JP2716169B2 - Heat-fusible composite fiber - Google Patents

Heat-fusible composite fiber

Info

Publication number
JP2716169B2
JP2716169B2 JP63285292A JP28529288A JP2716169B2 JP 2716169 B2 JP2716169 B2 JP 2716169B2 JP 63285292 A JP63285292 A JP 63285292A JP 28529288 A JP28529288 A JP 28529288A JP 2716169 B2 JP2716169 B2 JP 2716169B2
Authority
JP
Japan
Prior art keywords
heat
fusion
nonwoven fabric
polypropylene
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63285292A
Other languages
Japanese (ja)
Other versions
JPH02133614A (en
Inventor
勇 高橋
祥夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube-Nitto Kasei Co Ltd
Original Assignee
Ube-Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nitto Kasei Co Ltd filed Critical Ube-Nitto Kasei Co Ltd
Priority to JP63285292A priority Critical patent/JP2716169B2/en
Publication of JPH02133614A publication Critical patent/JPH02133614A/en
Application granted granted Critical
Publication of JP2716169B2 publication Critical patent/JP2716169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱融着性複合繊維に係り、詳しくは所望の嵩
高性を有するとともに高い融着強力を有する不織布を得
るに好適な熱融着性複合繊維に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a heat-fusible conjugate fiber, and more particularly, to a heat-sealing conjugate fiber suitable for obtaining a nonwoven fabric having a desired bulkiness and a high bonding strength. Conjugated fiber.

[従来の技術] 周知のように融点の異なる複数の繊維成分を鞘芯状に
配置した鞘芯型熱融着性複合繊維を熱風融着することに
より不織布が製造されている。この熱融着性複合繊維を
熱風融着して得た不織布に要求される特性としては、高
い融着強力を有すること、嵩高であること、風合いが良
いことなどが挙げられる。特に融着強力に関しては、例
えば紙おむつに使用するような場合、着脱時のおむつの
破れなどを防止するために、より一層の性能向上が望ま
れており、高い融着強力を有する不織布を製造し得る熱
融着性複合繊維の出現が望まれていた。
[Background Art] As is well known, a nonwoven fabric is manufactured by hot-air fusion of a sheath-core type heat-fusible conjugate fiber in which a plurality of fiber components having different melting points are arranged in a sheath-core shape. The properties required of the nonwoven fabric obtained by hot-air fusion of the heat-fusible conjugate fibers include high fusion strength, bulkiness, and good texture. In particular, regarding the adhesive strength, for example, when used for disposable diapers, further improvement in performance is desired in order to prevent diaper breakage during attachment / detachment, and a nonwoven fabric having high adhesive strength is manufactured. The appearance of the resulting heat-fusible conjugate fiber has been desired.

[発明が解決しようとする課題] 従って本発明の課題は、所望の嵩高性を有するととも
に高い融着強力を有する不織布を得るに好適な熱融着性
複合繊維を提供することにある。
[Problems to be Solved by the Invention] Accordingly, an object of the present invention is to provide a heat-fusible conjugate fiber suitable for obtaining a nonwoven fabric having desired bulkiness and high fusion strength.

[課題を解決するための手段] 本発明は上述の課題を達成するためになされたもので
あり、高融点成分と低融点成分とを、そのいずれか一方
を鞘成分とし、他方を芯成分として溶融複合紡糸してな
る熱融着性複合繊維において、前記高融点成分がポリプ
ロピレンからなり、このポリプロピレンの低温融解部分
の融解熱量をΔH1,高温融解部分の融解熱量をΔH2とし
たときの融解熱量比ΔH1/ΔH2が0.35以下であり、かつ
単糸の130℃における熱収縮率が3.0%以下であることを
特徴とする鞘芯型熱融着性複合繊維である。
Means for Solving the Problems The present invention has been made to achieve the above-mentioned object, and has a high melting point component and a low melting point component, one of which is a sheath component and the other is a core component. In the heat-fusible conjugate fiber obtained by melt conjugate spinning, the high melting point component is made of polypropylene, and the melting heat of the low-temperature melting portion of this polypropylene is ΔH 1 , and the melting heat of the high-temperature melting portion is ΔH 2. A sheath-core type heat-fusible conjugate fiber characterized in that the calorific value ratio ΔH 1 / ΔH 2 is 0.35 or less and the heat shrinkage at 130 ° C. of the single yarn is 3.0% or less.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の対象となる鞘芯型熱融着性複合繊維は、高融
点成分と低融点成分とを、そのいずれか一方を鞘成分と
し、他方を芯成分として溶融複合紡糸してなるものであ
る。鞘芯型熱融着性複合繊維は、2つのタイプがあり、
1つは芯成分と鞘成分とが同心状に配置された同心タイ
プであり、もう1つは芯成分の中心が複合繊維の中心と
一致せず、偏心している偏心タイプであり、これらはい
ずれも本発明の対象となる複合繊維に包含される。
The sheath-core type heat-fusible conjugate fiber that is the object of the present invention is obtained by spinning a high-melting component and a low-melting component with one of the sheath component and the other as the core component by melt-spinning. . There are two types of sheath-core heat-fusible conjugate fibers,
One is a concentric type in which a core component and a sheath component are concentrically arranged, and the other is an eccentric type in which the center of the core component does not coincide with the center of the composite fiber and is eccentric. Are also included in the conjugate fiber of the present invention.

本発明の熱融着性複合繊維において、低融点成分とし
ては、高密度ポリエチレン等のポリエチレンが好ましく
用いられるが、後記高融点成分に比べ低融点のものであ
れば、ポリエチレン以外のものも使用することができ
る。一方、高融点成分はポリプロピレンに限定される。
このポリプロピレンとしては結晶性ポリプロピレンを用
いるのが好ましいが、これ以外のポリプロピレン、例え
ば一部にエチレン等が付加された共重合体も用いること
ができる。低融点成分及び高融点成分には、本発明の目
的を損なわない程度において、ポリオレフィン繊維に通
常用いられる各種の安定剤、充填剤、顔料等を添加する
ことができる。
In the heat-fusible conjugate fiber of the present invention, as the low-melting point component, polyethylene such as high-density polyethylene is preferably used. be able to. On the other hand, the high melting point component is limited to polypropylene.
As this polypropylene, it is preferable to use crystalline polypropylene, but other polypropylene, for example, a copolymer in which ethylene or the like is partially added can also be used. Various stabilizers, fillers, pigments and the like usually used for polyolefin fibers can be added to the low melting point component and the high melting point component to the extent that the object of the present invention is not impaired.

本発明において、このポリプロピレンはその低温融解
部分の融解熱量をΔH1,高温融解部分の融解熱量をΔH2
としたときの融解熱量比ΔH1/ΔH2が0.35以下であるこ
とを必須条件とする。この融解熱量比ΔH1/ΔH2は、複
合繊維について示差走差熱量測定(以下DSCという)を
行なうことによって求められる。その詳細を述べると以
下の通りである。すなわち、JIS K 7122の方法に準じ
て、ポリプロピレンを高融点成分とする複合繊維の試料
5mgを窒素雰囲気中で昇温速度10℃/minで昇温してDSC曲
線を描く。本発明の複合繊維においては、ポリプロピレ
ンのDSC曲線が第2図に示すように、2つのピーク、す
なわち低温融解部分のピークP1と高温融解部分のピーク
P2を有する。
In the present invention, this polypropylene has a heat of fusion of a low-temperature melting portion of ΔH 1 and a heat of fusion of a high-temperature melting portion of ΔH 2.
It is an essential condition that the heat of fusion ratio ΔH 1 / ΔH 2 is 0.35 or less. The heat of fusion ratio ΔH 1 / ΔH 2 can be determined by performing differential scanning calorimetry (hereinafter referred to as DSC) on the conjugate fiber. The details are as follows. In other words, according to the method of JIS K 7122, a sample of a composite fiber containing polypropylene as a high melting point component
5 mg is heated at a rate of 10 ° C./min in a nitrogen atmosphere to draw a DSC curve. In the composite fiber of the present invention, as DSC curve polypropylene shown in FIG. 2, two peaks, namely a peak of the peak P 1 and the high-temperature melting portions of the low-melting partial
It has a P 2.

次に低温融解部分のピークP1の斜線部S1と高温融解部
分のピークP2の斜線部S2の面積を求め、各々の面積か
ら、ポリプロピレンの低温融解部分の融解熱量ΔH1、高
温融解部分の融解熱量ΔH2を求める。
Next, the area of the hatched portion S 1 of the peak P 1 of the low-temperature melting portion and the area of the hatched portion S 2 of the peak P 2 of the high-temperature melting portion were obtained, and from each area, the heat of fusion ΔH 1 of the low-temperature melting portion of the polypropylene was calculated. The heat of fusion ΔH 2 of the portion is determined.

最後に、上で求められた2つの融解熱量ΔH1,ΔH2
ら融解熱量比ΔH1/ΔH2を求める。
Finally, the heat of fusion ratio ΔH 1 / ΔH 2 is determined from the two heats of fusion ΔH 1 and ΔH 2 determined above.

上述の如く、本発明の複合繊維においては、この融解
熱量比ΔH1/ΔH2が0.35以下であることを必須条件とす
る。その理由は、この値が0.35未満であると、所望の嵩
高性を維持しつつ、高い融着強力を有する不織布が得ら
れないからである。なお、ポリプロピレンのDSC曲線が
1つのピークしか示さない複合繊維は除外される。
As described above, in the composite fiber of the present invention, it is an essential condition that the heat of fusion ratio ΔH 1 / ΔH 2 is 0.35 or less. The reason is that if this value is less than 0.35, a nonwoven fabric having high fusing strength cannot be obtained while maintaining the desired bulkiness. Note that composite fibers in which the DSC curve of polypropylene shows only one peak are excluded.

さらに本発明の複合繊維においては、単糸の130℃に
おける熱収縮率が3.0%以下であることを必須条件とす
る。その理由は、この値が3.0%を超えると、所望の嵩
高性を維持しつつ、高い融着強力を有する不織布が得ら
れないからである。
Further, in the composite fiber of the present invention, it is an essential condition that the heat shrinkage of the single yarn at 130 ° C. is 3.0% or less. The reason is that if this value exceeds 3.0%, a nonwoven fabric having high fusing strength while maintaining the desired bulkiness cannot be obtained.

[実施例] 以下、本発明を実施例により詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 一軸押出機2台と、ホール径0.4mm、ホール数500のノ
ズルとを有する複合繊維紡糸設備を使用して、低融点成
分である高密度ポリエチレン(旭化成(株)製J310、MI
=20)を鞘成分、高融点成分である結晶性ポリプロピレ
ン(宇部興産(株)製S115M、MI=15)を芯成分として
使用して、紡糸温度240℃、引取速度700m/minで紡糸
し、単糸デニール8.0deの鞘芯型複合繊維を得た。な
お、鞘成分と芯成分は同心状に配置され、その断面積比
率は1:1である。
Example 1 A high-density polyethylene having a low melting point component (J310, MI manufactured by Asahi Kasei Co., Ltd.) was used by using a composite fiber spinning apparatus having two single-screw extruders and a nozzle having a hole diameter of 0.4 mm and a number of holes of 500.
= 20) as a sheath component, and high-melting-point component crystalline polypropylene (S115M manufactured by Ube Industries, Ltd., MI = 15) as a core component, and spun at a spinning temperature of 240 ° C and a take-up speed of 700 m / min. A sheath-core composite fiber having a single yarn denier of 8.0 de was obtained. The sheath component and the core component are arranged concentrically, and the cross-sectional area ratio is 1: 1.

このマルチフィラメントをステープルファイバー試作
設備にて延伸倍率5.0で延伸、オイリング、捲縮加工、
乾燥後、110℃の熱風で15分間熱処理した後、カットを
行ない、単糸デニール2de、カット長51mm、捲縮数18ケ/
inch、捲縮率13%の複合繊維を得た。この複合繊維につ
いて、結晶性ポリプロピレンの低温融解部分の融解熱量
ΔH1と高温融解部分の融解熱量ΔH2を、既に説明したJI
S K 7122の方法に基づき求めたところ、表−1に示すよ
うにそれぞれ6.3KJ/Kg、50.4KJ/Kgであり、融解熱量比
ΔH1/ΔH2は本発明の限定範囲(0.35以下)に含まれる
0.13であり、また単糸の130℃における熱収縮率も本発
明の限定範囲(3.0%以下)に含まれる2.3%であった。
This multifilament is drawn at a draw ratio of 5.0 with a staple fiber prototype, oiling, crimping,
After drying, heat-treated with hot air of 110 ° C for 15 minutes, and cut, single yarn denier 2de, cut length 51mm, number of crimps 18 /
inch and a crimp rate of 13% were obtained. For this conjugate fiber, the heat of fusion ΔH 1 of the low-temperature melting portion of the crystalline polypropylene and the heat of fusion ΔH 2 of the high-temperature melting portion of the crystalline polypropylene were determined by the above-described JI.
It was 6.3 KJ / Kg and 50.4 KJ / Kg, respectively, as shown in Table 1 when determined based on the method of SK 7122, and the heat of fusion ratio ΔH 1 / ΔH 2 was included in the limited range (0.35 or less) of the present invention. Be
The heat shrinkage at 130 ° C. of the single yarn was 2.3%, which was included in the limited range (3.0% or less) of the present invention.

このステープルファイバーを巾350mmのサンプルカー
ド機に3回通し、目付20g/m2の均一なウェッブを作成し
た。このウェッブを巾350mm、速度5m/分の金網ベルトに
載せ、温度140±0.2℃、風速4m/secの熱風を5秒間吹き
付けて複合繊維を熱融着させて不織布を作成した。この
不織布の物性(比容積、裂断長)を測定した結果を表−
1に示す。また不織布の比容積とTD(横方向)裂断長の
関係を第1図に白丸1として示す。
The staple fiber was passed through a 350 mm-width sample card machine three times to produce a uniform web having a basis weight of 20 g / m 2 . This web was placed on a wire mesh belt having a width of 350 mm and a speed of 5 m / min, and hot air at a temperature of 140 ± 0.2 ° C. and a wind speed of 4 m / sec was blown for 5 seconds to thermally fuse the composite fibers to form a nonwoven fabric. The results of measuring the physical properties (specific volume, breaking length) of this nonwoven fabric are shown in Table 1.
It is shown in FIG. The relationship between the specific volume of the nonwoven fabric and the TD (transverse) breaking length is shown as a white circle 1 in FIG.

実施例2〜4 熱処理温度および捲縮率等を適宜変化させた以外は実
施例1と同様の条件でポリプロピレンの融解熱量比ΔH1
/ΔH2および単糸の130℃における熱収縮率が本発明の
限定範囲に含まれる、3種の複合繊維を得た。得られた
複合繊維の単糸物性を表−1に示す。
Examples 2 to 4 The heat of fusion ratio of polypropylene ΔH 1 under the same conditions as in Example 1 except that the heat treatment temperature and the crimping ratio were appropriately changed.
/ ΔH 2 and the heat shrinkage of the single yarn at 130 ° C. were within the limited range of the present invention, and three types of composite fibers were obtained. Table 1 shows the physical properties of the single fiber of the obtained composite fiber.

次に、得られた複合繊維を用いて、実施例1と同様の
条件で不織布を作成した。得られた不織布の物性(比容
積、裂断長)を表−1に、不織布の比容積とTD裂断長の
関係を第1図に、それぞれ白丸2(実施例2)、白丸3
(実施例3)、白丸4(実施例4)として示す。
Next, a nonwoven fabric was produced using the obtained composite fiber under the same conditions as in Example 1. Table 1 shows the physical properties (specific volume, breaking length) of the obtained nonwoven fabric, and FIG. 1 shows the relationship between the specific volume of the nonwoven fabric and the TD breaking length.
(Example 3) is shown as a white circle 4 (Example 4).

比較例1〜4 未延伸デニールを8.0deから6.0deとし、延伸倍率を5.
0から3.7にしたこと以外は実施例1と同様にして4種の
比較の複合繊維を得た。これらの比較の複合繊維におい
て、ポリプロピレンの融解熱量比ΔH1/ΔH2は表−1に
示すように、0.42〜0.52であって本発明の限定範囲(0.
35以下)に含まれていなかった。
Comparative Examples 1-4 Unstretched denier was changed from 8.0de to 6.0de, and the stretching ratio was 5.
Except having changed from 0 to 3.7, it carried out similarly to Example 1, and obtained four types of comparative composite fibers. In these comparative conjugate fibers, the heat of fusion ratio ΔH 1 / ΔH 2 of the polypropylene was 0.42 to 0.52 as shown in Table 1 and was within the limited range (0.
35 or less).

次にこれらの比較の複合繊維を用いて、実施例1と同
様の条件で不織布を作成した。得られた不織布の物性
(比容積、裂断長)を表−1に、不織布の比容積とTD裂
断長の関係を第1図に、それぞれ黒丸1(比較例1)、
黒丸2(比較例2)、黒丸3(比較例3)、黒丸(比較
例4)として示す。
Next, a nonwoven fabric was produced using these comparative conjugate fibers under the same conditions as in Example 1. The physical properties (specific volume, breaking length) of the obtained nonwoven fabric are shown in Table 1, and the relationship between the specific volume of the nonwoven fabric and the TD breaking length is shown in FIG.
These are shown as black circle 2 (Comparative Example 2), black circle 3 (Comparative Example 3), and black circle (Comparative Example 4).

次に、実施例1〜4および比較例1〜4で得られた不
織布について比容積と裂断長の関係について論ずる。
Next, the relationship between the specific volume and the breaking length of the nonwoven fabrics obtained in Examples 1 to 4 and Comparative Examples 1 to 4 will be discussed.

第1図から明らかなように、実施例1〜4で得られた
不織布においては、比容積とTD裂断長の関係を示す白丸
1〜4が高水準でほぼ直線A上に存在する。また表−1
から明らかなように、実施例1〜4の不織布はMD裂断長
が6360〜8800mであり、高い値を示している。
As is clear from FIG. 1, in the nonwoven fabrics obtained in Examples 1 to 4, white circles 1 to 4 indicating the relationship between the specific volume and the TD breaking length are present on the straight line A at a high level. Table 1
As is clear from the above, the nonwoven fabrics of Examples 1 to 4 have a high MD fracture length of 6360 to 8800 m.

これに対して、第1図から明らかなように、比較例1
〜4で得られた不織布においては、比容積とTD裂断長の
関係を示す黒丸1〜4が低水準で直線Bの近傍部分に存
在する。また表−1から明らかなように、比較例1〜4
の不織布はMD裂断長が5020〜7430mであり、同一比容積
(嵩高さ)で対比すると、実施例1〜4の不織布よりも
値が低い。
On the other hand, as is clear from FIG.
In the nonwoven fabrics obtained in Nos. 1 to 4, black circles 1 to 4 indicating the relationship between the specific volume and the TD breaking length exist at a low level near the straight line B. As is clear from Table 1, Comparative Examples 1 to 4
The nonwoven fabric has a MD breaking length of 5020 to 7430 m, and has a lower value than the nonwoven fabrics of Examples 1 to 4 when compared with the same specific volume (bulk height).

これらの結果から、実施例1〜4の不織布が比較例1
〜4の不織布よりもTD裂断長及びMD裂断長がはるかに高
く、従って融着強力がはるかに高いことが明らかとなっ
た。
From these results, the nonwoven fabrics of Examples 1 to 4 were compared with Comparative Example 1
It was found that the TD breaking length and the MD breaking length were much higher than those of the nonwoven fabrics of No. 4 to 4, and thus the fusion strength was much higher.

実施例5,6 延伸倍率を5.0から4.7(実施例5)、4.5(実施例
6)に変化させたことおよび捲縮率等を適宜変化させた
こと以外は実施例1と同様の条件でポリプロピレンの融
解熱量比ΔH1/ΔH2および単糸の130℃における熱収縮
率が本発明の限定範囲に含まれる2種の複合繊維を得
た。得られた複合繊維の単糸物性を表−1に示す。
Examples 5 and 6 Polypropylene was produced under the same conditions as in Example 1 except that the stretching ratio was changed from 5.0 to 4.7 (Example 5) and 4.5 (Example 6), and the crimp rate and the like were appropriately changed. Thus, two types of composite fibers were obtained in which the heat of fusion ratio ΔH 1 / ΔH 2 and the heat shrinkage of the single yarn at 130 ° C. were within the limits of the present invention. Table 1 shows the physical properties of the single fiber of the obtained composite fiber.

次に、これらの複合繊維を用いて、実施例1と同様の
条件で不織布を作成した。得られた不織布の物性(比容
積、裂断長)を表−1に、不織布の比容積とTD裂断長の
関係を第1図に、それぞれ白丸5(実施例5)、白丸6
(実施例6)として示す。
Next, a nonwoven fabric was prepared using these composite fibers under the same conditions as in Example 1. Table 1 shows the physical properties (specific volume, breaking length) of the obtained nonwoven fabric, and FIG. 1 shows the relationship between the specific volume of the nonwoven fabric and the TD breaking length.
This is shown as (Embodiment 6).

第1図から明らかなように、白丸5,6で示される実施
例5,6の不織布は、白丸3で示される、ほぼ同一比容積
の実施例3の不織布に比べTD裂断長がわずかに低いだけ
であり、また表−1から明らかなようにMD裂断長も満足
すべき値となっているので、かなりの融着強力を有する
ことが明らかとなった。
As is clear from FIG. 1, the nonwoven fabrics of Examples 5 and 6 indicated by white circles 5 and 6 have a slightly smaller TD breaking length than the nonwoven fabric of Example 3 indicated by white circles 3 and having substantially the same specific volume. It is only low, and as is clear from Table 1, the MD breaking length is also a satisfactory value, and it has been revealed that the material has a considerable fusion strength.

比較例5 熱処理温度を110℃から105℃としたこと以外は実施例
5と同様にして比較の複合繊維を得た。得られた比較の
不織布の単糸物性を表−1に示すが、この比較の複合繊
維においては、単糸の130℃における熱収縮率が3.2%で
あって本発明の限定範囲(3.0%以下)に含まれていな
かった。
Comparative Example 5 A comparative conjugate fiber was obtained in the same manner as in Example 5, except that the heat treatment temperature was changed from 110 ° C to 105 ° C. The single fiber properties of the obtained comparative nonwoven fabric are shown in Table 1. In this comparative conjugate fiber, the single yarn has a heat shrinkage at 130 ° C. of 3.2%, which is a limited range of the present invention (3.0% or less). ) Was not included.

次に、この比較の複合繊維を用いて、実施例1と同様
の条件で不織布を作成した。得られた不織布の物性(比
容積、裂断長)を表−1に、不織布の比容積とTD裂断長
の関係を第1図に黒丸5として示す。
Next, using this comparative conjugate fiber, a nonwoven fabric was prepared under the same conditions as in Example 1. The physical properties (specific volume, breaking length) of the obtained nonwoven fabric are shown in Table 1, and the relationship between the specific volume of the nonwoven fabric and the TD breaking length is shown as a black circle 5 in FIG.

第1図から明らかなように、比較例5の不織布の比容
積とTD裂断長の関係を示す黒丸5は、比較例1〜4の不
織布の比容積とTD裂断長の関係を示す黒丸1〜4にほぼ
対応する直線Bよりも上にあるが、実施例1〜4の不織
布の比容積とTD裂断長の関係を示す白丸1〜4に対応す
る直線Aよりもかなり低く、融着強力に劣ることが明ら
かとなった。
As is clear from FIG. 1, a black circle 5 showing the relationship between the specific volume of the nonwoven fabric of Comparative Example 5 and the TD breaking length is a black circle 5 showing the relationship between the specific volume of the nonwoven fabrics of Comparative Examples 1 to 4 and the TD breaking length. Although it is higher than the straight line B corresponding to almost 1 to 4, it is considerably lower than the straight line A corresponding to the white circles 1 to 4 showing the relationship between the specific volume of the nonwoven fabrics of Examples 1 to 4 and the TD breaking length. It became clear that the wearing strength was inferior.

これらの結果より、所望の比容積(嵩高性)を維持し
つつ、高い融着強力を有する不織布を得るためには、高
融点成分としてのポリプロピレンの融解熱量比ΔH1/Δ
H2が0.35以下であり、かつ単糸の130℃における熱収縮
率が3.0%以下である、本発明の熱融着性複合繊維を使
用する必要があることが判明した。
From these results, in order to obtain a nonwoven fabric having high fusion strength while maintaining a desired specific volume (bulkiness), the heat of fusion ratio of polypropylene as a high melting point component ΔH 1 / Δ
H 2 is 0.35 or less, and the thermal shrinkage at 130 ° C. of single yarn is less than 3.0%, it has been found that it is necessary to use a heat-fusible composite fiber of the present invention.

[発明の効果] 以上に詳述した通り、本発明によれば所望の嵩高性を
維持しつつ、高い融着強力を有する不織布を得るに好適
な鞘芯型熱融着性複合繊維が提供された。
[Effects of the Invention] As described in detail above, according to the present invention, there is provided a sheath-core type heat-fusible conjugate fiber suitable for obtaining a nonwoven fabric having high fusion strength while maintaining desired bulkiness. Was.

【図面の簡単な説明】 第1図は実施例1〜6および比較例1〜5で得られた不
織布の比容積とTD裂断長の関係を示すグラフ、第2図は
本発明の複合繊維におけるポリプロピレンのDSC曲線を
示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the specific volume and the TD breaking length of the nonwoven fabrics obtained in Examples 1 to 6 and Comparative Examples 1 to 5, and FIG. 2 is a composite fiber of the present invention. 3 is a graph showing a DSC curve of polypropylene in Example 1.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高融点成分と低融点成分とを、そのいずれ
か一方を鞘成分とし、他方を芯成分として溶融複合紡糸
してなる鞘芯型熱融着性複合繊維において、前記高融点
成分がポリプロピレンからなり、このポリプロピレンの
低温融解部分の融解熱量をΔH1,高温融解部分の融解熱
量をΔH2としたときの融解熱量比ΔH1/ΔH2が0.35以下
であり、かつ単糸の130℃における熱収縮率が3.0%以下
であることを特徴とする鞘芯型熱融着性複合繊維。
1. A sheath-core type heat-fusible conjugate fiber obtained by melt-spinning one of a high melting point component and a low melting point component as a sheath component and the other as a core component. 130 but made of polypropylene, the heat of fusion of low-melting portions of the polypropylene [Delta] H 1, the heat of fusion ratio ΔH 1 / ΔH 2 when the heat of fusion of high-melting portions and [Delta] H 2 is 0.35 or less, and the single yarn A sheath-core heat-fusible conjugate fiber having a heat shrinkage at 3.0 ° C. of 3.0% or less.
【請求項2】請求項(1)に記載の鞘芯型熱融着性複合
繊維から得られる不織布。
2. A non-woven fabric obtained from the sheath-core type heat-fusible conjugate fiber according to claim 1.
JP63285292A 1988-11-11 1988-11-11 Heat-fusible composite fiber Expired - Fee Related JP2716169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285292A JP2716169B2 (en) 1988-11-11 1988-11-11 Heat-fusible composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285292A JP2716169B2 (en) 1988-11-11 1988-11-11 Heat-fusible composite fiber

Publications (2)

Publication Number Publication Date
JPH02133614A JPH02133614A (en) 1990-05-22
JP2716169B2 true JP2716169B2 (en) 1998-02-18

Family

ID=17689635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285292A Expired - Fee Related JP2716169B2 (en) 1988-11-11 1988-11-11 Heat-fusible composite fiber

Country Status (1)

Country Link
JP (1) JP2716169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105060A (en) * 1995-10-09 1997-04-22 Chisso Corp Laminated nonwoven fabric and its production
WO2023191101A1 (en) * 2022-03-31 2023-10-05 大和紡績株式会社 Core-sheath type composite fiber, method for manufacturing same, and fiber aggregate including same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173312A (en) * 1983-03-23 1984-10-01 Chisso Corp Hot-melt magnetic fiber and its manufacture
JPS63135549A (en) * 1986-11-28 1988-06-07 チッソ株式会社 Production of nonwoven fabric

Also Published As

Publication number Publication date
JPH02133614A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
JPS58191215A (en) Polyethylene hot-melt fiber
JPH09316765A (en) Unidirectionally stretchable nonwoven fabric and its production
JP3569972B2 (en) Heat-fusible composite fiber and heat-fusible nonwoven fabric
JPH02127553A (en) Stretchable non-woven fabric and production thereof
US5302220A (en) Method for manufacturing bulky nonwoven fabrics
JP2716169B2 (en) Heat-fusible composite fiber
JP2000336526A (en) Thermally adhesive composite fiber and its production
KR960001403B1 (en) Stretchy nonwoven polyolefin fabric and the production thereof
JP2001192936A (en) Splittable conjugate fiber, method of producing the same, and ultrafine fiber nonwoven fabric using the same
JP3161588B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JPH10110372A (en) Bulky long-fiber non-woven fabric and absorptive product using the same
JP5831840B2 (en) Stretchable nonwoven fabric and method for producing the same
JP2971919B2 (en) Thermal adhesive fiber
JPH08284019A (en) Splitting fiber and fibrous sheetlike material using the same
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JPH01148859A (en) Extensible nonwoven fabric
JP2775476B2 (en) Composite type heat-bondable fiber and nonwoven fabric using the same
JP2948948B2 (en) Thermal adhesive fiber
JPH06116854A (en) Specific nonwoven fabric
JPH0770899A (en) Heat-bonded nonwoven cloth and its production
JPH02191717A (en) Heat bondable conjugate yarn
JP2772532B2 (en) Elastic nonwoven
JP3845267B2 (en) Polyester fiber for hot press nonwoven fabric
JPH11323716A (en) Highly extensible nonwoven fabric and its production
JP3567892B2 (en) Thermo-adhesive conjugate fiber, non-woven fabric and molded article using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees