JP2720916B2 - Constant tension control method for belt-shaped material - Google Patents

Constant tension control method for belt-shaped material

Info

Publication number
JP2720916B2
JP2720916B2 JP62195304A JP19530487A JP2720916B2 JP 2720916 B2 JP2720916 B2 JP 2720916B2 JP 62195304 A JP62195304 A JP 62195304A JP 19530487 A JP19530487 A JP 19530487A JP 2720916 B2 JP2720916 B2 JP 2720916B2
Authority
JP
Japan
Prior art keywords
tension
shaped material
detector
control
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62195304A
Other languages
Japanese (ja)
Other versions
JPS6443085A (en
Inventor
孝一 高橋
雄二 戸高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62195304A priority Critical patent/JP2720916B2/en
Publication of JPS6443085A publication Critical patent/JPS6443085A/en
Application granted granted Critical
Publication of JP2720916B2 publication Critical patent/JP2720916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の電動機によつてそれぞれ駆動され
る複数のロールを介して巻取り,巻戻しされる帯状材料
の張力を検出し、電動機電流を制御する電流制御ループ
の外側に少なくとも前記張力検出値をその目標値に一致
させるべく制御する張力制御装置を設けて帯状材料の定
張力制御を行なう制御方式に関する。 〔従来の技術〕 従来、この種の方式として、所定ロールの前方(後
方)張力を高精度に制御すべく、その後方(前方)にも
張力検出器を設けて張力変動量を求め、その補償を行な
うものが知られている。 〔発明が解決しようとする問題点〕 しかしながら、このような方式では、 イ)高価な張力検出器を前方,後方の両方に設けなけれ
ばならず、コスト高になる。 ロ)設備構成上の観点から、取付不可能となる場合が生
じ、高精度な定張力制御ができなくなる。 等の問題がある。 したがつて、この発明は1つの張力検出器だけで、高
精度の定張力制御を可能にすることを目的とする。 〔問題点を解決するための手段〕 帯状材料の所定ロールを挟む前方、後方の何れか一方
にのみ帯状材料の張力を検出する張力検出器を設けると
ともに、この張力検出値,電動機電流(電動機トルク)
および電動機速度から張力検出器が設けられていない側
の張力を推定演算する状態観測器を設け、張力検出器に
て検出された張力と目標値との偏差を張力制御装置の入
力側に加えて制御するとともに、推定された張力とその
目標値との偏差を前記電流制御ループの入力側に加えて
制御を行う。 〔作用〕 張力検出器にて検出された張力と目標値との偏差を張
力制御装置の入力側に加えて制御することにより定常偏
差を除去した定張力制御を行い、また、推定された張力
とその目標値との偏差を前記電流制御ループの入力側に
加えて制御することにより、過渡的な張力変動を抑制す
る。 〔実施例〕 図はこの発明の実施例を示す構成図で、1はブライド
ルロール、2は帯状材料、3は張力検出器、4は電動
機、5は電力変換器、6は速度検出器、7は電流検出
器、8は状態観測器、9は張力調節器(ATR)、10は速
度調節器(ASR)、11は電流調節器(ACR)、SE1,SE2は
張力設定器である。 電動機4には、プライドルロール1は材料2を搬送速
度VLS *によるよう駆動される。電動機4は速度調節器
(ASR)10によつて制御され、材料2に張力室ΔTを発
生させる。ここで、張力Tnを一定に制御するには、張力
検出器3からは張力Tnを得、張力設定器SE1にて設定さ
れている張力目標値Tn *に一致させるべく、張力調節器
(ATR)9にて演算を行ない、その出力をASR10にフイー
ドバツクすることにより、Tnが定張力になるよう制御さ
れる。 こゝに、状態観測器8は比例要素81,82,86、積分要素
83,84および関数発生器85等から構成され、速度検出器
6からは電動機速度実際値nが、また電流検出器7から
は電流Iまたはこれに比例する電動機トルク実際値
τM、張力検出器3からは前方張力Tn、張力設定器SE2か
らは後方張力設定値T* n+1がそれぞれ与えられる。な
お、図中のSはラブラス演算子、Tは電動機起動時定数
を示す。 このようにすれば、積分器84の出力からは電動機負荷
トルクτLが推定演算されることが良く知られているの
で、こゝではさらに、この電動機トルク推定値 と速度実際値nから関数発生器85により、材料のベンデ
イングロスやメカニカルロスによる負荷トルクを算出
する。 は実張力差ΔT=Tn+1−Tnに比例するもので、比例要素
86にて所定の係数を掛けることにより、実張力差ΔT=
Tn+1−Tnが演算され、また張力検出器3よりTnが与えら
れるので、これらを加算して後方張力推定値n+1=Δ
T+Tnが得られる。したがつて、張力設定器SE2にて設
定されるT* n+1との偏差T* n+1n+1をとることによ
り、後方張力の変動量が検出されるので、これを電流調
節器(ACR)11にフイードフオワードすることにより、
後方張力変動が前方に進入してくるのが抑制され、高精
度な前方張力制御が可能となる。 なお、上記では前方張力Tnから後方張力Tn+1を推定
し、前方定張力制御を行なうようにしたが、後方張力T
n+1から前方張力Tnを推定し、後方定張力制御を行ない
得ることは云う迄もない。 〔発明の効果〕 この発明によれば、ロール駆動用電動機の速度実際値
n、電流実際値I(または電動機トルクτM)、および
前方(後方)張力実際値Tnから後方(前方)張力実際値
Tn+1を推定演算し、高価な張力検出器を使用することな
く後方(前方)張力変動を検出し、張力のフイードフオ
ワード制御を行なうようしにたので、高精度な前方(後
方)定張力制御が可能となる利点がもたらされる。ま
た、後方(前方)張力検出器の取付場所の制約がないた
め、実施も容易である。 さらに、張力検出器にて検出された張力と目標値との
偏差を張力制御装置の入力側に加えて制御することによ
り定常偏差が除去され、推定された張力とその目標値と
の偏差を前記電流制御ループの入力側に加えて制御する
ことにより過渡的な張力変動が抑制されるので、これら
の相乗効果により高精度の定張力制御が実現される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a motor for detecting the tension of a strip-shaped material wound and unwound via a plurality of rolls driven by a plurality of motors, respectively. The present invention relates to a control method for providing a constant tension control for a band-shaped material by providing a tension control device for controlling at least the detected tension value to be equal to a target value outside a current control loop for controlling a current. [Prior Art] Conventionally, as a method of this type, in order to control the front (rear) tension of a predetermined roll with high accuracy, a tension detector is also provided at the rear (front) of the predetermined roll to determine the amount of tension fluctuation, and compensation thereof is performed. Are known. [Problems to be Solved by the Invention] However, in such a system, a) an expensive tension detector must be provided on both the front and rear sides, which increases the cost. B) From the viewpoint of equipment configuration, it may be impossible to mount, and high-precision constant tension control cannot be performed. There are problems such as. Accordingly, an object of the present invention is to enable high-precision constant tension control with only one tension detector. [Means for Solving the Problems] A tension detector for detecting the tension of the strip material is provided only at one of the front and rear sides of the predetermined roll of the strip material, and the detected tension value, the motor current (motor torque) )
And a state observer for estimating and calculating the tension on the side where the tension detector is not provided from the motor speed, and adding the deviation between the tension detected by the tension detector and the target value to the input side of the tension control device. Control is performed by adding a deviation between the estimated tension and the target value to the input side of the current control loop. [Operation] The constant tension control is performed by removing the steady-state deviation by adding and controlling the deviation between the tension detected by the tension detector and the target value to the input side of the tension control device. By adding the deviation from the target value to the input side of the current control loop and controlling it, transient tension fluctuation is suppressed. [Embodiment] FIG. 1 is a structural view showing an embodiment of the present invention, wherein 1 is a bridle roll, 2 is a strip-shaped material, 3 is a tension detector, 4 is an electric motor, 5 is a power converter, 6 is a speed detector, 7 Is a current detector, 8 is a state observer, 9 is a tension regulator (ATR), 10 is a speed regulator (ASR), 11 is a current regulator (ACR), and SE1 and SE2 are tension setting devices. The electric motor 4 drives the pride roll 1 so that the material 2 is transported at the transport speed V LS * . The electric motor 4 is controlled by a speed controller (ASR) 10 to generate a tension chamber ΔT in the material 2. Here, in order to control the tension T n constant, to obtain a tension T n from the tension detector 3, to match the tension target value T n * that is set by the tension setting device SE1, the tension adjuster performs calculation in (ATR) 9, by fed back its output to ASR10, is controlled so that T n becomes constant tension. Here, the state observer 8 has proportional elements 81, 82, 86, and an integral element
83, 84 and a function generator 85, etc., the actual motor speed n from the speed detector 6, the current I or the actual motor torque τ M proportional thereto from the current detector 7, the tension detector front tension T n is from 3, the rear tension set value T * n + 1 is given respectively from the tension setting device SE2. In the figure, S indicates a Labrass operator, and T indicates a motor start time constant. It is well known that the motor load torque τ L is estimated and calculated from the output of the integrator 84 in this case. From the actual speed n and the function generator 85, the load torque due to the bending loss and the mechanical loss of the material is calculated. Is proportional to the actual tension difference ΔT = T n + 1 −T n , and the proportional element
By multiplying a predetermined coefficient at 86, the actual tension difference ΔT =
T n + 1 −T n is calculated, and T n is given from the tension detector 3, and these are added to estimate the backward tension n + 1 = Δ
T + T n is obtained. Therefore, by calculating the deviation T * n + 1n + 1 from T * n + 1 set by the tension setting device SE2, the fluctuation amount of the rear tension is detected. By feeding forward to the container (ACR) 11,
The forward tension fluctuation is suppressed from entering the front, and high-precision front tension control becomes possible. In the above estimates the backward tension T n + 1 from the front tension T n, but to perform the forward constant tension control, backward tension T
It goes without saying that the front tension Tn is estimated from n + 1 and the rear constant tension control can be performed. According to [Effect of the Invention The present invention, the speed actual value n of the roll drive motor, a current actual value I (or motor torque tau M), and forward (backward) tension actually from the value T n backward (forward) tension fact value
T n + 1 is estimated and calculated, rearward (forward) tension fluctuation is detected without using an expensive tension detector, and feedforward control of tension is performed. ) The advantage that constant tension control is possible is brought about. Further, since there is no restriction on a mounting position of the rear (front) tension detector, the implementation is easy. Furthermore, the deviation between the tension detected by the tension detector and the target value is added to the input side of the tension control device and controlled to remove a steady-state deviation, and the deviation between the estimated tension and the target value is calculated as the deviation. Transient tension fluctuations are suppressed by controlling in addition to the input side of the current control loop, so that high-accuracy constant tension control is realized by a synergistic effect of these.

【図面の簡単な説明】 図はこの発明の実施例を示す構成図である。 符号説明 1……ブライドルロール、2……帯状材料、3……張力
検出器、4……電動機、5……電力変換器、6……速度
検出器、7……電流検出器、8……状態観測器、9……
張力調節器(ATR)、10……速度調節器(ASR)、11……
電流調節器(ACR),81,82,86……比例要素、83,84……
積分要素、SE1,SE2……張力設定器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing an embodiment of the present invention. Reference numeral 1 ... bridle roll, 2 ... strip material, 3 ... tension detector, 4 ... electric motor, 5 ... power converter, 6 ... speed detector, 7 ... current detector, 8 ... State Observer, 9 ...
Tension regulator (ATR), 10 ... Speed regulator (ASR), 11 ...
Current regulator (ACR), 81, 82, 86 …… Proportional element, 83, 84 ……
Integral element, SE1, SE2 ... Tension setting device.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−97953(JP,A) 特開 昭60−153370(JP,A) 特開 昭61−23066(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-59-97953 (JP, A)                 JP-A-60-153370 (JP, A)                 JP-A-61-23066 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.複数の電動機によってそれぞれ駆動される複数のロ
ールを介して巻取り,巻戻しされる帯状材料の張力を検
出し、電動機電流を制御する電流制御ループの外側に少
なくとも前記張力検出値をその目標値に一致させるべく
制御する張力制御装置を設けて帯状材料の定張力制御を
行う制御方式において、 前記帯状材料の所定ロールを挟む前方,後方の何れか一
方にのみ帯状材料の張力を検出する張力検出器を設ける
とともに、 該張力検出値,電動機電流(または電動機トルク)およ
び電動機速度から張力検出器が設けられていない側の張
力を推定演算する状態観測器を設け、 前記張力検出器にて検出された張力と目標値との偏差を
張力制御装置の入力側に加えて制御するとともに、 前記推定された張力とその目標値との偏差を前記電流制
御ループの入力側に加えて制御することを特徴とする帯
状材料の定張力制御方式。
(57) [Claims] Detecting the tension of the strip-shaped material wound and unwound through a plurality of rolls driven by a plurality of motors, and setting at least the detected tension value to a target value outside a current control loop for controlling the motor current. In a control method for providing constant tension control of a band-shaped material by providing a tension control device for controlling the tension, a tension detector for detecting a tension of the band-shaped material only at one of front and rear sides of a predetermined roll of the band-shaped material. And a state observer for estimating and calculating the tension on the side where the tension detector is not provided from the tension detection value, the motor current (or the motor torque) and the motor speed, and detecting the tension detected by the tension detector. The deviation between the tension and the target value is applied to the input side of the tension control device for control, and the deviation between the estimated tension and the target value is determined by the current control loop. A constant tension control method for a strip-shaped material, characterized in that it is controlled in addition to the input side of the belt.
JP62195304A 1987-08-06 1987-08-06 Constant tension control method for belt-shaped material Expired - Lifetime JP2720916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62195304A JP2720916B2 (en) 1987-08-06 1987-08-06 Constant tension control method for belt-shaped material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62195304A JP2720916B2 (en) 1987-08-06 1987-08-06 Constant tension control method for belt-shaped material

Publications (2)

Publication Number Publication Date
JPS6443085A JPS6443085A (en) 1989-02-15
JP2720916B2 true JP2720916B2 (en) 1998-03-04

Family

ID=16338927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62195304A Expired - Lifetime JP2720916B2 (en) 1987-08-06 1987-08-06 Constant tension control method for belt-shaped material

Country Status (1)

Country Link
JP (1) JP2720916B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838020B2 (en) * 2006-03-13 2011-12-14 三井造船株式会社 Container crane

Also Published As

Publication number Publication date
JPS6443085A (en) 1989-02-15

Similar Documents

Publication Publication Date Title
EP0514847B1 (en) System and method for controlling speed of electric motor in extremely low speed range using rotary pulse encoder
JPH0255123B2 (en)
JP2720916B2 (en) Constant tension control method for belt-shaped material
KR101682297B1 (en) Control system for rolling equipment
JPS633556B2 (en)
JPS5997953A (en) Tension control system
EP0075960A2 (en) Control device for a continuous rolling machine
JPH07323312A (en) Speed controller of motor and tension controller of rolling stock
JP3449305B2 (en) Tension control method and apparatus for strip material
JPS6217476B2 (en)
US2988680A (en) High-gain quick-response control system for strip mill
JPH0696424B2 (en) Tension control device
JPH11285730A (en) Method and device for strip tension control
JPS6365578B2 (en)
JPS6361311A (en) Positioning controller for moving body
JP2010000535A (en) System and method for controlling plate thickness
JP3564510B2 (en) Bridle roll tension control method
JP2819630B2 (en) Motor control device
JPH0859040A (en) Control device for continuous hot rolling mill
JPS60153370A (en) Tension control system
JPS63252865A (en) Tension control device for wind-up machine
JPS62141986A (en) Motor control system
JPH079610B2 (en) Tension control device for long materials
JP3204867B2 (en) Speed control device of electric motor for rolling mill drive
JPH0671614B2 (en) Automatic thickness control device