressure, and consideration is desired to prevent temperature rise and pressure rise due to gas such as hydrogen generated during the reaction.

また、加熱温度は、反応容器中、すなわち液相で反応す
る部分では300〜500℃であり、300℃以下では
原料の熱分解縮合がほとんど進行しないし、500℃以
上では生成物の熱分解やゲル化が起こり好ましくない。
In addition, the heating temperature is 300 to 500°C in the reaction vessel, that is, the part where the reaction takes place in the liquid phase. Below 300°C, the thermal decomposition and condensation of the raw materials will hardly proceed, and above 500°C, the thermal decomposition and condensation of the products will not proceed. Gelation may occur, which is undesirable.

また反応塔の温度は300〜800℃であり、この温度
は原料の種類により異なり、ポリシランあるいはポリシ
ランの熱分解物の沸点が低いもの程高くしなければなら
ないが、一般に800℃以上では反応塔内で無機物が生
成し、300℃以下では冷却による還流が起るだけで有
効な熱分解が起こらないばかりか、反応容器中の温度を
低下させてしまうので好ましくなく、少なくとも反応容
器中の温度以上に保つことが望ましい。
The temperature of the reaction tower is 300 to 800°C, and this temperature varies depending on the type of raw material, and the lower the boiling point of polysilane or the thermal decomposition product of polysilane, the higher the temperature must be, but in general, at 800°C or higher, the temperature inside the reaction tower At temperatures below 300°C, reflux occurs due to cooling, and effective thermal decomposition does not occur, which is undesirable as it also lowers the temperature in the reaction vessel, at least exceeding the temperature in the reaction vessel. It is desirable to keep it.

更にまた、上記の方法における反応時間は通常所定の温
度に達してから1〜IO時間の如き比較的短時間で完了
するが、原料によってはさらに長時間を要する場合があ
る。
Furthermore, although the reaction time in the above method is usually completed in a relatively short time, such as 1 to 10 hours after reaching a predetermined temperature, it may take a longer time depending on the raw material.

以上のような共熱分解縮合により得られた重合体は溶媒
に溶かして濾過により不溶物を除去し、その後溶媒を除
去して精製することができ、必要ならば常圧あるいは減
圧下で低分子量成分を蒸留により除去するか、溶媒によ
り分別して分子量を調節することができる。
The polymer obtained by the above-mentioned cothermal decomposition condensation can be purified by dissolving it in a solvent and removing insoluble matter by filtration.If necessary, it can be purified by removing the solvent. Molecular weight can be adjusted by removing components by distillation or fractionating with a solvent.

かくして得られるオルガノポリアリールシランの重要且
つ新規な特徴は、本来相溶性に乏しいカルボシランやポ
リシラン骨格を有するオルガノシラン重合体セグメント
と、芳香放縮金環を骨格とするピッチの芳香環セグメン
トとを、共熱分解縮合という方法で1分子中にランダム
結合して包含させたことである。これは後述する紡糸工
程で均一な繊維が得られる原因であり、SiC−C系連
続無機繊維の合成を可能としたのである。得られた重合
体は数平均分子!500〜10,000で、非酸化性雰
囲気中で焼成した場合の残留率が高い。
An important and novel feature of the organopolyarylsilane obtained in this way is that an organosilane polymer segment having a carbosilane or polysilane skeleton, which is inherently poorly compatible, and an aromatic ring segment of pitch having an aromatic condensed ring skeleton are combined together. They are randomly bonded and included in one molecule using a method called thermal decomposition condensation. This is the reason why uniform fibers can be obtained in the spinning process described below, and has made it possible to synthesize SiC-C continuous inorganic fibers. The resulting polymer is a number-average molecule! 500 to 10,000, the residual rate is high when fired in a non-oxidizing atmosphere.

本発明方法において上記のオルガノポリアリールシラン
重合体を繊維化する工程は、紡糸工程、不融化工程、焼
成工程の各工程からなる。
In the method of the present invention, the process of forming the organopolyarylsilane polymer into fibers consists of a spinning process, an infusible process, and a firing process.

先ず紡糸工程においては前記重合体を加熱溶融させて紡
糸原液を造り、これを通・常用いられる溶融紡糸装置に
より紡糸する。紡糸する際の紡糸原液の温度は原料の重
合体の軟化温度によって異なるが、100〜400℃の
温度範囲で、巻取り速度を大きくすることにより細い直
径の繊維とすることができ、一般的には50〜5000
m/分の範囲で良い結果が得られる。本発明の製造方法
の紡糸工程は、溶融紡糸法のほかに、該重合体を例えば
ベンゼン、トルエン等の溶媒に溶解させ紡糸原液とし、
通常の乾式紡糸装置により紡糸することもできるが、溶
融紡糸法の方が容易である。
First, in the spinning step, the polymer is heated and melted to create a spinning dope, which is then spun using a commonly used melt spinning device. The temperature of the spinning dope during spinning varies depending on the softening temperature of the raw material polymer, but in the temperature range of 100 to 400°C, fibers with a thin diameter can be obtained by increasing the winding speed. is 50-5000
Good results are obtained in the m/min range. In addition to the melt spinning method, the spinning step of the production method of the present invention includes dissolving the polymer in a solvent such as benzene or toluene to obtain a spinning stock solution.
Although spinning can be carried out using ordinary dry spinning equipment, melt spinning is easier.

本発明方法の紡糸工程においては、前記のオルガノポリ
アリールシラン重合体を用いるので、例えば有機ケイ素
重合体とピッチとを混合してブレンド紡糸しようとする
際のように、それらの相溶性が低いために分子レベルで
均一に混合することができず不均一繊維が生成するのみ
ならず甚だしい場合は紡糸不能に陥るというような問題
は起こらない。しかも、混合物を原料として用いる場合
にはそれぞれを後の不融化工程や焼成工程に適した特性
に調整しなければならず、この処理はますますそれらの
相溶性を低めることになる。
In the spinning process of the method of the present invention, since the above-mentioned organopolyarylsilane polymer is used, for example, when blend-spinning is attempted by mixing an organosilicon polymer and pitch, the compatibility between them is low. Problems such as not being able to uniformly mix the fibers at the molecular level and producing non-uniform fibers, but also, in extreme cases, making it impossible to spin, do not occur. Moreover, when a mixture is used as a raw material, the characteristics of each must be adjusted to suit the subsequent infusibility step and firing step, and this treatment further reduces their compatibility.

次に本発明方法における不融化工程においては、前記紡
糸繊維を酸化性雰囲気中で室温〜350℃の温度範囲で
酸化処理して前記紡糸繊維を不融化する。この酸化処理
の目的は、紡糸繊維を形成する原料分子間を架橋させ、
繊維を後述の焼成工程で融着させないよ・うにするため
であり、酸化性雰囲気としては、空気、酸素、オゾン、
ハロゲンガスのうちから選ばれる。いづれか一種または
二種以上のガス雰囲気が好ましく、350℃を超える温
度では酸化が進行しすぎるので好ましくない。
Next, in the infusible step in the method of the present invention, the spun fibers are oxidized in an oxidizing atmosphere at a temperature ranging from room temperature to 350° C. to make the spun fibers infusible. The purpose of this oxidation treatment is to crosslink the raw material molecules that form the spun fibers,
This is to prevent the fibers from fusing in the firing process described later, and the oxidizing atmosphere includes air, oxygen, ozone,
Selected from halogen gases. A gas atmosphere containing one or more types of gas is preferable, and temperatures exceeding 350° C. are not preferable because oxidation proceeds too much.

上記酸化処理の時間は前記温度と関連し、高温域では短
時間、低温域では長時間を要するが、所定の温度までの
昇温速度は5℃〜50℃/時で、所定の温度での保持時
間は2時間以下で十分である場合が多い。
The time for the oxidation treatment is related to the temperature, and takes a short time in a high temperature range and a long time in a low temperature range, but the heating rate to a specified temperature is 5℃ to 50℃/hour, and A holding time of 2 hours or less is often sufficient.

本発明方法の不融化工程においてはさらに前記酸化性雰
囲気中で処理する方法のほかに、該紡糸繊維に、酸化性
雰囲気あるいは非酸化性雰囲気で、室温〜350℃の温
度範囲で紫外線照射、γ線照射、あるいは電子線照射し
て不融化することができる。
In the infusibility step of the method of the present invention, in addition to the method of treating in an oxidizing atmosphere, the spun fibers are irradiated with ultraviolet rays in an oxidizing atmosphere or a non-oxidizing atmosphere at a temperature range of room temperature to 350°C. It can be made infusible by irradiation with radiation or electron beam.

この照射を前記酸化性雰囲気で行う場合は、酸化を促進
し、酸化が遅い重合体の場合には都合がよい。また不活
性ガスあるいは真空中等の非酸化性雰囲気で照射する目
的は、紡糸繊維を形成する重合体分子相互を架橋させ不
融化し、特に繊維中の酸素量を最小に抑えることであり
、照射線量は106〜10’°Tが適当である。
When this irradiation is carried out in the oxidizing atmosphere, oxidation is promoted, which is advantageous in the case of polymers that oxidize slowly. The purpose of irradiation in a non-oxidizing atmosphere such as an inert gas or vacuum is to crosslink and infusible the polymer molecules that form the spun fibers, and in particular to minimize the amount of oxygen in the fibers. is suitably 106 to 10'T.

次に本発明方法の焼成工程においては前記不融化した繊
維を800〜3000℃の温度範囲で焼成し、SiC−
C系連続無機繊維とする。
Next, in the firing step of the method of the present invention, the infusible fibers are fired at a temperature range of 800 to 3000°C, and SiC-
C-based continuous inorganic fiber.

前記焼成は、非反応性雰囲気、例えば真空あるいは不活
性ガス雰囲気中、800〜3000℃の温度範囲で張力
あるいは無張力下に行われ、不融化された繊維を形成す
る重合体は熱重縮合反応と熱分解反応とにより易揮発性
成分を放出する。易揮発性成分は300〜800℃で主
に生成し、このために前記不融化繊維は収縮して繊維が
屈曲する場合があるが、焼成中に張力を作用させるとこ
の屈曲を防止することができる。また、高温における張
力の作用は、特に炭素量の多い繊維のときに繊維の特性
を向上させ得る場合があり有利である。この際の張力の
大きさは0.01kir〜10kg/mm”の範囲であ
る。焼成温度が800℃以下では小さい張力しかかけら
れないが800℃以上では繊維の強度が十分に大きいの
で、大きな張力をかけることができ、一般的に前記範囲
の張力で良い結果が得られる。なお前記焼成は雰囲気、
温度、時間等の条件を変えた多段焼成法で行うこともで
きる。
The calcination is performed in a non-reactive atmosphere, such as a vacuum or an inert gas atmosphere, at a temperature range of 800 to 3000°C, under tension or no tension, and the polymer forming the infusible fiber undergoes a thermal polycondensation reaction. Easily volatile components are released by thermal decomposition reaction. Easily volatile components are mainly produced at 300 to 800°C, and for this reason, the infusible fibers may shrink and bend, but this bending can be prevented by applying tension during firing. can. Furthermore, the effect of tension at high temperatures is advantageous, especially in the case of fibers with a high carbon content, as it may improve the properties of the fibers. The magnitude of the tension at this time is in the range of 0.01kir~10kg/mm''.If the firing temperature is below 800℃, only a small tension can be applied, but if the firing temperature is above 800℃, the strength of the fiber is sufficiently high, so a large tension can be applied. In general, good results can be obtained with a tension in the above range.The above firing is performed in an atmosphere,
A multi-stage firing method in which conditions such as temperature and time are changed can also be used.

以上に説明した本発明方法により製造されるSiC−C
系連続無機繊維の組成は、Si、  5〜55重匿χ;
C,40〜95重量%:0.0.01−15重量%より
なる。
SiC-C manufactured by the method of the present invention explained above
The composition of the continuous inorganic fiber is Si, 5 to 55 layers x;
C, 40-95% by weight: 0.0.01-15% by weight.

焼成温度が比較的低温のときは微量の水素が含まれるこ
とがあり、また不純物程度の窒素やイオウ等が含まれる
こともある。このような組成の繊維は、主として非晶質
および/もしくは結晶質炭素と非晶質および/もしくは
結晶質SiCより形成されており、非晶質と結晶質との
明確な区別はないが、該繊維を形成する結晶子の平均的
な大きさは焼成温度の上昇と共に徐々に大きくなってい
く。
When the firing temperature is relatively low, trace amounts of hydrogen may be included, and impurities such as nitrogen and sulfur may also be included. Fibers with such a composition are mainly formed of amorphous and/or crystalline carbon and amorphous and/or crystalline SiC, and although there is no clear distinction between amorphous and crystalline, The average size of crystallites forming fibers gradually increases as the firing temperature increases.

また結晶子の平均的な大きさは、原料重合体を形成する
セグメントの大きさによって影響を受け、芳香環セグメ
ントが大きくオルガノシランセグメントが小さい時には
SiCの結晶子の大きさは算出できない程度に小さかっ
たり、高温までその大きさが増大しにくくなるが、逆に
オルガノシランセグメントが大きい時にはSiCはβ−
SiC結晶の回折線を示し、例えばポリジメチルシラン
100重量部にトルエン可溶の石油系ピッチを5重量部
部合し、合成した重合体を紡糸し220℃の空気中で2
時間不融化した後、真空中、1200℃で焼成して得た
繊維はSi:51.1重9! 、 C:40.0重量%
 、0:8.9重量2の組成を示すが、焼成繊維中のβ
−SiCの結晶子の大きさは焼成温度900.1200
.1500℃の場合に各々約10.30.70人である
。また1400℃以上の温度では、繊維中のケイ素原子
と結合して存在する酸素は炭素と反応してガスとして放
出されると同時に、ケイ素原子と炭素とが反応してSi
Cを生成するため、酸素量が多い繊維の場合には結晶子
の大きさがさらに太き(なる。また温度が1000℃以
上になるとα−SiCが生成する。このような結晶成長
や相変化は繊維の機械的特性に悪影響を及ぼすので、大
きいオルガノシランセグメントを含む重合体を用いる場
合は、1800℃以下の焼成温度で機械的特性の優れた
繊維が得られる。
In addition, the average size of crystallites is affected by the size of the segments forming the raw material polymer, and when the aromatic ring segment is large and the organosilane segment is small, the size of SiC crystallites is so small that it cannot be calculated. However, when the organosilane segment is large, SiC becomes β-
The diffraction line of SiC crystal is shown. For example, 5 parts by weight of toluene-soluble petroleum pitch is added to 100 parts by weight of polydimethylsilane, the synthesized polymer is spun,
After being infusible for a period of time, the fibers obtained by firing at 1200°C in vacuum had Si: 51.1 weight 9! , C: 40.0% by weight
, shows a composition of 0:8.9 weight 2, but β in the fired fiber
-The size of SiC crystallites is determined by the firing temperature of 900.1200
.. At 1500°C, they are about 10,30,70 people respectively. Furthermore, at temperatures above 1400°C, oxygen bonded to silicon atoms in the fibers reacts with carbon and is released as a gas, and at the same time, silicon atoms and carbon react to form Si.
In the case of fibers with a large amount of oxygen, the size of the crystallites becomes even thicker.Also, when the temperature exceeds 1000℃, α-SiC is generated.Such crystal growth and phase change has a negative effect on the mechanical properties of the fibers, so when a polymer containing large organosilane segments is used, fibers with excellent mechanical properties can be obtained at a firing temperature of 1800° C. or lower.

一方、芳香環セグメントが大きい重合体を原料として合
成された繊維では、SiCの結晶子の太きさは前述の値
より小さくなり、一方炭素の黒鉛結晶に相当する(00
2)回折線から得られる結晶子の大きさは、焼成温度が
高くなるにつれて大きくなるが、100Å以下にとどま
る。
On the other hand, in fibers synthesized using polymers with large aromatic ring segments, the thickness of SiC crystallites is smaller than the above value, and on the other hand, it is equivalent to graphite crystals of carbon (00
2) The size of crystallites obtained from diffraction lines increases as the firing temperature increases, but remains below 100 Å.

(作 用) 次に本発明の作用を本発明繊維の特性と共に述べる。(for production) Next, the effect of the present invention will be described together with the characteristics of the fiber of the present invention.

本発明のSiC−C系連続無機繊維の特長は電気伝導性
にあり、10〜10−3Ω・0の範囲の体積抵抗率を示
すことである。すなわちこの値は従来1400℃で焼成
して得られたSiC連続繊維の体積抵抗率が10”Ω・
0以上であるのに対して前述の組成の本発明のSiC−
C繊維は1200℃で焼成したにもかかわらず約1Ω・
cmであり、従来のSiC繊維の1/100以下となっ
ている。
The feature of the SiC-C continuous inorganic fiber of the present invention is that it has electrical conductivity and exhibits a volume resistivity in the range of 10 to 10<-3 >[Omega].0. In other words, this value indicates that the volume resistivity of SiC continuous fibers conventionally obtained by firing at 1400°C is 10"Ω・
0 or more, whereas the SiC-
Although the C fiber was fired at 1200℃, it had a resistance of about 1Ω・
cm, which is less than 1/100 that of conventional SiC fibers.

さらにC9が増加するにつれ、また、焼成温度が高くな
るにつれてこの値は徐々に低下し5×10−4Ω・ω程
度までとなる。原料に僅かのピンチを混合して合成した
重合体を用いてもこのように体積抵抗率が著しく低下す
ることは予想できなかった効果で、例えば炭素の微粉末
を有機ケイ素重合体に混合して繊維に出来たとしてもこ
のような現象は到底起こらない。これは、すでに述べた
ように芳香環セグメントとオルガノシランセグメントと
が分子レベルで均一に混合され結合した重合体を原料と
しているため、焼成により生成した繊維の構造が非常に
均一であり、特に焼成温度が1400℃以下ではSiC
もCも共に非晶質であって、しかも各々の粒子の大きさ
はまさに重合体の分子レベルの大きさであり、一種のn
mレベルの複合体といえるもので全く新しい構造である
Further, as C9 increases and as the firing temperature increases, this value gradually decreases to about 5×10 −4 Ω·ω. Even if a polymer synthesized by mixing a slight pinch of raw materials is used, this remarkable decrease in volume resistivity is an unexpected effect. For example, when fine carbon powder is mixed into an organosilicon polymer, Even if it were made into fibers, this kind of phenomenon would never occur. As mentioned above, this material is made from a polymer in which aromatic ring segments and organosilane segments are uniformly mixed and bonded at the molecular level, so the structure of the fibers produced by firing is extremely uniform, especially when fired. SiC when the temperature is below 1400℃
Both C and C are amorphous, and the size of each particle is exactly at the molecular level of a polymer, a kind of n
It can be said to be an m-level complex and has a completely new structure.

低い体積抵抗率はこの構造に起因している。さらに本発
明のSiC−C系連続無機繊維は、機械的特性にも優れ
る。特に耐空気酸化性は、一般のピッチ等から得られた
炭素繊維が350℃付近から酸化を受けはじめ、400
〜500℃では使用できないのに対して、本発明の繊維
はSiCが存在するために、特に非晶質の領域では、5
00℃以上での空気酸化でも、酸化の初期に強度は僅か
に低下するが、その後酸化被膜が形成され、強度の低下
は止まり、従来の炭素繊維では使用できない高温でも用
いることができる。
The low volume resistivity is due to this structure. Furthermore, the SiC-C continuous inorganic fiber of the present invention also has excellent mechanical properties. In particular, the air oxidation resistance is such that carbon fibers obtained from general pitch etc. begin to oxidize at around 350°C.
In contrast, the fibers of the present invention cannot be used at temperatures up to 500°C, especially in the amorphous region due to the presence of SiC.
Even in air oxidation at temperatures above 00°C, the strength decreases slightly in the early stages of oxidation, but after that an oxide film is formed and the decrease in strength stops, allowing it to be used even at high temperatures where conventional carbon fibers cannot be used.

(実施例) 次に本発明を実施例について説明する。(Example) Next, the present invention will be explained with reference to examples.

実施例1 ジクロロジメチルシランをキシレン中、金属Naで脱塩
素縮合させて得られたポリ (ジメチルシラン)に、石
油系ピッチのトルエン可溶分(数平均分子量320.炭
素含有1i92.1%)を種々の割合で混合し、反応塔
の温度を575℃とし、反応容器中の温度(反応温度)
と反応時間を種々の値に設定して混合物の共熱分解縮合
を行った。反応終了後、トルエン溶液として、濾過によ
り不溶物を除去し、その後300℃まで窒素雰囲気中で
加熱して低分子量成分を蒸留により除去し、それぞれ重
合体を得た。各々の重合体の合成条件を第1表に示す。
Example 1 Toluene-soluble content of petroleum pitch (number average molecular weight 320, carbon content 1i 92.1%) was added to poly(dimethylsilane) obtained by dechlorination condensation of dichlorodimethylsilane with metallic Na in xylene. Mix in various proportions, set the temperature of the reaction tower to 575°C, and reduce the temperature in the reaction vessel (reaction temperature).
Co-thermal decomposition and condensation of the mixture was carried out by setting various values of reaction time and reaction time. After the reaction was completed, insoluble matter was removed by filtration as a toluene solution, then heated to 300° C. in a nitrogen atmosphere, and low molecular weight components were removed by distillation to obtain each polymer. Table 1 shows the synthesis conditions for each polymer.

これらの重合体を300〜350℃に加熱溶融して50
0μmの口金より、500IIlZ分の紡糸速度で紡糸
し、その後10℃/時の昇温速度で空気中で所定の温度
まで加熱し1時間保持して不融化後、真空中で100℃
/時の昇温速度で1200℃まで加熱し1時間保持して
焼成し、直径10〜15μmの繊維を得た。繊維の機械
的特性をゲージ長25龍、クロスヘッドスピード2鰭/
分で測定した。また体積抵抗率も測定した。不融化温度
と機械的特性、体積抵抗率および繊維の化学分析値(S
i 、 Cl Oのみ)も第1−表に示す。
These polymers were heated and melted at 300 to 350°C and heated to 50°C.
The fiber was spun at a spinning speed of 500 IIlZ from a 0 μm spinneret, then heated in air at a heating rate of 10° C./hour to a predetermined temperature, held for 1 hour to infusible, and then heated to 100° C. in vacuum.
The fibers were heated to 1200° C. at a heating rate of /hour and held for 1 hour to obtain fibers with a diameter of 10 to 15 μm. The mechanical properties of the fibers were determined using gauge length 25, crosshead speed 2 fin/
Measured in minutes. Volume resistivity was also measured. Infusibility temperature, mechanical properties, volume resistivity, and chemical analysis values of fibers (S
i, ClO only) are also shown in Table 1.

実施例2 実施例1で合成した、隘4の重合体を実施例1と同様の
方法で紡糸、不融化し、200cc/分のアルゴンガス
気流中で100℃/時の昇温速度で加熱し1000 、
1200あるいは1500℃で1時間焼成して繊維を得
た。これらの繊維の機械的特性、体積抵抗率および化学
分析値の結果を第2表に示す。
Example 2 The polymer of No. 4 synthesized in Example 1 was spun and infusible in the same manner as in Example 1, and heated at a temperature increase rate of 100° C./hour in an argon gas flow of 200 cc/minute. 1000,
Fibers were obtained by firing at 1200°C or 1500°C for 1 hour. The mechanical properties, volume resistivity and chemical analysis values of these fibers are shown in Table 2.

第2表 実施例3 実施例1で合成したlll116の重合体を実施例1と
同様の方法で紡糸した後、窒素ガス雰囲気中で1.5x
lO’ rの電子線を照射して不融化した後、200c
c/分のアルゴンガス気流中で700℃まで加熱した後
、さらに約4kg/鶴2の張力の作用のもとで1200
 、2000あるいは2500℃まで加熱し1時間保持
して焼成して、繊維を得た。これらの繊維の機械的特性
、体積抵抗率および化学分析値の結果を第3表に示す。
Table 2 Example 3 The lll116 polymer synthesized in Example 1 was spun in the same manner as in Example 1, and then spun at 1.5x in a nitrogen gas atmosphere.
After making it infusible by irradiating it with an electron beam of 1O'r, 200c
After heating to 700°C in an argon gas flow of c/min, it was further heated to 1200°C under the action of a tension of about 4 kg/Tsuru2.
, 2,000 or 2,500°C and held for 1 hour for firing to obtain fibers. Table 3 shows the mechanical properties, volume resistivity, and chemical analysis values of these fibers.

実施例4 実施例1で用いたポリ (ジメチルシラン) 70gと
へキサメチルジシランLogに、実施例1で用いたピッ
チを20g ’IN合し、反応塔の温度を680℃、反
応温度400℃、反応時間10時間で共熱分解縮合させ
、反応終了後実施例1と同様の処理しをて得られた重合
体を隘7とする。また、エチルメチルジクロロシランを
金属Naでキシレン中で脱塩素縮合させて得られたポリ
シラン50gに実施例1で用いたピッチ50gを混合し
、反応塔の温度を400℃、反応温度400℃、反応時
間5時間で共熱分解縮合させ、反応終了後、トルエン溶
液として不溶物を濾過により除去した後、300℃/ 
l 5m11gの沸点までの低分子量成分を減圧蒸留に
より除去して得られた重合体を隘8とする。また、実施
例1で用いたポリ (ジメチルシラン) loogに石
油系ピッチ(炭素含有194.5%、トルエン不溶分5
9.1%)を10g混合して隘1の重合体と同様に共熱
分解縮合して得られた重合体を隘9とする。さらにジク
ロロジメチルシランにジフェニルジ、クロロシランを3
0mo1%添加し、キシレン中で金属Naで脱塩素縮合
して得られたポリシラン20gに石炭系ピッチのトルエ
ン可溶分(平均分子[280、炭素含有ff191.5
%)を80g混合し、反応塔の温度を600℃、反応温
度350”C1反応時間10時間で共熱分解縮合させ、
反応終了後実施例1と同様の処理をして得られた重合体
を11hloとする。
Example 4 20 g of pitch used in Example 1 was combined with 70 g of poly(dimethylsilane) used in Example 1 and hexamethyldisilane Log, and the temperature of the reaction tower was 680°C, the reaction temperature was 400°C, Cothermal decomposition condensation was carried out for a reaction time of 10 hours, and after the reaction was completed, the obtained polymer was treated in the same manner as in Example 1. In addition, 50 g of the pitch used in Example 1 was mixed with 50 g of polysilane obtained by dechlorination condensation of ethylmethyldichlorosilane with metallic Na in xylene, and the temperature of the reaction tower was set to 400°C, the reaction temperature was 400°C, and the reaction was carried out. Cothermal decomposition condensation was carried out for 5 hours, and after the reaction was completed, insoluble matter was removed by filtration as a toluene solution, and the temperature was increased to 300℃/
The polymer obtained by removing low molecular weight components up to the boiling point of 15ml11g by vacuum distillation is designated as 8. In addition, petroleum pitch (carbon content 194.5%, toluene insoluble content 5%) was added to the poly(dimethylsilane) loog used in Example 1.
9.1%) was mixed and subjected to cothermal decomposition and condensation in the same manner as the polymer of No. 1, and the obtained polymer was designated as No. 9. Furthermore, add 3 diphenyldi and chlorosilane to dichlorodimethylsilane.
Toluene soluble content of coal-based pitch (average molecular [280, carbon content ff191.5
%) were mixed and co-thermally decomposed and condensed at a reaction tower temperature of 600°C and a reaction temperature of 350"C1 reaction time of 10 hours.
After the reaction was completed, the polymer obtained by the same treatment as in Example 1 was designated as 11hlo.

これらの重合体を280〜350℃に加熱溶融して50
0μmの口金より300m/分の紡糸速度で紡糸し、そ
の後5℃/時の昇温速度で空気中で所定の温度まで加熱
して2時間保持して不融化した。その後、200cc/
分の窒素ガス気流中で100℃/時の昇温速度で120
0℃まで加熱し1時間保持して焼成し、直径12〜18
μmの繊維を得た。これらの繊維の機械的特性、体積抵
抗率、化学分析値の結果を不融化温度と合わせて第4表
に示す。
These polymers were heated and melted at 280 to 350°C and heated to 50°C.
The fibers were spun from a 0 μm spinneret at a spinning speed of 300 m/min, and then heated in air at a heating rate of 5° C./hour to a predetermined temperature and held for 2 hours to infusible. After that, 200cc/
120°C at a heating rate of 100°C/hour in a nitrogen gas stream of 120 min.
Heat to 0℃ and hold for 1 hour to bake, diameter 12-18
A micrometer fiber was obtained. The mechanical properties, volume resistivity, and chemical analysis values of these fibers are shown in Table 4 together with the infusibility temperature.

実施例5 実施例1てl1h6.の重合体から製造した繊維を空気
中で550℃および600℃で各々1時間熱処理して、
繊維の酸化による機械的特性の変化を調べた結果を第5
表に示す。この結果は酸化の初期に機械的特性は低下す
るもののその後一定値に近づき、酸化の進行が抑制され
ることを示す。
Example 5 Example 1 l1h6. The fibers made from the polymer were heat treated in air at 550°C and 600°C for 1 hour each,
The results of examining changes in mechanical properties due to oxidation of fibers are presented in the fifth section.
Shown in the table. This result shows that although the mechanical properties decrease at the beginning of oxidation, they then approach a constant value and the progress of oxidation is suppressed.

第5表 (発明の効果) 本発明のSiC−C系連続無a繊維は以上述べたように
、耐熱性、耐酸化性に優れ、体積抵抗率が10〜10−
3Ω・Gであり、機械的特性も優れているから、これら
の性質を利用した複合材料用補強材をはじめとして、電
気電子関係材料や宇宙・航空関係の耐熱材料や構造材料
として広汎な用途が考えられる。
Table 5 (Effects of the Invention) As described above, the SiC-C continuous aluminous fiber of the present invention has excellent heat resistance and oxidation resistance, and has a volume resistivity of 10 to 10-
3Ω・G, and has excellent mechanical properties, so it has a wide range of uses, including reinforcing materials for composite materials that utilize these properties, as well as heat-resistant materials and structural materials for electrical and electronic materials, and aerospace and aviation. Conceivable.

Claims (1)

【特許請求の範囲】 1、非晶質および/もしくは結晶質炭素と非晶質および
/もしくは結晶質SiCとを主たる構成成分とする分子
よりなり、5−55重量%のケイ素、40〜95重量%
の炭素および0.01〜15重量%の酸素を含む組成を
有しており、優れた耐熱強度と耐酸化性とを具えると共
に10〜10^−^3Ω・cmの体積抵抗率を示すこと
を特徴とするSiC−C系連続無機繊維。 2、α−SiC結晶を実質的に含まない特許請求の範囲
第1項記載のSiC−C系連続無機繊維。 3、高々100Åの大きさの黒鉛結晶子を含む特許請求
の範囲第1項または第2項記載のSiC−C系連続無機
繊維。 4、構成成分である炭素とSiCとが共に非晶質である
特許請求の範囲第1項記載のSiC−C系連続無機繊維
。 5、骨格部分が主として芳香族縮合環構造よりなる芳香
環セグメントと骨格部分が主としてカルボシランおよび
ポリシラン構造よりなるオルガノシランセグメントとが
ケイ素−炭素連結基を介してランダム結合してなり、且
つ有機溶媒に可溶であるオルガノポリアリールシランを
紡糸し、不融化させた後非反応性雰囲気中800〜30
00℃の温度で焼成することを特徴とするSiC−C系
連続無機繊維の製造方法。 6、前記芳香環セグメントが、有機溶媒に可溶なピッチ
から誘導されたものである特許請求の範囲第5項記載の
SiC−C系連続無機繊維の製造方法。 7、前記有機溶媒が、ベンゼン、トルエン、キシレンお
よびテトラヒドロフランよりなる群から選ばれた少なく
とも1種の芳香族系溶媒である特許請求の範囲第5項ま
たは第6項記載のSiC−C系連続無機繊維の製造方法
。 8、オルガノポリアリールシランが500〜10,00
0の数平均分子量を有する特許請求の範囲第5項乃至第
7項の何れかに記載のSiC−C系連続無機繊維の製造
方法。 9、オルガノポリアリールシランがポリシランと有機溶
媒に可溶なピッチとを混合し、不活性雰囲気下で加熱し
て共熱分解縮合させたものである特許請求の範囲第5項
乃至第8項の何れかに記載のSiC−C系連続無機繊維
の製造方法。 10、ポリシランが一般式 ▲数式、化学式、表等があります▼ (但し、n≧2の整数であり、またR_1およびR_2
は、それぞれ水素、ハロゲン、炭素数6個までのアルキ
ル基あるいは炭素数 12個までのアリール基を示す。) で表される主鎖構造を有する線状、環状または分岐状重
合体である特許請求の範囲第9項記載のSiC−C系連
続無機繊維の製造方法11、前記ポリシランは、そのR
_1およびR_2の少なくとも50%がメチル基である
特許請求の範囲第10項記載のSiC−C系連続無機繊
維の製造方法。 12、ポリシラン100重量部に対してピッチを2〜5
00重量部混合する特許請求の範囲第9項乃至第11項
の何れかに記載のSiC−C系連続無機繊維の製造方法
。 13、共熱分解縮合反応が液相と気相の両相で行われる
特許請求の範囲第9項乃至第12項の何れかに記載のS
iC−C系連続無機繊維の製造方法。 14、前記液相反応を300〜500℃で、また気相反
応を300〜800℃で行う特許請求の範囲第13項記
載のSiC−C系連続無機繊維の製造方法。 15、共熱分解縮合反応を常圧で行う特許請求の範囲第
9項乃至第14項の何れかに記載のSiC−C系連続無
機繊維の製造方法。 16、焼成温度が高々1800℃である特許請求の範囲
第5項乃至第15項の何れかに記載のSiC−C系連続
無機繊維の製造方法。 17、焼成温度が高々1400℃である特許請求の範囲
第16項記載のSiC−C系連続無機繊維の製造方法。
[Claims] 1. Consisting of molecules whose main constituents are amorphous and/or crystalline carbon and amorphous and/or crystalline SiC, 5-55% by weight silicon, 40-95% by weight %
of carbon and 0.01 to 15% by weight of oxygen, and exhibits excellent heat resistance strength and oxidation resistance, as well as a volume resistivity of 10 to 10^-^3 Ωcm. A SiC-C continuous inorganic fiber characterized by: 2. The SiC-C continuous inorganic fiber according to claim 1, which does not substantially contain α-SiC crystals. 3. The SiC-C continuous inorganic fiber according to claim 1 or 2, which contains graphite crystallites having a size of at most 100 Å. 4. The SiC-C continuous inorganic fiber according to claim 1, wherein the constituent carbon and SiC are both amorphous. 5. An aromatic ring segment whose skeleton is mainly composed of an aromatic condensed ring structure and an organosilane segment whose skeleton is mainly composed of carbosilane and polysilane structures are randomly bonded through silicon-carbon linking groups, and 800-30 in a non-reactive atmosphere after spinning and infusible organopolyarylsilane which is soluble.
A method for producing SiC-C continuous inorganic fibers, characterized by firing at a temperature of 00°C. 6. The method for producing a SiC-C continuous inorganic fiber according to claim 5, wherein the aromatic ring segment is derived from pitch soluble in an organic solvent. 7. The SiC-C continuous inorganic material according to claim 5 or 6, wherein the organic solvent is at least one aromatic solvent selected from the group consisting of benzene, toluene, xylene, and tetrahydrofuran. Fiber manufacturing method. 8. Organopolyarylsilane is 500 to 10,000
A method for producing a SiC-C continuous inorganic fiber according to any one of claims 5 to 7, which has a number average molecular weight of 0. 9. The organopolyarylsilane of claims 5 to 8 is a mixture of polysilane and pitch soluble in an organic solvent, which is co-thermally decomposed and condensed by heating in an inert atmosphere. Any method for producing a SiC-C continuous inorganic fiber. 10. Polysilane has a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, n≧2 is an integer, and R_1 and R_2
represents hydrogen, halogen, an alkyl group having up to 6 carbon atoms, or an aryl group having up to 12 carbon atoms, respectively. ) The polysilane is a linear, cyclic or branched polymer having a main chain structure represented by
11. The method for producing a SiC-C continuous inorganic fiber according to claim 10, wherein at least 50% of_1 and R_2 are methyl groups. 12. Pitch 2 to 5 for 100 parts by weight of polysilane
00 parts by weight of the SiC-C continuous inorganic fiber according to any one of claims 9 to 11. 13. S according to any one of claims 9 to 12, wherein the cothermal decomposition condensation reaction is carried out in both a liquid phase and a gas phase.
A method for producing iC-C continuous inorganic fiber. 14. The method for producing SiC-C continuous inorganic fibers according to claim 13, wherein the liquid phase reaction is carried out at 300 to 500°C and the gas phase reaction is carried out at 300 to 800°C. 15. The method for producing SiC-C continuous inorganic fibers according to any one of claims 9 to 14, wherein the co-thermal decomposition and condensation reaction is carried out at normal pressure. 16. The method for producing SiC-C continuous inorganic fibers according to any one of claims 5 to 15, wherein the firing temperature is at most 1800°C. 17. The method for producing SiC-C continuous inorganic fibers according to claim 16, wherein the firing temperature is at most 1400°C.
JP61051398A 1986-03-11 1986-03-11 SiC-C based continuous inorganic fiber and method for producing the same Expired - Lifetime JPH0737684B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61051398A JPH0737684B2 (en) 1986-03-11 1986-03-11 SiC-C based continuous inorganic fiber and method for producing the same
US07/131,139 US4879334A (en) 1986-03-11 1987-03-10 Organopolyarylsilanes, process for manufacturing the same and fibers comprising the same
PCT/JP1987/000147 WO1987005612A1 (en) 1986-03-11 1987-03-10 Organopolyarylsilane, process for its production, and fibers prepared therefrom
DE3744872A DE3744872C2 (en) 1986-03-11 1987-03-10 New organo:poly:aryl:silane, its mfg. process and fibres
DE3790151A DE3790151C2 (en) 1986-03-11 1987-03-10
DE19873790151 DE3790151T (en) 1986-03-11 1987-03-10
GB8726078A GB2198446B (en) 1986-03-11 1987-03-10 Organopolyarysilane, process for its production, and fibers prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051398A JPH0737684B2 (en) 1986-03-11 1986-03-11 SiC-C based continuous inorganic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62215016A true JPS62215016A (en) 1987-09-21
JPH0737684B2 JPH0737684B2 (en) 1995-04-26

Family

ID=12885834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051398A Expired - Lifetime JPH0737684B2 (en) 1986-03-11 1986-03-11 SiC-C based continuous inorganic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0737684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315612A (en) * 1987-06-18 1988-12-23 Nippon Carbon Co Ltd Production of filament consisting of silicon carbide and carbon
WO1990001523A1 (en) 1988-08-12 1990-02-22 Ube Industries, Ltd. Carbide fibers with high strength and high modulus of elasticity and polymer composition used for their production
JPH02277849A (en) * 1989-01-27 1990-11-14 Ube Ind Ltd Fiber material for composite material and production thereof
JPH04126823A (en) * 1990-09-14 1992-04-27 Ube Ind Ltd Carbonaceous inorganic fiber and production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756522A (en) * 1980-09-24 1982-04-05 Seishi Yajima Novel continuous inorganic fiber and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756522A (en) * 1980-09-24 1982-04-05 Seishi Yajima Novel continuous inorganic fiber and its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315612A (en) * 1987-06-18 1988-12-23 Nippon Carbon Co Ltd Production of filament consisting of silicon carbide and carbon
WO1990001523A1 (en) 1988-08-12 1990-02-22 Ube Industries, Ltd. Carbide fibers with high strength and high modulus of elasticity and polymer composition used for their production
JPH02277849A (en) * 1989-01-27 1990-11-14 Ube Ind Ltd Fiber material for composite material and production thereof
JPH04126823A (en) * 1990-09-14 1992-04-27 Ube Ind Ltd Carbonaceous inorganic fiber and production thereof

Also Published As

Publication number Publication date
JPH0737684B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4604367A (en) Method for the preparation of an inorganic fiber containing silicon, carbon, boron and nitrogen
EP0200326B2 (en) Process for preparing ceramic materials with reduced carbon levels
US4342712A (en) Process for producing continuous inorganic fibers
US4399232A (en) Continuous inorganic fibers and process for production thereof
US4663229A (en) Continuous inorganic fibers and process for production thereof
CN106521710A (en) Preparation method of titanium-boron-containing carbonizedsilicon base ceramic fiber
JPH0541727B2 (en)
US20120237765A1 (en) Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
JPS6347752B2 (en)
US4746480A (en) Process for providing a protective oxide coating on ceramic fibers
JP4552019B2 (en) Method for producing silicon carbide nanofiber
US4879334A (en) Organopolyarylsilanes, process for manufacturing the same and fibers comprising the same
JPS62215016A (en) Sic-c based inorganic filament and production thereof
JP3142886B2 (en) Method for producing SiC-based ceramic precursor
US5863848A (en) Preparation of substantially crystalline silicon carbide fibers from borosilazanes
JP3279144B2 (en) High heat resistant ceramic fiber and method for producing the same
JPH0586509A (en) Silicon carbide yarn and its production
JP2609323B2 (en) Method for producing high performance silicon-based ceramic fiber
US5707568A (en) Preparation of substantially polycrystalline silicon carbide fibers from methylpolysilanes
JPS6262188B2 (en)
JPH06146115A (en) Inorganic filament
JPS6252051B2 (en)
JPH062818B2 (en) Organopolyarylsilane and method for producing the same
JPH0340814A (en) Production of silicon carbide-based fiber excellent in high-temperature characteristic
DE3744872C2 (en) New organo:poly:aryl:silane, its mfg. process and fibres