JP2717330B2 - Epoxy resin composition for high tension material made of FRP for pultrusion molding - Google Patents
Epoxy resin composition for high tension material made of FRP for pultrusion moldingInfo
- Publication number
- JP2717330B2 JP2717330B2 JP3246082A JP24608291A JP2717330B2 JP 2717330 B2 JP2717330 B2 JP 2717330B2 JP 3246082 A JP3246082 A JP 3246082A JP 24608291 A JP24608291 A JP 24608291A JP 2717330 B2 JP2717330 B2 JP 2717330B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- frp
- resin composition
- type
- bisphenol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は構造用部材としてのFR
P製高張力材に使用する引抜成形用FRP製高張力材用
エポキシ樹脂組成物に係るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FR as a structural member.
The present invention relates to an epoxy resin composition for a high tensile strength material made of FRP for pultrusion used for a high tensile strength material made of P.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】引抜成
形によるガラス繊維強化プラスチックロッドは、長手方
向に高い引張強度を有することから、構造用工業材料と
して、通信ケーブルのテンションメンバーに広く使われ
ている。2. Description of the Related Art Pultruded glass fiber reinforced plastic rods, which have a high tensile strength in the longitudinal direction, are widely used as structural industrial materials for tension members of communication cables. I have.
【0003】また、耐腐食性,高強度,軽量性,非磁性
などの特徴を生かしてコンクリート補強筋への応用展開
がはかられている。In addition, application to concrete reinforcing bars is being developed by utilizing features such as corrosion resistance, high strength, light weight, and non-magnetism.
【0004】各種補強用繊維の中で、ガラス繊維はその
機能と経済性から最も多く利用されている。[0004] Among various reinforcing fibers, glass fibers are most often used because of their functions and economy.
【0005】しかし、複合材料としてみた場合、ガラス
繊維の引張破断伸び率が4〜4.8%あるにもかかわら
ず、マトリックスとして一般に広く使用されているエポ
キシ樹脂硬化物の引張破断伸び率は1.5〜3%程度であ
り、これでは高張力材としての用途を考えた場合、高い
引張荷重が負荷されて素材が伸びた時、先ずマトリック
スが破壊されてその近傍のガラス繊維に応力集中が発生
し、繊維自体が有する高強度の機能を十分発揮すること
は出来ない欠点が生ずる。However, when viewed as a composite material, despite the glass fiber having a tensile elongation at break of 4 to 4.8%, the tensile elongation at break of an epoxy resin cured material generally used widely as a matrix is 1.5 to 3%. %, When considering the use as a high-tensile material, when the material is stretched by applying a high tensile load, the matrix is first broken and stress concentration occurs in the glass fibers in the vicinity, There is a disadvantage that the high-strength function of the device itself cannot be sufficiently exhibited.
【0006】樹脂の中にはいわゆる可撓性タイプのもの
があり破断伸び率が4%以上のものも存在するが強度が
低く実用的ではない。Some resins are of a so-called flexible type and have a breaking elongation of 4% or more, but are not practical because of low strength.
【0007】一方エポキシ樹脂の強靭化をはかる別の手
法としては、柔軟性をもつゴム,エラストマー系ポリマ
ーや強靭な熱可塑性ポリマーを添加する方法も知られて
いる。この場合は前記した添加により樹脂の粘度が上が
るため引抜成形では酸無水物系硬化剤との組み合わせが
適することになる。ところが、高張力体をコンクリート
補強のようなアルカリ性環境下での使用を考慮した場合
酸無水物系硬化ではエステル結合が含まれるため加水分
解による劣化が発生し不適当である。On the other hand, as another method for increasing the toughness of an epoxy resin, a method of adding a flexible rubber, an elastomeric polymer or a tough thermoplastic polymer is also known. In this case, since the viscosity of the resin is increased by the above-described addition, a combination with an acid anhydride-based curing agent is suitable for pultrusion molding. However, when considering the use of a high-tensile material in an alkaline environment such as concrete reinforcement, acid anhydride-based curing is unsuitable because of the presence of ester bonds and degradation due to hydrolysis.
【0008】そこで本発明者らは、アルカリ性環境下で
も樹脂が劣化することなくガラス繊維との界面接着が優
れ、繊維の伸びに追従する強靭なエポキシ樹脂処法を鋭
意研究してきた結果、ビスフェノールA型エポキシ樹脂
又はビスフェノールF型エポキシ樹脂あるいは双方の混
合樹脂にダイマー酸型エポキシ樹脂を混合し、アミン系
硬化剤で硬化させたガラス繊維強化プラスチックロッド
が高張力体として従来にない引張強度を発揮することを
確認して本発明を完成した。The present inventors have intensively studied a tough epoxy resin treatment method which has excellent interfacial adhesion to glass fibers without deterioration of the resin even in an alkaline environment and follows the elongation of the fibers. Glass fiber reinforced plastic rods obtained by mixing dimer acid type epoxy resin with epoxy resin of epoxy type or bisphenol F type epoxy resin or mixed resin of both and hardening with amine type hardener exhibits unprecedented tensile strength as a high tension body After confirming this, the present invention was completed.
【0009】[0009]
【課題を解決するための手段】添付図面を参照して本発
明の要旨を説明する。The gist of the present invention will be described with reference to the accompanying drawings.
【0010】引張強度が45gf/TEX以上のガラス繊維を使
用し、このガラス繊維が55〜75体積%になるようにエポ
キシ樹脂量を設定し、このエポキシ樹脂をビスフェノー
ルA型あるいはビスフェノールF型または双方の混合エ
ポキシ樹脂に選定し、これらのエポキシ樹脂60〜95重量
部とダイマー酸型エポキシ樹脂40〜5重量部とにアミン
系硬化剤2〜35重量部を加え、硬化後の引張破断伸び率
を3.5〜5%に設定したことを特徴とする引抜成形用
FRP製高張力材用エポキシ樹脂組成物に係るものであ
る。A glass fiber having a tensile strength of 45 gf / TEX or more is used, and the amount of the epoxy resin is set so that the glass fiber is 55 to 75% by volume. The epoxy resin is bisphenol A type, bisphenol F type or both. 2 to 35 parts by weight of an amine-based curing agent were added to 60 to 95 parts by weight of these epoxy resins and 40 to 5 parts by weight of a dimer acid type epoxy resin to obtain a tensile elongation at break after curing. The present invention relates to an epoxy resin composition for a high-tensile material made of FRP for pultrusion , wherein the epoxy resin composition is set to 3.5 to 5%.
【0011】[0011]
【作用】ガラス繊維が製品強度を確保する主材であるか
らガラス繊維が55体積%未満になると高張力材としての
機能がなくなる。また、75体積%を超えると繊維間に樹
脂のつかないところが生ずる程樹脂量が不足し、接着力
が出ずFRPとしての特性が発揮されない。[Function] Since glass fiber is the main material for securing the product strength, if the glass fiber content is less than 55% by volume, the function as a high tension material is lost. On the other hand, if the content exceeds 75% by volume, the amount of resin is insufficient such that a portion where the resin does not adhere between the fibers is generated, so that the adhesive force is not obtained and the characteristics as FRP are not exhibited.
【0012】エポキシ樹脂量が60重量部以下になると硬
化樹脂が伸び易くなり強度がでなくなる。逆に95重量部
以上になると伸びが小さくなり硬化樹脂が先に破壊して
所期の補強作用を果たさなくなる。When the amount of the epoxy resin is less than 60 parts by weight, the cured resin is easily stretched, and the strength is lost. Conversely, if the amount is more than 95 parts by weight, the elongation becomes small and the cured resin breaks down first, so that the intended reinforcing action cannot be achieved.
【0013】ダイマー酸型エポキシ樹脂は前記のエポキ
シ樹脂の伸びを調整する為双方で100部になるように混
合する。The dimer acid type epoxy resin is mixed so as to be 100 parts in both cases in order to adjust the elongation of the epoxy resin.
【0014】ビスフェノールA型エポキシ樹脂は接着
性,物理的化学的特性に優れ、エポキシ樹脂の中で最も
多く使用されている非常に実績のある樹脂(エポキシ樹
脂全体の8割以上がこのタイプ)である。Bisphenol A type epoxy resin has excellent adhesive properties and physical and chemical properties, and is the most widely used epoxy resin among the epoxy resins (more than 80% of the entire epoxy resin is of this type). is there.
【0015】ビスフェノールF型樹脂はビスフェノール
A型樹脂とほぼ似たような特性を有し、且つ低粘度であ
ることから、引抜成形の作業性向上に好適である。The bisphenol F-type resin has properties similar to those of the bisphenol A-type resin and has a low viscosity, so that it is suitable for improving workability in pultrusion molding.
【0016】両者混合使用は、通常ビスフェノールA型
エポキシ樹脂の粘度が高目のものが多いため、樹脂系の
粘度低下を目的としてビスフェノールF型を混合するが
両樹脂の硬化物特性に大きな差がないため混合による問
題はない。In the case of using both of them, usually, the viscosity of the bisphenol A type epoxy resin is higher, so that the bisphenol F type is mixed for the purpose of lowering the viscosity of the resin system. There is no mixing problem.
【0017】FRP用途に使用されるガラス繊維の引張
破断伸び率は、モノフィラメントで4〜5.5%であ
る。このモノフィラメントが数百本〜数万本集束され
て、いわゆるガラスロービンとなっている。ガラスロー
ビン状態では全てのモノフィラメントを平行に引揃える
事は事実上不可能であり、従ってモノフィラメントの集
束本数は多くなればなる程、その集束本数の倍率で、ガ
ラスロービンの引張強度が発現される事はあり得ない。The tensile elongation at break of glass fibers used for FRP applications is 4 to 5.5% for monofilaments. Hundreds to tens of thousands of these monofilaments are bundled to form a so-called glass robin. In the glass robin state, it is practically impossible to align all the monofilaments in parallel.Therefore, as the number of monofilaments increases, the tensile strength of the glass robin is expressed by the magnification of the number of monofilaments. Can not be.
【0018】例えばモノフィラメント4%の伸び率を有
するガラス繊維でも、数百本,数万本集束された状態で
引張荷重を受けた場合、破断伸び率(4%)に到達した
モノフィラメントから逐次破断する事となり、全体とし
て見掛け上モノフィラメントより小さい伸び率で破断し
てしまう。引張強度の場合も同様で、モノフィラメント
の強度から計算される値より低い値で破断に到る。その
理由は必ず弛んだり歪んだりするモノフィラメントは混
在し、それが先ず破断するからである。For example, even when glass fibers having an elongation rate of 4% of monofilaments are subjected to a tensile load in a state where hundreds or tens of thousands of fibers are bundled, the monofilaments which have reached elongation at break (4%) are sequentially broken. As a result, the fiber breaks as a whole with an elongation smaller than that of the monofilament. The same applies to the case of the tensile strength, and breakage occurs at a value lower than the value calculated from the strength of the monofilament. The reason for this is that monofilaments that are always loose or distorted are mixed, and they break first.
【0019】仍って、硬化後の引張破断伸び率を3.5
〜5%に設定する。Accordingly, the tensile elongation at break after curing was 3.5.
Set to ~ 5%.
【0020】[0020]
【実施例】本発明は、引張強度がロービング状態で45gf
/TEX以上の引張強力を有するEガラス繊維束が55〜75体
積%になるように、ビスフェノールA型エポキシ樹脂あ
るいはビスフェノールF型エポキシ樹脂または両者の混
合樹脂に選定し、これらのエポキシ樹脂60〜95重量部と
ダイマー酸型エポキシ樹脂40〜5重量部とにアミン系硬
化剤2〜35重量部を加えた樹脂組成物45〜25体積%を含
浸させ、賦形ガイドで棒状体とした後形状保持のため棒
状体周囲に螺旋状に糸を巻回し、加熱炉に引き込んで硬
化させ、引張破断伸び率を3.5〜5%に設定したところ
強靭性に優れた高張力材を得た。The present invention has a tensile strength of 45 gf in a roving state.
A bisphenol A type epoxy resin, a bisphenol F type epoxy resin or a mixed resin of both is selected so that the E glass fiber bundle having a tensile strength of not less than / TEX is 55 to 75% by volume. A resin composition obtained by adding 45 to 25% by volume of a resin composition obtained by adding 2 to 35 parts by weight of an amine-based curing agent to 40 to 5 parts by weight of a dimer acid type epoxy resin and maintaining the shape after shaping into a rod by a shaping guide For this reason, the yarn was spirally wound around the rod-shaped body, pulled into a heating furnace and cured, and the tensile elongation at break was set at 3.5 to 5%. As a result, a high-tensile material excellent in toughness was obtained.
【0021】本発明に用いられるエポキシ樹脂はビスフ
ェノールA型エポキシ樹脂として例えばチバガイギー社
のLY556,GY250、油化シェル社のエピコート827,
エポン9302などがあり、ビスフェノールF型樹脂として
はチバガイギー社のXPY306,油化シェル社のエピコート
807などが上げられる。The epoxy resin used in the present invention is a bisphenol A type epoxy resin such as LY556 and GY250 manufactured by Ciba-Geigy, Epicoat 827 manufactured by Yuka Shell, and the like.
Epon 9302 and others. As bisphenol F type resin, XPY306 by Ciba-Geigy, Epicoat by Yuka Shell
807 etc. are raised.
【0022】また、ダイマー酸型エポキシ樹脂としては
油化シェル社のエピコート871,エピコート872がある。As the dimer acid type epoxy resin, there are Epicoat 871 and Epicoat 872 manufactured by Yuka Shell Co., Ltd.
【0023】アミン系硬化剤としては油化シェル社のエ
ポン9350やチバガイギー社のHY932などがあげられる。Examples of the amine-based curing agent include Epon 9350 manufactured by Yuka Shell Co. and HY932 manufactured by Ciba Geigy.
【0024】本発明に用いられる補強用繊維基材として
は、ロービング状のEガラス繊維を用いることが望まし
い。その理由は、Eガラス繊維はスチールに比較して軽
量でハンドリング性が向上し、工場生産が容易で且つ運
搬がしやすい上耐腐蝕性に秀れ、コンクリートのかぶり
を薄くできるなどの特長があり、特に、Eガラス繊維は
アラミド繊維,カーボン繊維に比較して約1/10も低コ
ストである。As the reinforcing fiber substrate used in the present invention, it is desirable to use roving-like E glass fibers. The reason is that E-glass fiber is lighter than steel, has improved handling properties, is easy to produce in factories, is easy to transport, has excellent corrosion resistance, and can reduce the thickness of concrete. In particular, E glass fiber is about 1/10 of the cost lower than aramid fiber and carbon fiber.
【0025】[0025]
【表1】 [Table 1]
【0026】上記液状の粘度46ポイズ(25℃)のエポキ
シ樹脂組成物を使用し、引抜成形によりFRPロッドを
得た。即ち、Eガラスロービング4630番手(TEX)19本
を上記エポキシ樹脂を入れた含浸槽に導き、充分含浸さ
せた後絞りロールで余分な樹脂をスクイズした後集束
し、8.1mmφの賦形ノズルを通過せしめて棒状体と
し、形状保持のため630デニールのナイロン糸を張力120
gfピッチ5mmで螺旋状に巻き付けながら、130℃に設
定した1000mmの加熱炉を通過させ、次に150℃,2000
mm、更に160℃,2000mmの加熱炉を順次速度0.3m/
分で通過せしめて棒状体を硬化した後、引取機で引き取
り、公称径8mmφのFRPロッドを得た。Using the above liquid epoxy resin composition having a viscosity of 46 poise (25 ° C.), an FRP rod was obtained by pultrusion molding. That is, 19 E glass rovings 4630 count (TEX) were introduced into the impregnation tank containing the above epoxy resin, and after sufficient impregnation, excess resin was squeezed with a squeeze roll, then bundled, and passed through an 8.1 mmφ shaping nozzle. At the very least, make it a rod-shaped body, and use 630 denier nylon thread with a tension of 120 to maintain its shape.
While being spirally wound at a gf pitch of 5 mm, it was passed through a 1000 mm heating furnace set at 130 ° C.
mm, and a heating furnace of 160 ° C. and 2000 mm sequentially at a speed of 0.3 m / m
After passing through in minutes, the rod was hardened and then taken out with a take-up machine to obtain an FRP rod having a nominal diameter of 8 mmφ.
【0027】[0027]
【表2】 [Table 2]
【0028】上記液状の粘度28ポイズ(25℃)のエポキ
シ樹脂組成物を実施例1と同様にして速度0.5m/分で引
抜硬化炉を110℃(1000mm長),130℃(2000mm
長),140℃(2000mm長)に設定し、同じく公称径8
mmφのFRPロッドを得た。The above liquid epoxy resin composition having a viscosity of 28 poise (25 ° C.) was subjected to a drawing hardening furnace at 110 ° C. (1000 mm length) and 130 ° C. (2000 mm) at a speed of 0.5 m / min in the same manner as in Example 1.
Length), set to 140 ° C (2000mm length), also with nominal diameter 8
A mmφ FRP rod was obtained.
【0029】次に比較例として実施例1及び2のエポキ
シ樹脂組成物よりダイマー酸型エポキシ樹脂を使用しな
いFRPロッドを成形した。Next, as a comparative example, an FRP rod without using a dimer acid type epoxy resin was molded from the epoxy resin compositions of Examples 1 and 2.
【0030】[0030]
【表3】 [Table 3]
【0031】上記液状の粘度36ポイズ(25℃)のエポキ
シ樹脂組成物を実施例1と同様にして成形し公称径8m
mφのFRPロッドを得た。The liquid epoxy resin composition having a viscosity of 36 poise (25 ° C.) was molded in the same manner as in Example 1 to a nominal diameter of 8 m.
An mRP FRP rod was obtained.
【0032】[0032]
【表4】 [Table 4]
【0033】上記液状の粘度7.4ポイズ(25℃)のエ
ポキシ樹脂組成物を実施例1と同様にして成形し公称径
8mmφのFRPロッドを得た。The above liquid epoxy resin composition having a viscosity of 7.4 poise (25 ° C.) was molded in the same manner as in Example 1 to obtain an FRP rod having a nominal diameter of 8 mmφ.
【0034】以上の実施例と比較例の比較テストの結果
は次表の通りで、使用樹脂を単に樹脂板に成形した注型
板のテストにおいても、また本発明のFRPロッドとし
ての比較テストにおいても、本発明が引張強度の点でも
秀れていることが立証された。The results of the comparative tests of the above Examples and Comparative Examples are shown in the following table. In the test of the casting plate in which the resin used was simply molded into a resin plate, and in the comparative test as the FRP rod of the present invention. It was also proved that the present invention was also excellent in tensile strength.
【0035】[0035]
【表5】 [Table 5]
【0036】[0036]
【表6】 [Table 6]
【0037】[0037]
【発明の効果】本発明は、上述のように引張強度におい
ても破断伸び率においても秀れた強靭性を発揮する引抜
成形用FRP製高張力材に使用する引抜成形用FRP製
高張力材用エポキシ樹脂組成物となる。The present invention exhibits, for pultrusion molding the FRP high tensile material for use in pultrusion for the FRP high tensile material which exhibits toughness were also Xiu in elongation at break even at a tensile strength as described above It becomes an epoxy resin composition.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 63/02 C08L 63/02 (73)特許権者 000230010 ジオスター株式会社 東京都港区芝4丁目2番3号 (72)発明者 橘田 敏之 東京都新宿区津久戸町2番1号 株式会 社熊谷組 東京本社内 (72)発明者 本田 勉 東京都新宿区津久戸町2番1号 株式会 社熊谷組 東京本社内 (72)発明者 田中 裕一 新潟県上越市南本町1丁目5番5号 株 式会社有沢製作所内 (56)参考文献 特開 平2−14213(JP,A) 特開 平1−185351(JP,A)──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C08L 63/02 C08L 63/02 (73) Patent holder 000230010 Geostar Co., Ltd. 4-chome, Shiba, Minato-ku, Tokyo No. 2-3 (72) Inventor Toshiyuki Tachibada 2-1 Tsukudo-cho, Shinjuku-ku, Tokyo, Japan Kumagaya Gumi Tokyo Head Office (72) Inventor Tsutomu Honda 2-1 Tsukudo-cho, Shinjuku-ku, Tokyo Co., Ltd. Gumi Tokyo Head Office (72) Inventor Yuichi Tanaka 1-5-5 Minamihonmachi, Joetsu-shi, Niigata Inside Arisawa Manufacturing Co., Ltd. (56) References JP-A-2-142213 (JP, A) JP-A-1- 185351 (JP, A)
Claims (1)
使用し、このガラス繊維が55〜75体積%になるようにエ
ポキシ樹脂量を設定し、このエポキシ樹脂をビスフェノ
ールA型あるいはビスフェノールF型または双方の混合
エポキシ樹脂に選定し、これらのエポキシ樹脂60〜95重
量部とダイマー酸型エポキシ樹脂40〜5重量部とにアミ
ン系硬化剤2〜35重量部を加え、硬化後の引張破断伸
び率を3.5〜5%に設定したことを特徴とする引抜成
形用FRP製高張力材用エポキシ樹脂組成物。1. A glass fiber having a tensile strength of 45 gf / TEX or more is used, and an amount of an epoxy resin is set so that the glass fiber accounts for 55 to 75% by volume. This epoxy resin is bisphenol A type or bisphenol F type. Alternatively, select both mixed epoxy resins, add 2-35 parts by weight of an amine-based curing agent to 60 to 95 parts by weight of these epoxy resins and 40 to 5 parts by weight of a dimer acid-type epoxy resin, and obtain a tensile elongation at break after curing. The drawing is characterized by setting the rate at 3.5 to 5%.
Epoxy resin composition for high tension material made of FRP for molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3246082A JP2717330B2 (en) | 1991-09-25 | 1991-09-25 | Epoxy resin composition for high tension material made of FRP for pultrusion molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3246082A JP2717330B2 (en) | 1991-09-25 | 1991-09-25 | Epoxy resin composition for high tension material made of FRP for pultrusion molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06316624A JPH06316624A (en) | 1994-11-15 |
JP2717330B2 true JP2717330B2 (en) | 1998-02-18 |
Family
ID=17143219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3246082A Expired - Lifetime JP2717330B2 (en) | 1991-09-25 | 1991-09-25 | Epoxy resin composition for high tension material made of FRP for pultrusion molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2717330B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005040017A2 (en) * | 2003-10-22 | 2005-05-06 | Composite Technology Corporation | Aluminum conductor composite core reinforced cable and method of manufacture |
JP2005148373A (en) * | 2003-11-14 | 2005-06-09 | Ube Nitto Kasei Co Ltd | Frp made tension member and drop optical fiber cable |
JP4449531B2 (en) * | 2004-03-29 | 2010-04-14 | 日東紡績株式会社 | FIBER-REINFORCED RESIN LINEAR AND METHOD FOR PRODUCING THE SAME |
JP2006169921A (en) * | 2004-12-20 | 2006-06-29 | Nakamura Bussan Kk | Reinforcing member and reinforcing structure of building or structure |
JP5964276B2 (en) * | 2012-07-27 | 2016-08-03 | 三洋化成工業株式会社 | Grout composition for reinforcing steel joints |
CN109575518B (en) * | 2018-11-01 | 2021-02-19 | 惠州市三民实业有限公司 | High-strength fireproof composite epoxy resin material for cable bridge and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01185351A (en) * | 1988-01-18 | 1989-07-24 | Nissan Motor Co Ltd | Epoxy resin composition for carbon fiber reinforced material |
JP2696953B2 (en) * | 1988-07-01 | 1998-01-14 | 東レ株式会社 | Epoxy resin composition and prepreg |
-
1991
- 1991-09-25 JP JP3246082A patent/JP2717330B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06316624A (en) | 1994-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6228474B1 (en) | Epoxy resin composition for a fiber-reinforced composite material, yarn prepreg, and process and apparatus for preparing the same | |
JPH0314623B2 (en) | ||
JP4354776B2 (en) | Carbon long fiber reinforced resin pellet, method for producing the same, and molded product | |
JP2717330B2 (en) | Epoxy resin composition for high tension material made of FRP for pultrusion molding | |
EP0737706A1 (en) | Long-fiber-reinforced polymer alloy resin composition | |
JPH0718206B2 (en) | Method of manufacturing structural rod | |
JPH0771804B2 (en) | Carbon fiber prepreg and carbon fiber reinforced resin | |
DE1505062A1 (en) | Light bead for pneumatic tires | |
JP4878512B2 (en) | Fiber reinforced thermoplastic resin gear | |
JP2004011030A (en) | Chopped carbon fiber bundle, method for producing the same, aqueous sizing agent for chopped carbon fiber bundle and thermoplastic resin composition and molded product thereof | |
JP3387215B2 (en) | Long fiber reinforced polymer alloy resin column, injection molded article obtained therefrom, and method for producing the same | |
JP2007112041A (en) | Carbon filament reinforced resin molded article and its manufacturing method | |
JPH09227693A (en) | Epoxy resin composition, prepreg, composition material, and concrete member | |
JP3233174B2 (en) | Method for producing carbon fiber reinforced polyamide resin composition | |
JP2621399B2 (en) | Glass fiber reinforced plastic | |
JPH0323676B2 (en) | ||
US5262469A (en) | Oxynitride glass fiber for composite products, and glass fiber-reinforced products | |
JP2011201990A (en) | Polyamide resin pellet reinforced with long glass fiber | |
JPH05220852A (en) | Preparation of long filament reinforced polyamide resin composition | |
CN115044167B (en) | Resin composition and composite material | |
JPH0330014B2 (en) | ||
FI62045B (en) | APPRETERINGSMEDEL FOER GLASFIBER | |
Singh et al. | Manufacturing and Tensile strength of FRP Bars | |
JPH05163672A (en) | Oxynitride glass fiber for composite material and fiber-reinforced plastic | |
JPH04281999A (en) | Lock bolt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970916 |