JP2720282B2 - Method for pulling Si single crystal with controlled oxygen concentration - Google Patents

Method for pulling Si single crystal with controlled oxygen concentration

Info

Publication number
JP2720282B2
JP2720282B2 JP33535693A JP33535693A JP2720282B2 JP 2720282 B2 JP2720282 B2 JP 2720282B2 JP 33535693 A JP33535693 A JP 33535693A JP 33535693 A JP33535693 A JP 33535693A JP 2720282 B2 JP2720282 B2 JP 2720282B2
Authority
JP
Japan
Prior art keywords
single crystal
melt
oxygen concentration
pulling
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33535693A
Other languages
Japanese (ja)
Other versions
JPH07187887A (en
Inventor
新明 黄
一高 寺嶋
宏治 泉妻
茂行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Toshiba Corp
Kagaku Gijutsu Shinko Jigyodan
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kagaku Gijutsu Shinko Jigyodan, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP33535693A priority Critical patent/JP2720282B2/en
Priority to DE69428302T priority patent/DE69428302T2/en
Priority to EP94104297A priority patent/EP0625595B1/en
Priority to US08/291,833 priority patent/US5524574A/en
Publication of JPH07187887A publication Critical patent/JPH07187887A/en
Application granted granted Critical
Publication of JP2720282B2 publication Critical patent/JP2720282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、雰囲気調整により酸素
濃度を制御したSi単結晶の引上げ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulling a Si single crystal in which the oxygen concentration is controlled by adjusting the atmosphere.

【0002】[0002]

【従来の技術】融液から単結晶を育成する代表的な方法
として、チョクラルスキー法がある。チョクラルスキー
方法では、図1に示すように密閉容器1の内部に配置し
たルツボ2を、回転及び昇降可能にサポート3で支持す
る。ルツボ2の外周には、ヒータ4及び保温材5が同心
円状に設けられ、ルツボ2に収容した原料をヒータ4で
集中的に加熱し、融液6を調製する。融液6は、単結晶
成長に好適な温度に維持される。融液6に種結晶7を接
触させ、種結晶7の結晶方位を倣った単結晶8を成長さ
せる。種結晶7は、ワイヤ9を介して回転巻取り機構1
0から吊り下げられ、単結晶8の成長に応じて回転しな
がら引上げられる。また、ルツボ2も、サポート3を介
して適宜回転しながら下降する。サポート3の降下速
度,回転速度及び種結晶7の回転速度,上昇速度等は、
融液6から引上げられる単結晶8の成長速度に応じて制
御される。
2. Description of the Related Art A typical method for growing a single crystal from a melt is the Czochralski method. In the Czochralski method, a crucible 2 arranged inside a closed container 1 as shown in FIG. A heater 4 and a heat insulating material 5 are provided concentrically on the outer periphery of the crucible 2, and the raw material contained in the crucible 2 is intensively heated by the heater 4 to prepare a melt 6. Melt 6 is maintained at a temperature suitable for single crystal growth. The seed crystal 7 is brought into contact with the melt 6 to grow a single crystal 8 that follows the crystal orientation of the seed crystal 7. The seed crystal 7 is rotated by a rotary winding mechanism 1 through a wire 9.
It is suspended from 0 and pulled up while rotating according to the growth of the single crystal 8. The crucible 2 also descends while rotating appropriately via the support 3. The lowering speed and rotation speed of the support 3 and the rotation speed and rising speed of the seed crystal 7 are as follows.
It is controlled according to the growth rate of the single crystal 8 pulled from the melt 6.

【0003】Sbをn型不純物として添加した融液6を
使用して引き上げを行うと、得られた単結晶8にSbが
導入され、高伝導度の半導体材料が得られる。また、融
液6にルツボ2から溶出したSiO2 に起因する酸素が
導入されており、その酸素も単結晶8に取り込まれる。
単結晶8に含まれる酸素は、単結晶8が熱処理されると
きバルク中に析出し、析出欠陥となる。この析出欠陥
は、電子デバイスを構成する半導体単結晶基板の表面に
残存する重金属不純物を捕捉して無害化するゲッタリン
グ中心として利用される。また、固溶している酸素は、
半導体単結晶基板の強度を向上させる作用も呈する。こ
のようなことから、単結晶中に取り込まれる酸素濃度を
増大させる上で、融液の酸素濃度を高く維持することが
望まれる。しかし、従来の方法においては、Si融液の
酸素濃度を高レベルに安定維持することは困難であっ
た。本発明者等は、Si融液の物性を調査・研究する過
程で、多量にSbドープしたSi融液を使用するとき、
Sb含有量の上昇に伴ってSi融液の酸素濃度が一義的
に上昇することを見い出した。そして、特願平5−69
924号で、このSb含有量と酸素濃度との関係を利用
し、融液のSb含有量から酸素濃度を算出する方法を提
案した。
When pulling is performed using the melt 6 to which Sb is added as an n-type impurity, Sb is introduced into the obtained single crystal 8, and a semiconductor material having high conductivity is obtained. Further, oxygen derived from SiO 2 eluted from the crucible 2 is introduced into the melt 6, and the oxygen is also taken into the single crystal 8.
Oxygen contained in the single crystal 8 precipitates in the bulk when the single crystal 8 is heat-treated, and becomes a precipitation defect. This precipitation defect is used as a gettering center for trapping and rendering harmless heavy metal impurities remaining on the surface of the semiconductor single crystal substrate constituting the electronic device. Also, the oxygen dissolved in the solid
It also has the function of improving the strength of the semiconductor single crystal substrate. For this reason, it is desirable to maintain a high oxygen concentration in the melt in order to increase the concentration of oxygen taken into the single crystal. However, in the conventional method, it has been difficult to stably maintain the oxygen concentration of the Si melt at a high level. The present inventors, in the course of investigating and studying the physical properties of the Si melt, when using a large amount of Sb-doped Si melt,
It has been found that the oxygen concentration of the Si melt uniquely increases as the Sb content increases. And Japanese Patent Application 5-69
No. 924 proposed a method of calculating the oxygen concentration from the Sb content of the melt using the relationship between the Sb content and the oxygen concentration.

【0004】[0004]

【発明が解決しようとする課題】多量のSbを添加した
Si融液では、Sb2 O,SiO等として酸素が融液表
面から雰囲気中に放出され易くなる。この傾向は、P,
As,Bi等の他のV族元素でドープしたSi融液でも
同様にみられる。融液表面から酸素が放出されることに
より、融液中の酸素濃度が変動し、引き上げられている
Si単結晶の酸素濃度を著しく低下させる。そのため、
Si単結晶から切り出されたウエハやデバイス等に、所
定の特性を与えることができない。酸素濃度は、Si単
結晶の引上げ中にも変動する。引上げ中の変動によりS
i単結晶の酸素濃度が不安定になり、一定した品質の単
結晶が得られない。本発明は、このような問題を解消す
べく案出されたものであり、雰囲気に使用される希ガス
の種類を変えることにより、Si融液から酸化物として
放出される酸素の量を調整し、Si融液の酸素濃度、ひ
いてはSi単結晶の酸素濃度を制御し、所定の特性を持
ったSi単結晶を得ることを目的とする。
In a Si melt to which a large amount of Sb has been added, oxygen such as Sb 2 O and SiO is easily released from the melt surface into the atmosphere. This tendency is
The same applies to a Si melt doped with another group V element such as As or Bi. When oxygen is released from the surface of the melt, the oxygen concentration in the melt fluctuates, and the oxygen concentration of the pulled Si single crystal is significantly reduced. for that reason,
A predetermined characteristic cannot be given to a wafer, a device, or the like cut out from a Si single crystal. The oxygen concentration also fluctuates during the pulling of the Si single crystal. S due to fluctuation during pulling
The oxygen concentration of the i-single crystal becomes unstable, and a single crystal of constant quality cannot be obtained. The present invention has been devised to solve such a problem, and the amount of oxygen released as oxide from the Si melt is adjusted by changing the type of rare gas used in the atmosphere. It is an object of the present invention to control the oxygen concentration of the Si melt and, consequently, the oxygen concentration of the Si single crystal to obtain a Si single crystal having predetermined characteristics.

【0005】[0005]

【課題を解決するための手段】本発明のSi単結晶引上
げ方法は、その目的を達成するため、1.0×10-4
子%以上のV族元素でドープしたSi融液をルツボに収
容し、前記Si融液からSi単結晶を引き上げる際、前
記Si融液に接する雰囲気ガスとして、酸素濃度が9.
0×1017原子数/cm3 を超えるSi単結晶を育成す
る場合には質量の大きな希ガスを、酸素濃度が(3.0
〜9.0)×1017原子数/cm3 のSi単結晶を育成
する場合には質量の小さな希ガスを使用することを特徴
とする。なお、酸素濃度は、JEIDA換算値(3.0
3)を使用している。質量の大きな希ガスとしては、K
r,Xe又はRnが使用される。質量の小さな希ガスと
しては、Ne又はArが使用される。この単結晶引上げ
方法は、P,As,Sb,Bi等のV族元素でドープし
たSi融液に対して適用される。V族元素の含有量とS
i融液の酸素濃度との関係を考慮するとき、V族元素の
含有量は、P及びAsで1×10-4原子%以上,Sb及
びBiで0.01原子%以上にすることが好ましい。
In order to achieve the object, a method for pulling a Si single crystal according to the present invention accommodates a Si melt doped with 1.0 × 10 -4 atom% or more of a Group V element in a crucible. Then, when pulling up the Si single crystal from the Si melt, the oxygen concentration is 9.9 as an atmosphere gas in contact with the Si melt.
When growing a Si single crystal exceeding 0 × 10 17 atoms / cm 3 , a rare gas having a large mass is supplied with an oxygen concentration of (3.0).
(9.0) × 10 17 When growing a Si single crystal having 17 17 atoms / cm 3, a rare gas having a small mass is used. The oxygen concentration is calculated as a JEIDA-converted value (3.0
3) is used. As a rare gas having a large mass, K
r, Xe or Rn is used. Ne or Ar is used as the rare gas having a small mass. This single crystal pulling method is applied to a Si melt doped with a group V element such as P, As, Sb, and Bi. Group V element content and S
Considering the relationship with the oxygen concentration of the i melt, the content of the group V element is preferably set to 1 × 10 −4 atomic% or more for P and As, and 0.01 atomic% or more for Sb and Bi. .

【0006】[0006]

【作用】Si融液から引き上げられる単結晶の酸素濃度
は、石英ルツボから融液に溶出する酸素や融液中の酸素
濃度にぞんするものではなく、専ら融液表面の酸素濃度
が反映される。しかし、雰囲気ガスと接触する融液表面
は、酸化物として雰囲気ガスで持ち去られる酸素量が多
く、酸素濃度が一定しない。特に、蒸気圧が大きな酸化
物として酸素が放出されるV続元素でドープしたSi融
液では、この傾向が強くなる。本発明者等は、調査・研
究の結果、雰囲気ガスとして使用される希ガスの質量が
融液表面の酸素濃度に影響していることを見い出した。
希ガスの質量は、次のようなメカニズムで融液表面の酸
素濃度に影響を与えているものと推察される。理想気体
が充満されている雰囲気にSi融液がおかれ、このSi
融液から単結晶が引き上げられているものと仮定する。
Si融液の表面から蒸発する気体分子が雰囲気のガス分
子と衝突する回数fは、雰囲気ガスの質量mg の平方根
に反比例する。衝突エネルギーEは、質量mg との間に
E=K・mg (K:定数)の関係をもっている。したが
って、蒸発する基体分子と雰囲気ガスとの衝突は、質量
g の平方根に比例する。
[Function] The oxygen concentration of a single crystal pulled from a Si melt does not depend on the oxygen eluted from the quartz crucible into the melt or the oxygen concentration in the melt, but exclusively reflects the oxygen concentration on the melt surface. You. However, on the surface of the melt in contact with the atmospheric gas, a large amount of oxygen is carried away by the atmospheric gas as an oxide, and the oxygen concentration is not constant. This tendency is particularly strong in a Si melt doped with a V continuum element, which releases oxygen as an oxide having a high vapor pressure. The present inventors have found that as a result of investigation and research, the mass of the rare gas used as the atmosphere gas affects the oxygen concentration on the melt surface.
It is presumed that the mass of the rare gas affects the oxygen concentration on the melt surface by the following mechanism. The Si melt is placed in an atmosphere filled with an ideal gas,
It is assumed that a single crystal has been pulled from the melt.
The number of times f that gas molecules evaporating from the surface of the Si melt collide with gas molecules in the atmosphere is inversely proportional to the square root of the mass mg of the atmosphere gas. The collision energy E has a relationship of E = K · mg (K: constant) with the mass mg . Thus, the collision between the evaporated substrate molecules and the ambient gas is proportional to the square root of the mass mg .

【0007】このことから、単結晶の引上げに通常使用
されているArよりも質量が大きな希ガスを使用する
と、融液表面から基体の蒸発が抑えられ、酸化物の蒸発
量が少なくなり、融液自体及び融液表面の酸素濃度、ひ
いては得られたSi単結晶の酸素濃度が高レベルに維持
されることが予想される。逆に、Arよりも質量が小さ
い希ガスを使用すると、酸素濃度が低いSi単結晶が得
られることが予想される。特に、V族元素でドープされ
ているSi融液では、それぞれの元素単体及び酸化物が
融液表面から蒸発するが、1500℃以下ではこれら蒸
発物がSiOに比較して高い蒸気圧を示すことから、雰
囲気圧による影響が大きく現れる。したがって、雰囲気
ガスとして使用される希ガスの選択に応じ、酸素濃度が
高レベルで異なるSi単結晶が得られることが判る。こ
の推論は、後述する実施例で確認された。酸素濃度が高
いSi単結晶は、V族元素をドーパントとして含んでい
るので、リーク電流が少なく、重金属類を効率よくゲッ
タリングできる等の特性をもった半導体材料として使用
される。しかも、酸素濃度が所定範囲に調整されている
ので、品質に関する信頼性が高いものとなる。この傾向
は、ドーパントとして、P,As,Bi等の他のV族元
素を使用する場合も同様である。
Therefore, when a rare gas having a larger mass than Ar, which is generally used for pulling a single crystal, is used, evaporation of the substrate from the surface of the melt is suppressed, and the amount of oxide evaporated is reduced. It is expected that the oxygen concentration on the liquid itself and on the melt surface, and thus the oxygen concentration of the obtained Si single crystal, will be maintained at a high level. Conversely, when a rare gas having a smaller mass than Ar is used, it is expected that a Si single crystal having a low oxygen concentration will be obtained. In particular, in a Si melt doped with a group V element, each element alone and an oxide evaporate from the melt surface, but at 1500 ° C. or lower, these evaporates show a higher vapor pressure than SiO. Therefore, the influence of the atmospheric pressure appears greatly. Therefore, it can be seen that, depending on the selection of the rare gas used as the atmosphere gas, Si single crystals having different oxygen concentrations at high levels can be obtained. This inference was confirmed in an example described later. Since a Si single crystal having a high oxygen concentration contains a Group V element as a dopant, it is used as a semiconductor material having characteristics such as a small leak current and efficient gettering of heavy metals. In addition, since the oxygen concentration is adjusted to a predetermined range, the reliability regarding the quality is high. This tendency is the same when other group V elements such as P, As, and Bi are used as the dopant.

【0008】[0008]

【実施例】【Example】

実施例1:純Si20gを直径50mm及び高さ60m
mのルツボに入れ、垂直方向の温度差50℃をつけて表
面温度1450℃に加熱した。この状態で30分間保持
した後、0.7gの純SbをSi融液に添加した。更に
同じ温度条件下で30分間保持し、冷却速度200℃/
時で1350℃まで冷却し、冷却速度50℃/時で室温
まで冷却した。このようにして、目標Sb濃度0.8原
子%のSbドープSi融液を用意した。Ne,Ar,K
r及びXeの雰囲気中でSbドープSi融液を1426
〜1542℃に加熱し、90分間保持した後、単結晶引
上げを開始した。得られた単結晶から厚さ2mmの試験
片を切り出し、SIMS法で酸素濃度を測定した。引上
げ中に、融液表面の酸素濃度が同一となるように条件設
定し、融液自体の酸素濃度を測定した。
Example 1: 20 g of pure Si is 50 mm in diameter and 60 m in height
m, and heated to a surface temperature of 1450 ° C. with a vertical temperature difference of 50 ° C. After maintaining this state for 30 minutes, 0.7 g of pure Sb was added to the Si melt. Further, the temperature is kept for 30 minutes under the same temperature condition, and the cooling rate is
At 1350 ° C. and cooled to room temperature at a cooling rate of 50 ° C./hour. Thus, a Sb-doped Si melt having a target Sb concentration of 0.8 atomic% was prepared. Ne, Ar, K
In an atmosphere of r and Xe, the Sb-doped Si
After heating to 151542 ° C. and holding for 90 minutes, single crystal pulling was started. A test piece having a thickness of 2 mm was cut out from the obtained single crystal, and the oxygen concentration was measured by SIMS. During the pulling, the conditions were set so that the oxygen concentration on the melt surface was the same, and the oxygen concentration of the melt itself was measured.

【0009】Ar雰囲気下で引き上げられたSi単結晶
から切り出された各試験片の酸素濃度を、Si融液及び
融液表面の酸素濃度との関係で表1に示す。表1から、
Si単結晶の酸素濃度は、融液自体の酸素濃度に依存せ
ず、融液表面の酸素濃度に応じて変わっていることが判
る。表1において、融液自体の酸素濃度は、急冷凝固し
た融液について単結晶の試験片と同様にSIMS法で測
定した。融液表面の酸素濃度は、本発明者等が見い出し
た雰囲気圧Pをファクターとする次式で算出した。
Table 1 shows the oxygen concentration of each test piece cut from the Si single crystal pulled in an Ar atmosphere in relation to the Si melt and the oxygen concentration on the melt surface. From Table 1,
It can be seen that the oxygen concentration of the Si single crystal does not depend on the oxygen concentration of the melt itself, but changes according to the oxygen concentration on the melt surface. In Table 1, the oxygen concentration of the melt itself was measured by SIMS for the rapidly solidified melt in the same manner as for the single crystal test piece. The oxygen concentration on the melt surface was calculated by the following equation using the atmospheric pressure P found by the present inventors as a factor.

【数1】 (Equation 1)

【0010】[0010]

【表1】 [Table 1]

【0011】Si単結晶の酸素濃度C3 は、表1から明
らかなように、専ら融液表面の酸素濃度C2 に大きく依
存していることが判る。また、Si単結晶の引上げ開始
から所定時間経過後に融液表面の酸素濃度の調査し、希
ガスの種類ごとに酸素濃度の経時的変化を調査した。調
査結果を示す図2から明らかなように、融液表面の酸素
濃度は、雰囲気ガスとして使用した希ガスの質量が小さ
いものほど大きな低下傾向を示し、質量の大きな希ガス
では酸素濃度の低下が抑えられていた。雰囲気ガスとし
てKrを使用し、30トールの雰囲気下で液面温度14
50℃のSi融液からSi単結晶を引き上げた。得られ
たSi単結晶の酸素濃度は、(9.5〜11.0)×1
17原子数/cm3 の範囲で安定していた。他方、Ne
を雰囲気ガスとして使用する他は同じ条件下でSi単結
晶を育成してところ、得られたSi単結晶の酸素濃度
は、(3〜5)×1017原子数/cm3 であった。何れ
も、所定範囲に収まる高レベルの酸素濃度を持ってお
り、品質安定性に優れた半導体デバイス用材料として使
用できた。
As is clear from Table 1, the oxygen concentration C 3 of the Si single crystal largely depends on the oxygen concentration C 2 on the melt surface. Further, the oxygen concentration on the surface of the melt was examined after a lapse of a predetermined time from the start of pulling of the Si single crystal, and the change over time in the oxygen concentration for each type of rare gas was examined. As is clear from FIG. 2 showing the investigation results, the oxygen concentration on the melt surface shows a tendency to decrease as the mass of the rare gas used as the atmosphere gas decreases, and the oxygen concentration decreases with the rare gas having a large mass. Was suppressed. Using Kr as an atmosphere gas, a liquid surface temperature of 14 under an atmosphere of 30 Torr.
A Si single crystal was pulled up from a 50 ° C. Si melt. The oxygen concentration of the obtained Si single crystal is (9.5 to 11.0) × 1
It was stable in the range of 0 17 atoms / cm 3 . On the other hand, Ne
Was grown under the same conditions except that was used as an atmospheric gas. The oxygen concentration of the obtained Si single crystal was (3-5) × 10 17 atoms / cm 3 . Each of them had a high level of oxygen concentration within a predetermined range and could be used as a semiconductor device material having excellent quality stability.

【0012】[0012]

【発明の効果】以上に説明したように、本発明において
は、V族元素でドープしたSi融液に接する雰囲気ガス
として質量が異なる希ガスを使用することにより、引き
上げられるSi単結晶の酸素濃度に密接な関係を持つ融
液表面の酸素濃度を制御している。これにより、引上げ
られたSi単結晶の酸素濃度が希ガスの質量に応じて高
レベルで所定範囲に維持され、品質が一定したSi単結
晶が得られる。得られた単結晶は、半導体デバイスの動
作中にリークした電子のトラップや重金属類のゲッタリ
ング等に有効な酸素を多量に含んでいることから、リー
ク電流に対して敏感なパワー用デバイスや基板内のチャ
ンネルを利用したバイポーラデバイス等に適した半導体
材料として使用される。
As described above, in the present invention, by using a rare gas having a different mass as an atmosphere gas in contact with a Si melt doped with a group V element, the oxygen concentration of a pulled Si single crystal can be improved. The oxygen concentration on the surface of the melt, which is closely related to the above, is controlled. As a result, the oxygen concentration of the pulled Si single crystal is maintained at a high level within a predetermined range in accordance with the mass of the rare gas, and a Si single crystal having a constant quality can be obtained. The obtained single crystal contains a large amount of oxygen effective for trapping electrons leaked during operation of the semiconductor device and gettering of heavy metals, etc. It is used as a semiconductor material suitable for a bipolar device or the like utilizing a channel inside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 融液から単結晶を引き上げるチョクラルスキ
ー法
Fig. 1 Czochralski method for pulling a single crystal from a melt

【図2】 Si融液の酸素濃度に与える希ガスの影響FIG. 2 Influence of rare gas on oxygen concentration of Si melt

【符号の説明】[Explanation of symbols]

1:密閉容器 2:ルツボ 3:サポート 4:
ヒータ 5:保温材 6:融液 7:種結晶 8:
単結晶 9:ワイヤ 10:回転巻取り機構
1: Closed container 2: Crucible 3: Support 4:
Heater 5: Insulation material 6: Melt 7: Seed crystal 8:
Single crystal 9: Wire 10: Rotary winding mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泉妻 宏治 茨城県稲敷郡阿見町荒川沖1770−1− 502 (72)発明者 木村 茂行 茨城県つくば市竹園3−712 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Koji Izumi, Inventor 1770-1-502, Arakawa-oki, Ami-machi, Inashiki-gun, Ibaraki (72) Inventor Shigeyuki Kimura 3-712 Takezono, Tsukuba-shi, Ibaraki

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1.0×10-4原子%以上のV族元素で
ドープしたSi融液をルツボに収容し、前記Si融液か
らSi単結晶を引き上げる際、前記Si融液に接する雰
囲気ガスとして、酸素濃度が9.0×1017原子数/c
3 を超えるSi単結晶を育成する場合には質量の大き
な希ガスを、酸素濃度が(3.0〜9.0)×1017
子数/cm3 のSi単結晶を育成する場合には質量の小
さな希ガスを使用するSi単結晶引き上げ方法。
1. An atmosphere in contact with a Si melt doped with 1.0 × 10 −4 atom% or more of a Group V element in a crucible and pulling a Si single crystal from the Si melt. The gas has an oxygen concentration of 9.0 × 10 17 atoms / c.
When growing a Si single crystal exceeding m 3 , a rare gas having a large mass is used. When growing a Si single crystal having an oxygen concentration of (3.0 to 9.0) × 10 17 atoms / cm 3 , An Si single crystal pulling method using a rare gas having a small mass.
【請求項2】 質量の大きな希ガスとしてKr,Xe又
はRnを使用する請求項1記載の方法。
2. The method according to claim 1, wherein Kr, Xe or Rn is used as the noble gas having a large mass.
【請求項3】 質量の小さな希ガスとしてNe又はAr
を使用する請求項1記載の方法。
3. A rare gas having a small mass of Ne or Ar
The method of claim 1, wherein
JP33535693A 1993-03-29 1993-12-28 Method for pulling Si single crystal with controlled oxygen concentration Expired - Fee Related JP2720282B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33535693A JP2720282B2 (en) 1993-12-28 1993-12-28 Method for pulling Si single crystal with controlled oxygen concentration
DE69428302T DE69428302T2 (en) 1993-03-29 1994-03-18 Regulation of the oxygen concentration in a single crystal drawn from a melt containing a Group V element.
EP94104297A EP0625595B1 (en) 1993-03-29 1994-03-18 Control of oxygen concentration in single crystal pulled up from melt containing group-V element
US08/291,833 US5524574A (en) 1993-03-29 1994-08-17 Control of oxygen concentration in single crystal pulled up from melt containing Group-V element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33535693A JP2720282B2 (en) 1993-12-28 1993-12-28 Method for pulling Si single crystal with controlled oxygen concentration

Publications (2)

Publication Number Publication Date
JPH07187887A JPH07187887A (en) 1995-07-25
JP2720282B2 true JP2720282B2 (en) 1998-03-04

Family

ID=18287619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33535693A Expired - Fee Related JP2720282B2 (en) 1993-03-29 1993-12-28 Method for pulling Si single crystal with controlled oxygen concentration

Country Status (1)

Country Link
JP (1) JP2720282B2 (en)

Also Published As

Publication number Publication date
JPH07187887A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
Kloc et al. Preparation and properties of FeSi, α-FeSi2 and β-FeSi2 single crystals
US11440849B2 (en) SiC crucible, SiC sintered body, and method of producing SiC single crystal
JP6082700B2 (en) Method for producing Ga2O3-based crystal film
JP4361892B2 (en) Method for producing doped semiconductor wafers made of silicon and semiconductor wafers of this kind
US20180230623A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
KR20160078343A (en) METHOD FOR PRODUCING SiC MONOCRYSTAL
US7909930B2 (en) Method for producing a silicon single crystal and a silicon single crystal
JP4567262B2 (en) Strengthened n-type silicon material for epitaxial wafer substrate and method of manufacturing the same
JPH03164495A (en) Method for growing antimony doped silicon single crystal
JP2720282B2 (en) Method for pulling Si single crystal with controlled oxygen concentration
JP2691393B2 (en) Method for preparing Si melt for pulling single crystal
JP2720283B2 (en) Method for pulling Si single crystal with controlled oxygen concentration
JP2720303B2 (en) Method for controlling oxygen concentration of Si melt for pulling single crystal
US5477805A (en) Preparation of silicon melt for use in pull method of manufacturing single crystal
JP2760932B2 (en) Method for controlling oxygen concentration of Si melt for pulling single crystal
Pivac et al. Comparative studies of EFG poly-Si grown by different procedures
RU2308784C1 (en) Substrate for growing gallium arsenide epitaxial layers
JPH0246560B2 (en)
JP2804455B2 (en) Method for growing Si single crystal with controlled temperature fluctuation
JP2760940B2 (en) Si single crystal pulling device that adjusts oxygen concentration by controlling atmosphere
JP2733899B2 (en) Method for growing rare earth gallium perovskite single crystal
JP2804456B2 (en) Method for growing Si single crystal with uniform impurity concentration distribution in radial direction
JPH06125148A (en) Low-resistance semiconductor crystal substrate and manufacture thereof
JP4090345B2 (en) Liquid phase crystal growth method
Hwang et al. Crystallization Behavior of the Amorphous Si1-xGex Films Deposited on SiO2 by Molecular Beam Epitaxy (MBE)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees