JP2718366B2 - Air conditioner operation control method - Google Patents

Air conditioner operation control method

Info

Publication number
JP2718366B2
JP2718366B2 JP6117406A JP11740694A JP2718366B2 JP 2718366 B2 JP2718366 B2 JP 2718366B2 JP 6117406 A JP6117406 A JP 6117406A JP 11740694 A JP11740694 A JP 11740694A JP 2718366 B2 JP2718366 B2 JP 2718366B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
heating
room temperature
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6117406A
Other languages
Japanese (ja)
Other versions
JPH07305858A (en
Inventor
博信 藤田
嘉一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP6117406A priority Critical patent/JP2718366B2/en
Publication of JPH07305858A publication Critical patent/JPH07305858A/en
Application granted granted Critical
Publication of JP2718366B2 publication Critical patent/JP2718366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷房機能及び暖房機能
を備え、温水循環回路に温水を循環させて暖房運転を行
う温水循環暖房形式の空気調和機の運転制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method of a hot water circulation heating type air conditioner having a cooling function and a heating function and circulating hot water in a hot water circulation circuit to perform a heating operation.

【0002】[0002]

【従来の技術】従来、冷房機能及び暖房機能を備え、温
水循環回路に温水を循環させて暖房運転を行う温水循環
暖房形式の空気調和機においては、通常冷媒循環回路と
温水循環回路とが備えられ、温水循環回路は、熱交換器
及び熱源を備えた水加熱器と、循環ポンプと、室内ファ
ンを備えた室内ユニットに組込まれた室内熱交換器(放
熱器)と、温水流量調整弁とを有している。このような
空気調和機の暖房運転時においては、一般に室温制御の
パラメータとして設定温度Ts と、室内温度Tr との温
度差ΔT=Ts ーTr を採用し、該温度差ΔTに基づい
て温水循環回路に設けられた温水流量調整弁の開度を調
節することにより、温水循環回路に循環させる温水流量
を調節してファジー制御或いはPID制御等により室温
制御を行うものである。また、暖房運転時に室内温度T
r が設定温度Ts より低く、暖房運転オン温度TON以下
にある時暖房運転が開始され、水加熱器がオンされて温
水流量調整弁が開かれるとともに循環ポンプがオンされ
て室内ファンが駆動され、水加熱器で加熱された温水が
温水循環回路を循環して暖房運転を開始するものであ
り、室内温度Tr が設定温度Ts を超えて上昇し、予め
定められた暖房運転オフ温度Toffに達すると、温水流
量調整弁が全閉されて循環ポンプがオフされるととも
に、室内ファンが停止または微風運転に切り替えられる
ものである。
2. Description of the Related Art Conventionally, a hot water circulation heating type air conditioner having a cooling function and a heating function and circulating hot water in a hot water circulation circuit to perform a heating operation usually includes a refrigerant circulation circuit and a hot water circulation circuit. The hot water circulation circuit includes a water heater having a heat exchanger and a heat source, a circulation pump, an indoor heat exchanger (radiator) incorporated in an indoor unit having an indoor fan, and a hot water flow control valve. have. During the heating operation of such an air conditioner, a temperature difference ΔT = Ts−Tr between the set temperature Ts and the indoor temperature Tr is generally adopted as a parameter of room temperature control, and a hot water circulation circuit is performed based on the temperature difference ΔT. By adjusting the opening of the hot water flow control valve provided in the above, the flow rate of the hot water circulating in the hot water circulation circuit is adjusted, and the room temperature is controlled by fuzzy control or PID control. In addition, during the heating operation, the indoor temperature T
When r is lower than the set temperature Ts and is below the heating operation ON temperature T ON , the heating operation is started, the water heater is turned on, the hot water flow control valve is opened, the circulation pump is turned on, and the indoor fan is driven. The hot water heated by the water heater circulates through the hot water circulation circuit to start the heating operation, and the room temperature Tr rises above the set temperature Ts and reaches the predetermined heating operation off temperature Toff. Then, the hot water flow control valve is fully closed, the circulation pump is turned off, and the indoor fan is stopped or switched to the breeze operation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の暖房運転時の制御においては、設定温度Ts と室内
温度Tr との温度差ΔTに基づいて温水循環回路に設け
られた温水流量調整弁の開度を調節しているため、室内
温度Tr が上昇或いは下降の変化速度が、温水流量調整
弁の開度調節速度に比べてかなり遅いことに起因する温
水流量調整弁の開度を過大に調節する、即ち温水流量調
整弁を開き過ぎたり、絞り過ぎたりする恐れがあった。
例えば、暖房運転を開始すると、室内温度Tr が上昇し
て設定温度Ts を超えた時点で温水流量調整弁を絞り始
めた場合に、室内温度Tr は急激に下がることがなく、
ある期間上昇を続けるため、温水流量調整弁の開度を一
層小さくしようと制御することになって絞り過ぎる結果
となり、室内温度Tr が下がり過ぎることになる。そし
て、室内温度Tr が設定温度Ts に達すると温水流量調
整弁を開き始めるが、上記絞り動作と反対になって室内
温度Tr が上がり過ぎることになり、設定温度Ts 付近
で室内温度Tr が大きくハンチングするという問題があ
った。ここで、図12を参照して実際の室内温度制御の動
作の一例を説明すると、暖房運転の開始時において、 期間a:設定温度Ts と室内温度Tr との温度差ΔTが
大きいから、温水流量調整弁の開度大である。 期間b:温度差ΔTが小さくなり、室内温度Tr の変化
量が大きいから、温水流量調整弁を徐々に閉め始める。 期間c:室内温度Tr が上昇して設定温度Ts を超えた
から温水流量調整弁を大きく絞るもので、室内温度Tr
が下降し始める時には温水流量調整弁の開度が全閉また
は全閉近くに達することになる。 期間d:室内温度Tr が下降し始め、且つ温度差ΔTが
小さいために温水流量調整弁の開度を変化させない。 以後、期間a,b,c,dが徐々に短くなり、且つ温水
流量調整弁の開度変化量は小さくなるが、絶対量として
は開度変化が大きすぎるものであり、室内温度Tr が大
きくハンチングするという問題を生じる。一方、温水を
循環させる暖房方式は、本来温水流量を調節することに
より、暖房能力を幅広く変化させることができる点が長
所であるから、室内温度Tr が暖房運転オフ温度Toff
に達すると、温水流量調整弁が全閉されて循環ポンプが
オフされるとともに、室内ファンが停止または微風運転
に切り替えられる暖房運転オフ状態にする(図13参照)
と、上記長所を活かすことができないという問題があっ
た。
However, in the conventional control during the heating operation, the control of the hot water flow control valve provided in the hot water circulation circuit is performed based on the temperature difference ΔT between the set temperature Ts and the room temperature Tr. The temperature of the hot water flow control valve is excessively adjusted due to the fact that the changing speed of the rise or fall of the room temperature Tr is considerably slower than the speed of adjusting the opening of the hot water flow control valve. That is, there was a risk that the hot water flow rate regulating valve would be too open or too restrictive.
For example, when the heating operation is started, the room temperature Tr does not drop sharply when the room temperature Tr rises and exceeds the set temperature Ts, and the hot water flow control valve starts to be throttled.
In order to keep rising for a certain period of time, the opening of the hot water flow control valve is controlled to be further reduced, resulting in an excessive throttle, resulting in an excessive decrease in the room temperature Tr. Then, when the room temperature Tr reaches the set temperature Ts, the hot water flow control valve starts to be opened. However, the room temperature Tr becomes too high opposite to the above-described throttling operation, and the room temperature Tr becomes large hunting near the set temperature Ts. There was a problem of doing. Here, an example of the operation of the actual room temperature control will be described with reference to FIG. 12. At the start of the heating operation, the period a: the temperature difference ΔT between the set temperature Ts and the room temperature Tr is large, The opening of the regulating valve is large. Period b: Since the temperature difference ΔT is small and the amount of change in the room temperature Tr is large, the hot water flow control valve is gradually closed. Period c: The room temperature Tr rises and exceeds the set temperature Ts.
When the temperature starts to decrease, the opening degree of the hot water flow control valve reaches the fully closed state or almost fully closed state. Period d: The opening of the hot water flow control valve is not changed because the room temperature Tr starts to decrease and the temperature difference ΔT is small. Thereafter, the periods a, b, c, and d are gradually shortened, and the amount of change in the opening of the hot water flow control valve is small, but the amount of change in the opening is too large as an absolute amount, and the room temperature Tr is large. The problem of hunting arises. On the other hand, the heating method of circulating hot water has the advantage that the heating capacity can be changed widely by adjusting the flow rate of hot water, so that the indoor temperature Tr becomes the heating operation off temperature Toff.
, The hot water flow control valve is fully closed, the circulation pump is turned off, and the heating operation is turned off, in which the indoor fan is stopped or switched to the breeze operation (see Fig. 13).
Thus, there is a problem that the above advantages cannot be utilized.

【0004】本発明の目的は、温水流量調整弁の開度を
過大に調節することなく、室内温度を設定温度に速やか
に安定させることができるとともに、暖房運転オフする
ことなく、連続した暖房運転を行うことのできる空気調
和機の運転制御方法を提供することである。
[0004] It is an object of the present invention to stabilize the room temperature quickly to a set temperature without excessively adjusting the opening of the hot water flow control valve, and to perform continuous heating operation without turning off the heating operation. To provide an air conditioner operation control method capable of performing the following.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の空気調和機の運転制御方法は、少なくとも温
水弁を有する温水循環回路を備え、温水循環回路運転時
に室内温度に応じて温水弁の開度を制御する空気調和機
において、設定値より高く、暖房オフ温度より高くない
上位規制値を設定し、温水循環回路運転時に室内温度が
上位規制値以上となった時点で温水流量を強制的に絞
り、吹き出し温度を体感上寒く感じない温度に低下させ
ることにより、室内温度が上位規制値を超えた時点で、
強制的に温水弁を絞って、室内温度の変化速度が遅いこ
とに起因する温水弁の絞りすぎの発生を防止し、適切な
室内温度制御を行うことができ、快適な暖房運転制御を
行うことができる。また、室内温度が、設定温度よりも
高く、上位規制値より低い下位規制値まで下降した時点
で本来のファジー制御に復帰させることにより、制御遅
れが解消されて室内温度のアンダーシュートを防止する
ことができる。さらに、暖房運転の立ち上がり時に、室
内温度を速やかに上昇させるさせる必要性から高温風が
吹き出すため、室内の温度分布が均一ではなく、上下に
温度差が発生するから、温水室内熱交換器温度が下限規
定値以下になった時、その時点の温水弁の開度を変化さ
せず、そのまま保持することにより、体感上寒く感じな
い程度の低温風が吹き出して室内温度分布を均一化し、
真の室内温度を検出できるとともに、室内温度が暖房オ
フ温度に達することなく連続運転が可能になる。また、
温水循環回路運転時に室内温度が上位規制値以上となっ
た時点で温水流量を強制的に絞り、吹き出し温度を体感
上寒く感じない温度に低下させる状態を所定時間保持し
た後、室内温度が暖房オフ温度を超える場合に暖房オフ
状態に移行させることにより、室内温度が上位規制値を
超えても、温水弁の開度を小さくしている状態を所定時
間保持するから、室内温度が暖房オフ温度を超えた場合
に直ちに暖房オフとすることはなく、所定時間経過した
のち暖房オフとすることにより、急激な温水弁の開度調
整を行わず、ゆるやかな開度調整を行うことになって、
快適な室内温度制御が得られる。 また、暖房オフ温度
を上位規制値に等しくすると、室内温度が暖房オフ温度
を超えた場合に、直ちに暖房オフとせず、ゆるやかな速
度で温水弁を閉じることにより、温水室内熱交換器温度
Th の温度変化が緩やかであるから、温水弁の絞りすぎ
を防止できる。さらに、温水弁の開度を小さく保持する
ことにより、室内温度が緩やかに設定温度に近づくた
め、快適な室内温度制御が得られる。
In order to achieve the above object, an air conditioner operation control method according to the present invention comprises a hot water circulation circuit having at least a hot water valve, and the hot water circulation circuit operates according to the room temperature during operation of the hot water circulation circuit. In the air conditioner that controls the opening of the valve, set a higher regulation value that is higher than the set value and not higher than the heating-off temperature. By forcibly squeezing and lowering the blowing temperature to a temperature that does not feel cold on the perception, when the room temperature exceeds the upper regulation value,
Forcibly squeeze the hot water valve to prevent over-throttle of the hot water valve due to the slow change rate of the indoor temperature, perform appropriate indoor temperature control, and perform comfortable heating operation control Can be. Further, by returning to the original fuzzy control when the room temperature falls to the lower regulation value lower than the upper regulation value and higher than the set temperature, the control delay is eliminated and the undershoot of the room temperature is prevented. Can be. Furthermore, at the start of the heating operation, since the high-temperature air is blown out due to the necessity of rapidly raising the indoor temperature, the indoor temperature distribution is not uniform, and a temperature difference is generated between the upper and lower sides. When the temperature falls below the lower limit, the opening of the hot water valve at that point is not changed and is kept as it is.
The true room temperature can be detected, and continuous operation can be performed without the room temperature reaching the heating-off temperature. Also,
When the indoor temperature becomes higher than the upper regulation value during the operation of the hot water circulation circuit, the flow rate of the hot water is forcibly reduced, and the state in which the blowing temperature is reduced to a temperature at which the user does not feel cold is maintained for a predetermined time, and then the indoor temperature is turned off. By shifting to the heating-off state when the temperature exceeds the temperature, the state in which the degree of opening of the hot water valve is reduced is maintained for a predetermined time even if the room temperature exceeds the upper regulation value. If it exceeds, it will not be turned off immediately, and by turning off the heating after a predetermined time has elapsed, the opening degree of the hot water valve will not be adjusted sharply, and the opening degree will be adjusted slowly.
Comfortable room temperature control is obtained. Further, when the heating-off temperature is equal to the upper regulation value, when the room temperature exceeds the heating-off temperature, the heating water is not turned off immediately and the hot-water valve is closed at a gentle speed, so that the temperature of the hot-water indoor heat exchanger temperature Th is reduced. Since the temperature change is gradual, it is possible to prevent the hot water valve from being excessively throttled. Further, by keeping the opening of the hot water valve small, the room temperature gradually approaches the set temperature, so that comfortable room temperature control can be obtained.

【0006】[0006]

【実施例】本発明の実施例を、図を参照して説明する。
図11において本発明の制御方法を適用する温水循環暖房
形式の空気調和機の概略を説明すると、室内ユニット1
内に、冷房用熱交換器即ち蒸発器2と、暖房用熱交換器
3とが空気流路に上流側から順に配設され、その下流位
置に室内ファン4が設置されており、蒸発器2と暖房用
熱交換器3の下方にドレンパン5が設置されている。蒸
発器2と、室外ユニット6内に配設されたコンプレッサ
7、室外ファン11で空冷される凝縮器8、キャピラリチ
ューブ(膨張装置)9が冷媒配管10で順次接続された冷
媒回路で冷凍サイクルが構成され、コンプレッサ7で圧
縮された冷媒は凝縮器8で液化し、キャピラリチューブ
9で断熱膨張した後、蒸発器2で蒸発し、蒸発器2の周
囲の空気と熱交換する。暖房用熱交換器3は、温水熱源
機12内に設置された水加熱用熱交換器13に、循環ポンプ
14及び流量制御弁(温水弁)15を介して温水配管16で接
続されて温水暖房回路が形成されている。流量制御弁15
はステッピングモータで駆動されてステップ数で開度が
定められるものであり、暖房用熱交換器3の入口側に接
続されている。
An embodiment of the present invention will be described with reference to the drawings.
In FIG. 11, an outline of an air conditioner of a hot water circulation heating type to which the control method of the present invention is applied will be described.
Inside, a cooling heat exchanger or evaporator 2 and a heating heat exchanger 3 are sequentially arranged in the air flow path from an upstream side, and an indoor fan 4 is installed at a downstream position thereof. The drain pan 5 is installed below the heat exchanger 3 for heating. The refrigeration cycle is performed by a refrigerant circuit in which the evaporator 2, the compressor 7 disposed in the outdoor unit 6, the condenser 8 that is air-cooled by the outdoor fan 11, and the capillary tube (expansion device) 9 are sequentially connected by the refrigerant pipe 10. The refrigerant compressed by the compressor 7 is liquefied in the condenser 8, adiabatically expanded in the capillary tube 9, evaporated in the evaporator 2, and exchanges heat with the air around the evaporator 2. The heating heat exchanger 3 is connected to a water heating heat exchanger 13 installed in the hot water heat source unit 12 by a circulation pump.
A hot water heating circuit is formed by connection with a hot water pipe 16 via a flow control valve 14 and a flow control valve (hot water valve) 15. Flow control valve 15
Is driven by a stepping motor, the opening is determined by the number of steps, and is connected to the inlet side of the heating heat exchanger 3.

【0007】制御装置17は、室内温度センサ等の室内温
度検知装置18で検出された室内温度Tr と、蒸発器2に
設けられた温度センサ等の室内熱交換器温度センサ20で
検出された冷却側室内熱交換器温度Tc と、温水室内熱
交換器3に設けられた温度センサ等の室内熱交換器温度
センサ21で検出された温水室内熱交換器温度Th と、設
定装置19で設定された設定温度Ts とが入力され、室内
ファン4と、冷却回路のコンプレッサ7と室外ファン1
1、及び暖房回路の温水熱源機12と循環ポンプ14及び温
水弁15に制御信号を出力するものであり、冷房運転時に
は、室内ファン4とコンプレッサ7及び室外ファン11が
運転され、温水熱源機12と循環ポンプ14及び温水弁15が
オフされる。また、除湿運転時には、室内ファン4と、
冷却回路のコンプレッサ7と室外ファン11、及び暖房回
路の温水熱源機12と循環ポンプ14、及び温水弁15がオン
される。さらに、暖房運転時には、室内ファン4と、暖
房回路の温水熱源機12と循環ポンプ14が運転され、温水
弁15の開度θが調節され、冷却回路のコンプレッサ7と
室外ファン11はオフされる。
[0007] The control device 17 includes an indoor temperature Tr detected by an indoor temperature detecting device 18 such as an indoor temperature sensor and a cooling temperature detected by an indoor heat exchanger temperature sensor 20 such as a temperature sensor provided in the evaporator 2. The side indoor heat exchanger temperature Tc, the hot water indoor heat exchanger temperature Th detected by the indoor heat exchanger temperature sensor 21 such as the temperature sensor provided in the hot water indoor heat exchanger 3, and the setting device 19 set the temperature. The set temperature Ts is inputted, and the indoor fan 4, the compressor 7 of the cooling circuit and the outdoor fan 1
1, and outputs a control signal to the hot water heat source unit 12 of the heating circuit, the circulation pump 14 and the hot water valve 15. During the cooling operation, the indoor fan 4, the compressor 7 and the outdoor fan 11 are operated, and the hot water heat source unit 12 is operated. Then, the circulation pump 14 and the hot water valve 15 are turned off. During the dehumidifying operation, the indoor fan 4 and
The compressor 7 and the outdoor fan 11 of the cooling circuit, the hot water heat source device 12 and the circulation pump 14 of the heating circuit, and the hot water valve 15 are turned on. Further, during the heating operation, the indoor fan 4, the hot water heat source device 12 and the circulation pump 14 of the heating circuit are operated, the opening degree θ of the hot water valve 15 is adjusted, and the compressor 7 and the outdoor fan 11 of the cooling circuit are turned off. .

【0008】次に図1のフローチャートを参照して第1
実施例の暖房運転制御動作について説明する。予め設定
された設定温度Ts と、予め設定された第1規定値α
(例えば、α=2℃)及び第2規定値β(例えば、β=
1℃)とに基づいて、設定温度Ts に第1規定値α(α
=2℃)を加算した上位規制値Ta =Ts +αと、設定
温度Tsに第2規定値β(β=1℃)を加算した下位規
制値Tb =Ts +βを設定する。但し、上位規制値Ta
は、別に予め設定された暖房オフ温度Toff 以下(Ta
≦Toff )とする。室内温度Tr が上位規制値Ta 以下
(Tr ≦Ta =Ts +α=Ts +2)である場合にはフ
ァジー推論演算による室内温度制御を行う(図2のA〜
C)。図2において、 期間A:設定温度Ts と室内温度Tr との温度差ΔTが
大きいから、温水流量調整弁の開度大である。 期間B:温度差ΔTが小さくなり、温水室内熱交換器温
度Th の変化量が大きいから、温水流量調整弁を徐々に
閉め始める。 期間C:室内温度Tr が上昇して設定温度Ts を超えた
から温水流量調整弁を大きく絞るもので、室内温度Tr
が下降し始める時には温水流量調整弁の開度が全閉また
は全閉近くに達することになる。
Next, referring to the flowchart of FIG.
The heating operation control operation of the embodiment will be described. A preset set temperature Ts and a preset first specified value α
(For example, α = 2 ° C.) and a second specified value β (for example, β =
1 ° C.) and the set temperature Ts to a first specified value α (α
= 2 ° C.) and a lower limit value Tb = Ts + β obtained by adding a second specified value β (β = 1 ° C.) to the set temperature Ts. However, the upper regulation value Ta
Is equal to or lower than a separately set heating-off temperature Toff (Ta
≤ Toff). When the indoor temperature Tr is equal to or lower than the upper regulation value Ta (Tr ≦ Ta = Ts + α = Ts + 2), the indoor temperature control by the fuzzy inference calculation is performed (A to FIG. 2).
C). In FIG. 2, period A: the opening degree of the hot water flow control valve is large because the temperature difference ΔT between the set temperature Ts and the room temperature Tr is large. Period B: Since the temperature difference ΔT becomes small and the amount of change in the hot water indoor heat exchanger temperature Th is large, the hot water flow control valve is gradually closed. Period C: The room temperature Tr rises and exceeds the set temperature Ts.
When the temperature starts to decrease, the opening degree of the hot water flow control valve reaches the fully closed state or almost fully closed state.

【0009】上記ファジー推論演算による室内温度制御
においては、所定の演算タイムΔt(例えば、2分間)
経過毎にファジー演算を行い、設定温度Ts と現在室内
温度Trnowとの差である温度差ΔT(ΔT=Ts −Trn
ow)を図3に適用して温度差ΔTのメンバーシップ関数
により入力メンバーシップ値を求め、温度差ファジーデ
ータを求める。温度差ΔTのメンバーシップ関数は次の
とおりである。 N :TrnowがTs より高い(ΔT≦−Δ1 で最大1.0
、ΔT=0で最小0)。 ZO:ちょうど良い(ΔT=0で最大1.0 、ΔT=−Δ
1 ,+Δ2 で最小0)。 PS:TrnowがTs よりやや低い(ΔT=+Δ2 で最大
1.0 、ΔT=0,+Δ3で最小0)。 PM:TrnowがTs より少し低い(ΔT=+Δ3 で最大
1.0 、ΔT=+Δ2 ,+Δ4 で最小0)。 PB:TrnowがTs より低い(ΔT≧+Δ4 で最大1.0
、ΔT=+Δ3 で最小0)。 なお、Δ1 ,Δ2 ,Δ3 ,Δ4 は、予め定めた温度差Δ
Tの値であり、例えばΔ1 =Δ2 =1度,Δ3 =4度,
Δ4 =7度としている。
In the indoor temperature control based on the fuzzy inference calculation, a predetermined calculation time Δt (for example, 2 minutes)
A fuzzy calculation is performed for each elapse, and a temperature difference ΔT (ΔT = Ts−Trn), which is a difference between the set temperature Ts and the current room temperature Trnow.
ow) is applied to FIG. 3 to determine an input membership value by a membership function of the temperature difference ΔT, thereby obtaining temperature difference fuzzy data. The membership function of the temperature difference ΔT is as follows. N: up to 1.0 Trnow is higher than Ts (ΔT ≦ -Δ 1
, ΔT = 0, minimum 0). ZO: just good (1.0 at the maximum when ΔT = 0, ΔT = −Δ
1, the minimum 0 + Δ 2). PS: Trnow is slightly lower than Ts (up to [Delta] T = + delta 2
1.0, [Delta] T = 0, the minimum 0 + Δ 3). PM: up to Trnow is slightly lower than Ts (ΔT = + Δ 3
1.0, ΔT = + Δ 2, minimum 0 + delta 4). PB: Trnow up lower than Ts (ΔT ≧ + Δ 4 1.0
Minimum 0 at ΔT = + Δ 3). Note that Δ 1 , Δ 2 , Δ 3 , and Δ 4 are predetermined temperature differences Δ
The value of T, for example, Δ 1 = Δ 2 = 1 degree, Δ 3 = 4 degrees,
Δ 4 = 7 degrees.

【0010】現在温水室内熱交換器温度Thnowと、前回
温水室内熱交換器温度Tholdとで算出される温水室内熱
交換器温度変化量ΔTh=Thnow−Tholdを、図4に適用
して温水室内熱交換器温度変化量ΔThのメンバーシップ
関数により入力メンバーシップ値を求め、温水室内熱交
換器温度変化量ファジーデータを求める。温水室内熱交
換器温度変化量ΔThのメンバーシップ関数を次に示す。 NB:Th が前回ファジー演算時より低い状態が経過。
(ΔTh=−δ4 で最大1.0 、ΔTh=−δ3 で最小0) NM:Th が前回ファジー演算時よりも少し低い状態が
経過。(ΔTh=−δ3 で最大1.0 、ΔTh=−δ4 ,−δ
2 で最小0) NS:Th が前回ファジー演算時よりもやや低い状態が
経過。(ΔTh=−δ2 で最大1.0 、ΔTh=−δ3 ,−δ
1 で最小0) ZO:Th が前回ファジー演算時から変化しない。(−
δ1 ≦ΔTh≦+δ1 で最大1.0 、ΔTh=±δ2 で最小
0) PS:Th が前回ファジー演算時よりもやや高い状態が
経過。(ΔTh=+δ2 で最大1.0 、ΔTh=+δ1 ,+δ
3 で最小0) PM:Th が前回ファジー演算時よりも少し高い状態が
経過。(ΔTh=+δ3 で最大1.0 、ΔTh=+δ2 ,+δ
4 で最小0) PB:Th が前回ファジー演算時より高い状態が経過。
(ΔTh=+δ4 で最大1.0 、ΔTh=+δ3 で最小0) なお、δ1 ,δ2 ,δ3 ,δ4 は、予め定めたファジー
演算間室内温度変化量ΔThの値であり、例えば、δ1
0.4 度,δ2 =2度,δ3 =4度,δ4 =6度としてい
る。
Applying the temperature change ΔTh = Thnow−Thold of the heat exchanger in the hot water chamber calculated by the current heat exchanger temperature Thnow in the hot water chamber and the previous heat exchanger temperature Thold in the previous hot water chamber to FIG. An input membership value is obtained by a membership function of the exchanger temperature change amount ΔTh, and fuzzy data of the heat exchanger indoor heat exchanger temperature change amount is obtained. The membership function of the heat exchanger indoor heat exchanger temperature change amount ΔTh is shown below. NB: The state in which Th is lower than the time of the previous fuzzy calculation has elapsed.
(Maximum 1.0? Th = - [delta 4, minimum 0 ΔTh = -δ 3) NM: Th is slightly lower state elapsed than the previous fuzzy calculation. (Maximum 1.0 ΔTh = -δ 3, ΔTh = -δ 4, -δ
Th is slightly lower state elapsed than the previous fuzzy calculation: Min 0) NS 2. (Maximum 1.0 when ΔTh = −δ 2 , ΔTh = −δ 3 , −δ
Th does not change from the previous fuzzy calculation: Min 0) ZO 1. (-
1.0 at the maximum when δ 1 ≦ ΔTh ≦ + δ 1 and 0 at the minimum when ΔTh = ± δ 2 ) PS: The state where Th is slightly higher than that in the previous fuzzy calculation has elapsed. (Maximum 1.0 when ΔTh = + δ 2 , ΔTh = + δ 1 , + δ
3 : minimum 0) PM: Th has been a little higher than the previous fuzzy calculation. (Maximum 1.0 when ΔTh = + δ 3 , ΔTh = + δ 2 , + δ
Th is elapsed higher than the previous fuzzy calculation: Min 0) PB at 4.
(Maximum 1.0? Th = + [delta] 4, the minimum 0 ΔTh = + δ 3) Incidentally, δ 1, δ 2, δ 3, δ 4 are predetermined values of the fuzzy operation between indoor temperature change amount? Th was, for example, δ 1 =
0.4 degrees, δ 2 = 2 degrees, δ 3 = 4 degrees, and δ 4 = 6 degrees.

【0011】上記算出されたファジー演算間の室内温度
変化量ΔThのファジーデータ及び温度差ΔTのファジー
データの全てに対し、図5に示す制御ルールを参照し
て、出力メンバーシップ値を求める。出力メンバーシッ
プ関数は次の7種のファジー変数で定義される。 NB:温水弁開度小。NM:温水弁開度少し小。NS:
温水弁開度やや小。 ZO:温水弁開度中。PS:温水弁開度やや大。PM:
温水弁開度少し大。 PB:温水弁開度大。
An output membership value is obtained for all of the fuzzy data of the room temperature change amount ΔTh and the fuzzy data of the temperature difference ΔT during the calculated fuzzy operation with reference to the control rule shown in FIG. The output membership function is defined by the following seven fuzzy variables. NB: Hot water valve opening is small. NM: Hot water valve opening slightly small. NS:
Hot water valve opening slightly small. ZO: During hot water valve opening. PS: Hot water valve opening slightly large. PM:
Hot water valve opening is slightly large. PB: Hot water valve opening is large.

【0012】上記制御ルールは次のとおりである。 R1:温水室内熱交換器温度変化量ΔTh=NB(温水室
内熱交換器温度Th が前回ファジー演算時より低い状態
が経過)であり、温度差ΔT=N(現在室内温度Trnow
が設定温度Ts より高い)であると、出力メンバーシッ
プ関数はPS(温水弁開度やや大)となる。換言すれ
ば、前回ファジー演算時以後の室内温度Trが前回ファ
ジー演算時よりも低い状態が経過し、現在室内温度Trn
owが設定温度Ts より高い場合、温水弁15の開度をやや
大とする。 R2:温水室内熱交換器温度変化量ΔTh=NB(温水室
内熱交換器温度Th が前回ファジー演算時より低い状態
が経過)で、温度差ΔT=ZO(ちょうど良い)の時、
出力メンバーシップ関数はPM(温水弁開度少し大)と
なる。換言すれば、前回ファジー演算時以後の室内温度
Tr が前回ファジー演算時よりも低い状態が経過し、現
在室内温度Trnowが設定温度Ts に等しい場合、温水弁
15の開度を大とする。 以下、同様にしてR35まで35通りの制御ルールが示され
ており、出力メンバーシップ値(グレード値)として、
室内温度変化量ΔThと温度差ΔTの入力メンバーシップ
値(グレード値)を比較し、小さいほうのグレード値を
採用する(min.演算)。例えば、R3に示す室内温度変
化量ΔTh=NBで、温度差ΔT=PSの状態において
は、室内温度変化量ΔThに対するファジー変数NBのグ
レード値と、温度差ΔTに対するファジー変数PSのグ
レード値とを比較し、小さいほうの値を採用するもので
ある。
The above control rules are as follows. R1: The amount of change in the heat exchanger temperature in the hot water chamber ΔTh = NB (the state in which the heat exchanger temperature Th in the hot water chamber is lower than that in the previous fuzzy calculation has elapsed), and the temperature difference ΔT = N (current room temperature Trnow).
Is higher than the set temperature Ts), the output membership function is PS (the hot water valve opening is slightly large). In other words, the state in which the room temperature Tr after the previous fuzzy calculation has been lower than that of the previous fuzzy calculation has elapsed, and the current room temperature Trn
When ow is higher than the set temperature Ts, the opening of the hot water valve 15 is made slightly large. R2: when the amount of change in the heat exchanger temperature in the hot water chamber ΔTh = NB (the state in which the heat exchanger temperature Th in the hot water chamber is lower than that in the previous fuzzy calculation) and the temperature difference ΔT = ZO (just right),
The output membership function is PM (slightly larger hot water valve opening). In other words, if the room temperature Tr after the previous fuzzy calculation has been lower than the previous fuzzy calculation and the current room temperature Trnow is equal to the set temperature Ts, the hot water valve
Increase the opening of 15. Hereinafter, similarly, 35 control rules are shown up to R35, and as output membership values (grade values),
The input membership value (grade value) of the room temperature change amount ΔTh and the temperature difference ΔT are compared, and the smaller grade value is adopted (min. Calculation). For example, when the room temperature change amount ΔTh = NB shown in R3 and the temperature difference ΔT = PS, the grade value of the fuzzy variable NB for the room temperature change amount ΔTh and the grade value of the fuzzy variable PS for the temperature difference ΔT In comparison, the smaller value is adopted.

【0013】上記制御ルールを全てのファジーデータに
ついて参照し、温水室内熱交換器温度変化量ΔThのファ
ジーデータ及び温度差ΔTのファジーデータからmin.演
算で求められた出力メンバーシップ値に基づいて、max.
演算を行い、得られた出力メンバーシップ合成値を用い
て一点化演算(逆ファジー化)を行う。一点化演算式
は、重心演算式fw =∫f(x)・xdx/∫f(x)dxを変形
し、 G=(a・A+b・B+c・C+d・D+e・E+f・
F+h・H)/(A+B+C+D+E+F+G) で算出し、この算出されたGが温水弁15を駆動するステ
ップモータのステップ位置の制御量となる。但し、A:
NB出力メンバーシップ合成値、B:NM出力メンバー
シップ合成値、C:NS出力メンバーシップ合成値、
D:ZO出力メンバーシップ合成値、E:PS出力メン
バーシップ合成値、F:PM出力メンバーシップ合成
値、H:PB出力メンバーシップ合成値である。また、
a,b,c,d,e,f,gは重み付係数である(例え
ば、a=−6、b=−4、c=−2、d=0、e=+
2、f=+4、g=+6)。
The above control rules are referred to for all fuzzy data, and based on the fuzzy data of the heat exchanger temperature change ΔTh and the fuzzy data of the temperature difference ΔT based on the output membership value obtained by the min. max.
An operation is performed, and a single point operation (inverse fuzzy operation) is performed using the obtained output membership composite value. The one-point arithmetic expression is obtained by modifying the gravity center arithmetic expression f w = 式 f (x) ・ dx / ・ f (x) dx, and G = (a ・ A + b ・ B + c ・ C + d ・ D + e ・ E + f ・
F + h.H) / (A + B + C + D + E + F + G), and the calculated G is a control amount of the step position of the step motor for driving the hot water valve 15. However, A:
NB output membership composite value, B: NM output membership composite value, C: NS output membership composite value,
D: ZO output membership composite value, E: PS output membership composite value, F: PM output membership composite value, H: PB output membership composite value. Also,
a, b, c, d, e, f, and g are weighting coefficients (for example, a = -6, b = -4, c = -2, d = 0, e = +
2, f = + 4, g = + 6).

【0014】算出されたステップ位置制御量Gを前回ス
テップ位置(現時点の実ステップ位置)Go に加算した
ものが今回の温水弁のアドレス(目標ステップ位置Gs
)となるから、予め準備した温水弁特性テーブルか
ら、目標ステップ位置Gs に対応する目標ステップ数S
と、前回ステップ位置Go (温水弁が前回から駆動され
ていないから現時点における実ステップ位置)に対応す
る実ステップ数So との差が今回温水弁のステッピング
モータを駆動すべき駆動ステップ数(制御量)Smとな
り(Sm =S−So )、ステッピングモータに駆動ステ
ップ数Sm に対応する制御信号を出力してステッピング
モータを目標ステップ位置Gs に駆動し、温水弁の開度
を調節する。
The sum of the calculated step position control amount G to the previous step position (current actual step position) Go is the current hot water valve address (target step position Gs).
), The target step number S corresponding to the target step position Gs is obtained from the hot water valve characteristic table prepared in advance.
And the actual step number So corresponding to the previous step position Go (the actual step position at the present time since the hot water valve has not been driven from the previous time) is the number of drive steps (control amount) for driving the stepping motor of the current hot water valve. ) Sm (Sm = S-So), and outputs a control signal corresponding to the number of drive steps Sm to the stepping motor to drive the stepping motor to the target step position Gs and adjust the opening of the hot water valve.

【0015】温水弁15のステップ位置は、温水弁15の流
量−ステップ位置特性がリニアになるように設定してあ
り、各ステップ位置に対応するステッピングモータのス
テップ数は、温水弁の流量特性に応じて予め実験的に定
めている。例えば、図6の表1に示すとおり、温水弁15
の全閉位置から全開位置まで64ステップとし、各ステッ
プ位置に対応するステッピングモータの基準点即ち全閉
位置からの駆動パルス数が求められている。
The step position of the hot water valve 15 is set so that the flow rate-step position characteristic of the hot water valve 15 is linear. The number of steps of the stepping motor corresponding to each step position depends on the flow characteristic of the hot water valve. It is determined experimentally in advance. For example, as shown in Table 1 of FIG.
In this example, 64 steps are taken from the fully closed position to the fully open position, and the number of drive pulses from the reference point of the stepping motor corresponding to each step position, that is, the fully closed position is obtained.

【0016】温水室内熱交換器温度Th 並びに温水室内
熱交換器温度変化量ΔThを入力パラメータとして採用し
たことにより、室内温度Tr の変化よりも速やかな応答
が得られ、温水弁15の過大な開度調節を防ぎ、速やかに
室内温度Tr を安定させることができる。
By adopting the hot water indoor heat exchanger temperature Th and the hot water indoor heat exchanger temperature change amount ΔTh as input parameters, a quicker response than the indoor temperature Tr change can be obtained, and the hot water valve 15 opens excessively. The temperature adjustment can be prevented, and the room temperature Tr can be quickly stabilized.

【0017】一方、図1のフローチャートにおいて、室
内温度Tr が上位規制値Ta を超える(Tr >Ta =T
s +α=Ts +2)場合は、ファジー演算を行わず、温
水弁15を、予め設定した駆動速度θv (例えば、θv =
1ステップ/40秒)で強制的に閉止方向に駆動する(図
2のD)。温水弁15の開度が絞られて温水流量が減少
し、温水室内熱交換器温度Th が低下して、温水室内熱
交換器温度Th が予め設定された下限規定値Tc (例え
ば、Tc =35℃)以下(Th ≦Tc =35℃)になった
時、その時点の温水弁15の開度を変化させず、そのまま
保持する(図2のE)。なお、温水室内熱交換器温度T
h の下限規定値Tc は、室内ユニット6からの吹き出し
風温度が略温水室内熱交換器温度Th に等しくなるか
ら、肌寒さを感じない温度に設定すると良いものであ
り、例えば、Tc ≦30℃では肌寒く感じるからTc =35
℃が適当な値のひとつである。また、温水室内熱交換器
温度Th が下限規定値Tc 以下になる時ではなく、温水
弁15が、下限規定値Tc 近傍の温水室内熱交換器温度T
h を得ることのできる温水流量に対応して定められた下
限設定開度θs (例えば、θs =10で温水流量は略0.5
l/min.)に達した時としても良い。
On the other hand, in the flowchart of FIG. 1, the room temperature Tr exceeds the upper limit value Ta (Tr> Ta = T a).
In the case of s + α = Ts + 2), the fuzzy calculation is not performed, and the hot water valve 15 is driven at a preset driving speed θv (for example, θv =
(1 step / 40 seconds) to forcibly drive in the closing direction (D in FIG. 2). The degree of opening of the hot water valve 15 is reduced, the flow rate of the hot water decreases, the temperature Th of the heat exchanger inside the hot water decreases, and the temperature Th of the heat exchanger inside the hot water chamber becomes a predetermined lower limit specified value Tc (for example, Tc = 35). (° C.) or less (Th ≦ Tc = 35 ° C.), the opening of the hot water valve 15 at that point is not changed and is kept as it is (E in FIG. 2). In addition, the heat exchanger temperature T
The lower limit specified value Tc of h is preferably set to a temperature at which chills are not felt since the temperature of the blown air from the indoor unit 6 is substantially equal to the temperature Th of the hot water indoor heat exchanger. For example, Tc ≦ 30 ° C. Then it feels chilly so Tc = 35
C is one suitable value. Also, not when the hot water indoor heat exchanger temperature Th becomes lower than the lower limit specified value Tc, the hot water valve 15 sets the hot water indoor heat exchanger temperature T near the lower limit specified value Tc.
The lower limit setting opening θs (eg, θs = 10 and the hot water flow rate is approximately 0.5
l / min.).

【0018】室内温度Tr が低下して、室内温度Tr が
下位規制値Tb 以下(Tr ≦Tb =Ts +β=Ts +
1)になると、上述のファジー制御に移行する(図2の
F)。また、温水室内熱交換器温度Th が下限規定値T
c 以下になる(または、温水弁15が予め定められた下限
設定開度θs に達する)前に、室内温度Tr が低下し
て、室内温度Tr が下位規制値Tb 以下(Tr ≦Tb =
Ts +β=Ts +1)になった場合は、そのまま上述の
ファジー制御に移行する(図2のF)。
The room temperature Tr decreases, and the room temperature Tr is lower than or equal to the lower regulation value Tb (Tr ≦ Tb = Ts + β = Ts +
When 1) is reached, the process shifts to the fuzzy control described above (F in FIG. 2). Further, the heat exchanger temperature Th in the hot water chamber is set to the lower limit specified value T.
Before the temperature falls below c (or the hot water valve 15 reaches a predetermined lower limit opening θs), the room temperature Tr decreases, and the room temperature Tr becomes lower than or equal to the lower regulation value Tb (Tr ≦ Tb =
When Ts + β = Ts + 1), the process directly proceeds to the fuzzy control described above (F in FIG. 2).

【0019】上述の構成によると、室内温度Tr が設定
温度Ts より高い上位規制値Ta を超えた時点で、温水
室内熱交換器温度Th が下限規定値Tc 以下になるまで
強制的に温水弁15を絞ることにより、室内温度Tr の変
化速度が遅いことに起因する温水弁15の絞りすぎの発生
を防止し、適切な室内温度制御を行うことができ、快適
な暖房運転制御を行うことができる。なお、温水室内熱
交換器温度Th が下限規定値Tc 以下になる時ではな
く、温水弁15が下限設定開度θs に達した時点で本来の
ファジー制御に復帰させることにより、制御装置が簡略
化されるとともに、温水弁15の絞りすぎの発生を防止し
て、適切な室内温度制御を行うことができ、快適な暖房
運転制御を行うことができる。また、室内温度Tr が、
設定温度Ts よりも少し高い下位規制値Tb (Tb <T
a )まで下降した時点で本来のファジー制御に復帰させ
ることにより、制御遅れが解消されて室内温度Tr のア
ンダーシュートを防止することができる。さらに、暖房
運転の立ち上がり時に、室内温度Tr を速やかに上昇さ
せるさせる必要性から高温風(例えば、50℃)が吹き出
すため、室内の温度分布が均一ではなく、上下に温度差
が発生するから、温水室内熱交換器温度Th が下限規定
値Tc 以下になった時、その時点の温水弁15の開度を変
化させず、そのまま保持することにより、低温風(例え
ば、35℃前後)が吹き出して室内温度分布を均一化し、
真の室内温度Tr を検出できるとともに、室内温度Tr
が暖房オフ温度に達することなく、連続運転が可能にな
る。
According to the above-described structure, when the indoor temperature Tr exceeds the upper regulation value Ta higher than the set temperature Ts, the hot water valve 15 is forcibly forced until the hot water indoor heat exchanger temperature Th becomes lower than the lower limit specified value Tc. , It is possible to prevent the hot water valve 15 from being excessively throttled due to the slow change speed of the indoor temperature Tr, to perform appropriate indoor temperature control, and to perform comfortable heating operation control. . It should be noted that the control device is simplified by returning to the original fuzzy control when the hot water valve 15 reaches the lower limit setting opening θs, not when the temperature Th of the hot water indoor heat exchanger falls below the lower limit specified value Tc. At the same time, it is possible to prevent the hot water valve 15 from being excessively throttled, perform appropriate indoor temperature control, and perform comfortable heating operation control. Also, when the room temperature Tr is
The lower regulation value Tb slightly higher than the set temperature Ts (Tb <T
By returning to the original fuzzy control at the time when the temperature falls to a), the control delay can be eliminated and the undershoot of the room temperature Tr can be prevented. Further, at the start of the heating operation, since the high-temperature air (for example, 50 ° C.) is blown out due to the necessity of rapidly raising the room temperature Tr, the temperature distribution in the room is not uniform, and a temperature difference is generated vertically. When the temperature Th of the heat exchanger in the hot water chamber becomes lower than the lower limit specified value Tc, the opening of the hot water valve 15 at that time is not changed and is maintained as it is, so that a low temperature wind (for example, about 35 ° C.) blows out. Uniform indoor temperature distribution,
The true room temperature Tr can be detected, and the room temperature Tr can be detected.
Can be operated continuously without reaching the heating-off temperature.

【0020】次に図7のフローチャートを参照して第2
実施例を説明すると、室内温度Trが上位規制値Ta を
超えた(Tr >Ta =Ts +α=Ts +2)ときに、フ
ァジー演算を行わず、温水弁15を、予め設定した駆動速
度θv (θv =1ステップ/40秒)で強制的に閉止方向
に駆動し、温水弁15の開度を絞って温水流量を減少さ
せ、温水室内熱交換器温度Th が低下して、温水室内熱
交換器温度Th が下限規定値Tc 以下(Th ≦Tc =35
℃)に低下した(或いは、温水弁15が、下限規定値Tc
近傍の温水室内熱交換器温度Th を得ることのできる温
水流量に対応して定められた下限設定開度θs に達し
た)場合は、その時点の温水弁15の開度を変化させず、
そのまま保持し、暖房負荷が大きく、室内温度Tr が下
位規制値Tb以下(Tr ≦Tb =Ts +β=Ts +1)
に低下すると、通常のファジー制御に移行する(図8参
照)。ここまでは第1実施例と同様である。
Next, referring to the flowchart of FIG.
To explain the embodiment, when the room temperature Tr exceeds the upper regulation value Ta (Tr> Ta = Ts + α = Ts + 2), the fuzzy calculation is not performed, and the hot water valve 15 is moved to a predetermined drive speed θv (θv = 1 step / 40 sec) forcibly in the closing direction, reducing the opening of the hot water valve 15 to reduce the flow rate of hot water, the temperature Th of the hot water indoor heat exchanger falls, and the temperature of the hot water indoor heat exchanger Th is equal to or less than the lower limit specified value Tc (Th ≦ Tc = 35)
° C) (or the hot water valve 15 is set to the lower limit specified value Tc).
When the temperature reaches the lower limit set opening θs corresponding to the hot water flow rate at which the nearby hot water indoor heat exchanger temperature Th can be obtained), the opening of the hot water valve 15 at that time is not changed,
Hold as it is, the heating load is large, and the indoor temperature Tr is lower than or equal to the lower regulation value Tb (Tr ≦ Tb = Ts + β = Ts + 1)
, The process shifts to the normal fuzzy control (see FIG. 8). The operation up to this point is the same as in the first embodiment.

【0021】ここで、室内温度Tr が下位規制値Tb 以
下に低下しない(Tr >Tb =Ts+β=Ts +1)状
態が予め設定された所定時間t1 (例えば、t1 =6分
間)経過後に、室内温度Tr が暖房オフ温度Toff (T
off ≧Ta )以下である場合(Tr ≦Toff )は、暖房
負荷が小さめであり、温水弁15の開度を変化させず、そ
のまま保持する(図9参照)。一方、室内温度Tr が暖
房オフ温度Toff を超えた(Tr >Toff )場合は、暖
房負荷が極めて小さいものであり、温水弁15を全閉と
し、暖房オフ状態(監視状態)に移行する(図10参
照)。
Here, the state where the room temperature Tr does not decrease below the lower regulation value Tb (Tr> Tb = Ts + β = Ts + 1) after a predetermined time t 1 (for example, t 1 = 6 minutes) elapses. The room temperature Tr becomes the heating-off temperature Toff (T
If off ≧ Ta) or less (Tr ≦ Toff), the heating load is small, and the opening of the hot water valve 15 is not changed and is kept as it is (see FIG. 9). On the other hand, when the room temperature Tr exceeds the heating-off temperature Toff (Tr> Toff), the heating load is extremely small, the hot water valve 15 is fully closed, and the heating-off state (monitoring state) is entered (FIG. 10).

【0022】この構成において、暖房オフ温度Toff を
上位規制値Ta に等しくすると、室内温度Tr が暖房オ
フ温度Toff を超えた(Tr >Toff =Ta )場合に、
直ちに暖房オフとせず、ゆるやかな速度で温水弁15を閉
じることにより、温水室内熱交換器温度Th の温度変化
が緩やかであるから、温水弁15の絞りすぎを防止でき
る。また、温水弁15の開度を小さく、或いは下限設定開
度θs に保持することにより、室内温度Tr が緩やかに
設定温度に近づくため、快適な室内温度制御が得られ
る。さらに、暖房オフ温度Toff を上位規制値Ta より
高く(Toff >Ta )すると、室内温度Tr が上位規制
値Ta を超えても、温水弁15の開度を小さくしている状
態を所定時間t1 保持するから、室内温度Tr が暖房オ
フ温度Toff を超えた(Tr >Toff =Ta )場合に、
図12に示す従来の制御方法のように、直ちに暖房オフと
することはなく、所定時間t1 経過したのち暖房オフと
することにより、急激な温水弁15の開度調整を行わず、
ゆるやかな開度調整を行うことになって、快適な室内温
度制御が得られる。
In this configuration, if the heating-off temperature Toff is equal to the upper regulation value Ta, when the room temperature Tr exceeds the heating-off temperature Toff (Tr> Toff = Ta),
By closing the hot water valve 15 at a gentle speed without immediately turning off the heating, the temperature change of the heat exchanger temperature Th in the hot water chamber is gradual. Further, by keeping the opening of the hot water valve 15 small or keeping it at the lower limit setting opening θs, the room temperature Tr gradually approaches the set temperature, so that comfortable room temperature control can be obtained. Furthermore, the heating-off temperature Toff higher than the upper regulation value Ta (Toff> Ta) Then, even the room temperature Tr exceeds the upper regulation value Ta, a state of small opening degree of the hot water valve 15 a predetermined time t 1 Therefore, when the room temperature Tr exceeds the heating-off temperature Toff (Tr> Toff = Ta),
As in the conventional control method shown in FIG. 12, not be immediately and heating off, by the heating off after the predetermined time t 1 has elapsed, without adjustment of the opening degree of the abrupt hot water valve 15,
By performing the gentle opening adjustment, comfortable room temperature control can be obtained.

【0023】[0023]

【発明の効果】本発明は、上述のとおり構成されている
から次に述べる効果を奏する。設定値より高く、暖房オ
フ温度より高くない上位規制値を設定し、温水循環回路
運転時に室内温度が上位規制値以上となった時点で温水
流量を強制的に絞り、吹き出し温度を体感上寒く感じな
い温度に低下させることにより、室内温度が上位規制値
を超えた時点で、強制的に温水弁を絞って、室内温度の
変化速度が遅いことに起因する温水弁の絞りすぎの発生
を防止し、適切な室内温度制御を行うことができ、快適
な暖房運転制御を行うことができる。また、室内温度
が、設定温度よりも高く、上位規制値より低い下位規制
値まで下降した時点で本来のファジー制御に復帰させる
ことにより、制御遅れが解消されて室内温度のアンダー
シュートを防止することができる。さらに、暖房運転の
立ち上がり時に、室内温度を速やかに上昇させるさせる
必要性から高温風が吹き出すため、室内の温度分布が均
一ではなく、上下に温度差が発生するから、温水室内熱
交換器温度が下限規定値以下になった時、その時点の温
水弁の開度を変化させず、そのまま保持することによ
り、体感上寒くない程度の低温風が吹き出して室内温度
分布を均一化し、真の室内温度を検出できるとともに、
室内温度が暖房オフ温度に達することなく、連続運転が
可能になる。また、温水循環回路運転時に室内温度が上
位規制値以上となった時点で温水流量を強制的に絞り、
吹き出し温度を体感上寒く感じない温度に低下させる状
態を所定時間保持した後、室内温度が暖房オフ温度を超
える場合に暖房オフ状態に移行させることにより、室内
温度が上位規制値を超えても、温水弁の開度を小さくし
ている状態を所定時間保持するから、室内温度が暖房オ
フ温度を超えた場合に直ちに暖房オフとすることはな
く、所定時間経過したのち暖房オフとすることにより、
急激な温水弁の開度調整を行わず、ゆるやかな開度調整
を行うことになって、快適な室内温度制御が得られる。
また、暖房オフ温度を上位規制値に等しくすると、室
内温度が暖房オフ温度を超えた場合に、直ちに暖房オフ
とせず、ゆるやかな速度で温水弁を閉じることにより、
温水室内熱交換器温度Th の温度変化が緩やかであるか
ら、温水弁の絞りすぎを防止できる。さらに、温水弁の
開度を小さく保持することにより、室内温度が緩やかに
設定温度に近づくため、快適な室内温度制御が得られ
る。
Since the present invention is constructed as described above, it has the following effects. Set a higher regulation value that is higher than the set value and not higher than the heating-off temperature, and when the indoor temperature exceeds the upper regulation value during operation of the hot water circulation circuit, forcibly reduce the flow rate of hot water and feel the blowing temperature as cold When the indoor temperature exceeds the upper regulation value, the hot water valve is forcibly squeezed to prevent the hot water valve from being excessively throttled due to the slow change rate of the indoor temperature. In addition, appropriate indoor temperature control can be performed, and comfortable heating operation control can be performed. Further, by returning to the original fuzzy control when the room temperature falls to the lower regulation value lower than the upper regulation value and higher than the set temperature, the control delay is eliminated and the undershoot of the room temperature is prevented. Can be. Furthermore, at the start of the heating operation, since the high-temperature air is blown out due to the necessity of rapidly raising the indoor temperature, the indoor temperature distribution is not uniform, and a temperature difference is generated between the upper and lower sides. When the temperature falls below the lower limit, the opening of the hot water valve at that point is not changed and is kept as it is, so that low-temperature air that is not cold on the sensation blows out and the indoor temperature distribution is uniformed, and the true indoor temperature Can be detected,
Continuous operation is possible without the room temperature reaching the heating-off temperature. Also, when the indoor temperature becomes higher than the upper regulation value during the operation of the hot water circulation circuit, the hot water flow rate is forcibly reduced,
After holding the state of reducing the blowing temperature to a temperature that does not feel cold on the bodily sensation for a predetermined time, by shifting to the heating off state when the room temperature exceeds the heating off temperature, even if the room temperature exceeds the upper regulation value, Since the state in which the opening of the hot water valve is reduced is held for a predetermined time, the heating is not immediately turned off when the room temperature exceeds the heating-off temperature, and the heating is turned off after a predetermined time has elapsed.
Smooth adjustment of the opening of the hot water valve is not performed without abrupt adjustment of the opening of the hot water valve, so that comfortable indoor temperature control can be obtained.
When the heating-off temperature is equal to the upper regulation value, when the room temperature exceeds the heating-off temperature, the heating water is not turned off immediately and the hot water valve is closed at a slow speed,
Since the temperature change of the hot water indoor heat exchanger temperature Th is gradual, it is possible to prevent the hot water valve from being excessively throttled. Further, by keeping the opening of the hot water valve small, the room temperature gradually approaches the set temperature, so that comfortable room temperature control can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の制御動作のフローチャ
ートである。
FIG. 1 is a flowchart of a control operation according to a first embodiment of the present invention.

【図2】 本発明に係る動作のタイムチャートである。FIG. 2 is a time chart of an operation according to the present invention.

【図3】 本発明に係る温度差ΔTのメンバーシップ関
数である。
FIG. 3 is a membership function of a temperature difference ΔT according to the present invention.

【図4】 本発明に係る温水室内熱交換器温度変化量Δ
Thのメンバーシップ関数である。
FIG. 4 shows a temperature change Δ of a heat exchanger in a hot water room according to the present invention.
Th membership function.

【図5】 本発明に係るファジー制御の制御ルールであ
る。
FIG. 5 is a control rule of fuzzy control according to the present invention.

【図6】 温水弁の開度と駆動ステップ数の対象表であ
る。
FIG. 6 is an object table of the opening degree of the hot water valve and the number of driving steps.

【図7】 本発明の第2実施例の制御動作のフローチャ
ートである。
FIG. 7 is a flowchart of a control operation according to a second embodiment of the present invention.

【図8】 第2実施例において暖房負荷が大きい場合の
制御動作を示すタイムチャートである。
FIG. 8 is a time chart showing a control operation when a heating load is large in the second embodiment.

【図9】 第2実施例において暖房負荷が少し小さい場
合の制御動作を示すタイムチャートである。
FIG. 9 is a time chart showing a control operation when a heating load is slightly small in the second embodiment.

【図10】 第2実施例において暖房負荷が小さい場合
の制御動作を示すタイムチャートである。
FIG. 10 is a time chart showing a control operation when a heating load is small in the second embodiment.

【図11】 本発明を適用する空気調和機の一例を示す
概略構成図である。
FIG. 11 is a schematic configuration diagram illustrating an example of an air conditioner to which the present invention is applied.

【図12】 従来の暖房開始から安定状態までの動きの
タイムチャートである。
FIG. 12 is a time chart of a conventional movement from the start of heating to a stable state.

【図13】 従来の暖房オフ状態のタイムチャートであ
る。
FIG. 13 is a time chart of a conventional heating-off state.

【符号の説明】[Explanation of symbols]

1 室内ユニット、2 冷房用熱交換器(蒸発器) 3 暖房用熱交換器(放熱器)、4 室内ファン、5
ドレンパン 6 室外ユニット、7 圧縮機、8 凝縮器 9 キャピラリチューブ(膨張装置)、10 冷媒配管、
11 室外ファン 12 温水熱源機、13 水加熱用熱交換器、14 循環ポン
プ 15 流量制御弁(温水弁)、16 温水配管、17 制御装
置、18 検出装置 19 設定装置,21 温水室内熱交換器温度検出装置
1 indoor unit, 2 heat exchanger for cooling (evaporator) 3 heat exchanger for heating (radiator), 4 indoor fan, 5
Drain pan 6 outdoor unit, 7 compressor, 8 condenser 9 capillary tube (expansion device), 10 refrigerant piping,
11 Outdoor fan 12 Hot water heat source unit, 13 Heat exchanger for water heating, 14 Circulation pump 15 Flow control valve (Hot water valve), 16 Hot water piping, 17 Control device, 18 Detector 19 Setting device, 21 Hot water indoor heat exchanger temperature Detector

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも温水弁を有する温水循環回路
を備え、温水循環回路運転時に室内温度に応じて温水弁
の開度を制御する空気調和機において、室内温度が暖房
オフ温度より低い場合にファジー制御で温水弁の開度を
制御するとともに、設定温度より高く、暖房オフ温度よ
り高くない上位規制値を設定し、温水循環回路運転時に
室内温度が上位規制値以上となった時点で、ファジー制
御を停止して温水流量を強制的に絞り、吹き出し温度を
体感上寒く感じない温度に低下させることを特徴とする
空気調和機の運転制御方法。
1. An air conditioner having a hot water circulation circuit having at least a hot water valve and controlling the opening of the hot water valve in accordance with the indoor temperature during operation of the hot water circulation circuit, wherein the indoor temperature is set to a heating value.
When the temperature is lower than the OFF temperature, the opening of the hot water valve is controlled by fuzzy control.
Control and set a higher regulation value that is higher than the set temperature and not higher than the heating-off temperature, and when the indoor temperature exceeds the upper regulation value during hot water circulation circuit operation ,
An operation control method for an air conditioner, wherein the control is stopped, the flow rate of hot water is forcibly reduced, and the blow-out temperature is reduced to a temperature at which the user does not feel cold.
【請求項2】 室内温度が、設定温度よりも高く上位規
制値より低い下位規制値まで下降した時点で本来のファ
ジー制御に復帰させることを特徴とする請求項1に記載
された空気調和機の運転制御方法。
2. The air conditioner according to claim 1, wherein the control returns to the original fuzzy control when the room temperature falls to a lower regulation value higher than the set temperature and lower than the upper regulation value. Operation control method.
【請求項3】 温水循環回路運転時に室内温度が上位規
制値以上となった時点で温水流量を強制的に絞り、吹き
出し温度を体感上寒く感じない温度に低下させる状態を
所定時間保持した後、室内温度が暖房オフ温度を超える
場合に暖房オフ状態に移行させることを特徴とする請求
項1または2に記載された空気調和機の運転制御方法。
3. When the indoor temperature becomes higher than or equal to the upper regulation value during the operation of the hot water circulation circuit, the flow rate of the hot water is forcibly reduced, and a state in which the blowing temperature is reduced to a temperature at which the user does not feel cold is maintained for a predetermined time. The operation control method for an air conditioner according to claim 1, wherein when the room temperature exceeds the heating-off temperature, the air conditioner is shifted to a heating-off state.
JP6117406A 1994-05-09 1994-05-09 Air conditioner operation control method Expired - Fee Related JP2718366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6117406A JP2718366B2 (en) 1994-05-09 1994-05-09 Air conditioner operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6117406A JP2718366B2 (en) 1994-05-09 1994-05-09 Air conditioner operation control method

Publications (2)

Publication Number Publication Date
JPH07305858A JPH07305858A (en) 1995-11-21
JP2718366B2 true JP2718366B2 (en) 1998-02-25

Family

ID=14710863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6117406A Expired - Fee Related JP2718366B2 (en) 1994-05-09 1994-05-09 Air conditioner operation control method

Country Status (1)

Country Link
JP (1) JP2718366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060779B2 (en) 2018-02-07 2021-07-13 Mitsubishi Electric Corporation Air-conditioning system and air-conditioning control method

Also Published As

Publication number Publication date
JPH07305858A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
KR0164917B1 (en) Operating control method of airconditioner
JP2007100699A (en) Method of controlling variable capacity compressor of air conditioner
JP2624171B2 (en) Air conditioner operation control method
JP2000205630A (en) Control method for air conditioner
JP2718366B2 (en) Air conditioner operation control method
JPH11173631A (en) Air conditioner controller
JP2611657B2 (en) Air conditioner operation control method
JP3110593B2 (en) Control device for air conditioner
JP2701516B2 (en) Air conditioner equipped with refrigerant heating device
JPH07158937A (en) Controller for refrigerating cycle
JP2001241779A (en) Refrigerant flow rate controller for air conditioner
JPH09280629A (en) Method for controlling air conditioner and apparatus therefor
JP2009008346A (en) Refrigerating device
JP3117321B2 (en) Air conditioner
JPH10141744A (en) Control of air conditioner
JP2606546B2 (en) Control method at the start of heating of air conditioner
JP3702264B2 (en) Air conditioner having a plurality of indoor units and control method thereof
JPH0579678A (en) Dehumidifying operation control for air-conditioning machine
KR100420354B1 (en) Method for controlling fan of airconditioner
JPH07217966A (en) Controlling method of operation of air conditioner
JP2531332B2 (en) Dehumidifying operation method of air conditioner
JP3326629B2 (en) Micro temperature control device and method
JPH0518586A (en) Air conditioner
JPH0544976A (en) Air conditioner
JPH0518643A (en) Operation control device for air conditioning device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees