JPH02133614A - Heat-fusible conjugate fiber - Google Patents

Heat-fusible conjugate fiber

Info

Publication number
JPH02133614A
JPH02133614A JP63285292A JP28529288A JPH02133614A JP H02133614 A JPH02133614 A JP H02133614A JP 63285292 A JP63285292 A JP 63285292A JP 28529288 A JP28529288 A JP 28529288A JP H02133614 A JPH02133614 A JP H02133614A
Authority
JP
Japan
Prior art keywords
heat
fusion
component
melting point
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63285292A
Other languages
Japanese (ja)
Other versions
JP2716169B2 (en
Inventor
Isamu Takahashi
勇 高橋
Yoshio Iida
飯田 祥夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP63285292A priority Critical patent/JP2716169B2/en
Publication of JPH02133614A publication Critical patent/JPH02133614A/en
Application granted granted Critical
Publication of JP2716169B2 publication Critical patent/JP2716169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber giving non-woven fabric having desired bulkiness, high fusion tenacity and specific value of heat shrinkage of single fiber by using polypropylene having specific physical properties as high-melting point component of sheath or core component. CONSTITUTION:A high melting component of polypropylene having <=0.35 ratio of heat of fusion H1/ H2 putting heat of fusion of low-melting point component as H1 and heat of fusion of high-melting point component as H2 is used to either of sheath or core component and low melting component as remainder, then subjected to conjugate melt spinning to afford the aimed sheath- core type fiber having <=3% heat shrinkage of single fiber at 130 deg.C. Besides, crystalline polymer is preferable as polypropylene and polyethylene is preferable as low-melting point component.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱融着性複合繊維に係り、詳しくは所望の嵩高
性を有するとともに高い融着強力を有する不織布を得る
に好適な熱融着性複合繊維に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to heat-fusible composite fibers, and more specifically, to heat-fusible composite fibers suitable for obtaining a nonwoven fabric having desired bulkiness and high fusion strength. Concerning composite fibers.

[従来の技術] 周知のように融点の異なる複数の繊維成分3鞘芯状に配
置した鞘芯型熱融着性複合繊維を熱風融着することによ
り不繊布が製造されている。この熱融着性複合繊維を熱
風融着して得た不織布に要求される特性としては、高い
融着強力を有すること、嵩高であること、風合いが良い
ことなどが挙げられる。特に融着強力に関しては、例え
ば紙おむつに使用するような場合、着脱時のおむつの破
れなどを防止するために、より一層の性能向上が望まれ
ており、高い融着強力を有する不織布を製造し得る熱融
着性複合繊維の出現が望まれていた。
[Prior Art] As is well known, nonwoven fabrics are manufactured by hot-air fusing sheath-core heat-fusible conjugate fibers arranged in three-sheath-core configurations of a plurality of fiber components having different melting points. The properties required of the nonwoven fabric obtained by hot-air fusing these heat-fusible conjugate fibers include high fusing strength, bulk, and good texture. In particular, with regard to fusion strength, when used in disposable diapers, for example, there is a desire to further improve performance in order to prevent diapers from tearing when putting on and taking them off. The emergence of heat-fusible conjugate fibers has been desired.

[発明か解決しようとする課題] 従って本発明の課題は、所望の嵩高性を有するとともに
高い融着強力を有する不織布を得るに好適な熱融着性複
合繊維を提供することにある。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a heat-fusible conjugate fiber suitable for obtaining a nonwoven fabric having desired bulkiness and high fusion strength.

[課題を解決するための手段] 本発明は上述の課題を達成するためになされたものであ
り、高融点成分と低融点成分とを、そのいずれか一方を
鞘成分とし、他方を芯成分として溶融複合紡糸してなる
熱融着性複合繊維において、前記高融点成分がポリプロ
ピレンからなり、このポリプロピレンの低温融解部分の
融解熱量を△H1、高温融解部分の融解熱量を△H2と
したときの融解熱量比△H1,/△H2が0.35以下
であり、かつ単糸の130℃における熱収縮率が3゜0
%以下であることを特徴とする鞘芯型熱融着性複合繊維
である。
[Means for Solving the Problems] The present invention has been made to achieve the above-mentioned problems, and includes a high melting point component and a low melting point component, one of which is used as a sheath component and the other as a core component. In the heat-fusible composite fiber formed by melt composite spinning, the high-melting point component is made of polypropylene, and the melting temperature of the polypropylene when the heat of fusion of the low-temperature melting portion is ΔH1 and the heat of fusion of the high-temperature melting portion of the polypropylene is ΔH2. The heat ratio △H1, /△H2 is 0.35 or less, and the heat shrinkage rate of the single yarn at 130°C is 3°0.
% or less.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の対象となる鞘芯型熱融着性複合繊維は、高融点
成分と低融点成分とを、そのいずれか一方を鞘成分とし
、他方を芯成分とし7て溶融複合紡糸してなるものであ
る。鞘芯型熱融着性複合繊維は、2つのタイプがあり、
1つは芯成分と鞘成分とが同心状に配置された同心タイ
プであり、もう1つは芯成分の中心がIi合繊維の中心
と一致せず、偏心している偏心タイプであり、これらは
いずれも本発明の対象となる複合繊維に包含される。
The sheath-core type heat-fusible composite fiber that is the object of the present invention is formed by melt-spinning a high melting point component and a low melting point component, one of which is used as a sheath component and the other as a core component. It is. There are two types of sheath-core type heat-fusible composite fibers:
One is a concentric type in which the core component and sheath component are arranged concentrically, and the other is an eccentric type in which the center of the core component does not coincide with the center of the Ii composite fiber and is eccentric. All of these are included in the composite fibers that are the object of the present invention.

本発明の熱融着性複合繊維において、低融点成分として
は、高密度ポリエチレン等のポリエチレンが好ましく用
いられるが、後記高融点成分に比べ低融点のものであれ
ば5ポリエチレン以外のものも使用することができる。
In the heat-fusible composite fiber of the present invention, polyethylene such as high-density polyethylene is preferably used as the low-melting point component, but materials other than 5 polyethylene may also be used as long as they have a lower melting point than the high-melting point component described below. be able to.

一方、高融点成分はポリプロピレンに限定される。この
ポリプロピレンどしては結晶性ポリプロピレンを用いる
のが好ましいが、これ以外のポリプロピレン、例えば−
部にエチレン等が付加さ′i″した共重合体も用いるこ
とができる。低融点成分及び高融点成分には、本発明の
目的を損なわない程度において、ポリオレフィン繊維に
通常用いられる各種の安定剤、充填剤、顔料等を添加す
ることができる。
On the other hand, the high melting point component is limited to polypropylene. It is preferable to use crystalline polypropylene as this polypropylene, but other polypropylenes such as -
A copolymer to which ethylene or the like is added may also be used.The low-melting point component and the high-melting point component may contain various stabilizers commonly used for polyolefin fibers, to the extent that they do not impair the purpose of the present invention. , fillers, pigments, etc. can be added.

本発明において、このポリプロピレンはその低温融解部
分の融解熱量を△H1,高温融解部分の融解熱量をΔ■
12としたときの融解熱量比Δト■1/′△H2が02
35以下であることを必須条件とする9この融解熱量比
、へH1/△H2は、複合繊維について示差走差熱量測
定(以下DSCという)を行なうことによって求められ
る。その詳細を述べろと以下の通りである。すなわち、
JIS  K7122の方法に準じて、ポリプロピレン
を高融点成分とする複合繊維の試料5■を窒素雰囲気中
で昇温速度10°C/minで昇温してDSC曲線を描
く。本発明の複合繊維においては、ポリプロピレンのD
SC曲線が第2図に示すように、2つのピーク、すなわ
ち低温融解部分のと−クP1と高温融解部分のピークP
2を有する。
In the present invention, this polypropylene has a heat of fusion of ΔH1 in its low-temperature melting part and Δ■ in its high-temperature melting part.
Heat of fusion ratio Δt■1/'ΔH2 when 12 is 02
9 This heat of fusion ratio, H1/ΔH2, which is an essential condition of 35 or less, is determined by performing differential scanning calorimetry (hereinafter referred to as DSC) on the composite fiber. The details are as follows. That is,
According to the method of JIS K7122, sample 5 of a composite fiber containing polypropylene as a high melting point component is heated at a heating rate of 10°C/min in a nitrogen atmosphere, and a DSC curve is drawn. In the composite fiber of the present invention, the D of polypropylene is
As shown in Figure 2, the SC curve has two peaks, namely, the peak P1 of the low-temperature melting portion and the peak P1 of the high-temperature melting portion.
It has 2.

次に低温融解部分のと−クP の斜線部S1と高温融解
部分のし−クP2の斜線部S2の面積を求め、各々の面
積から、ポリプロピレンの低温融解部分の融解熱量△H
1、高温融解部分の融解熱量△H2を求める。
Next, find the areas of the shaded area S1 of the low-temperature melting part P and the shaded area S2 of the high-temperature melting part P2, and from each area, calculate the heat of fusion ΔH of the low-temperature melting part of the polypropylene.
1. Determine the heat of fusion ΔH2 of the high-temperature melting portion.

最後に、上で求められた2つの融解熱量△H1゜△H2
から融解熱量比△H1/△H2を求める。
Finally, the two heats of fusion obtained above △H1゜△H2
The heat of fusion ratio ΔH1/ΔH2 is determined from

上述の如く、本発明の複合繊維においては、この融解熱
量比へI−(1/△H2が0.35以下であることを必
須条件とする。その理由は、この値が0.35未満であ
ると、所望の嵩高性を維持しつつ、高い融着強力を有す
る不織布が得られないからである。なお、ポリプロピレ
ンのDSC曲線が1つのピークしか示さない複合繊維は
除外される。
As mentioned above, in the composite fiber of the present invention, it is an essential condition that this heat of fusion ratio I-(1/ΔH2) is 0.35 or less.The reason is that if this value is less than 0.35, If so, a nonwoven fabric having high fusion strength while maintaining the desired bulkiness cannot be obtained.Composite fibers whose DSC curve of polypropylene shows only one peak are excluded.

さらに本発明の複合繊維においては、単糸の130℃に
おける熱収縮率が3.0%以下であることを必須条件と
する。その理由は、この値が3゜0%を超えると、所望
の嵩高性を維持しつつ、高い融着強力を有する不織布が
得られないからである。
Furthermore, in the composite fiber of the present invention, it is an essential condition that the heat shrinkage rate of the single yarn at 130° C. is 3.0% or less. The reason is that if this value exceeds 3.0%, a nonwoven fabric having high fusion strength while maintaining the desired bulkiness cannot be obtained.

[実施例] 以下、本発明を実施例により詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 一軸押出機2台と、ホール径0,4胴、ホール数500
のノズルとを有する複合繊維紡糸設備を使用して、低融
点成分である高密度ポリエチレン(旭化成(体製J31
0、MI=20>を鞘成分、高融点成分である結晶性ポ
リプロピレン(宇部興産(を菊製Sl 15M、MI−
15>を芯成分として使用して、紡糸温度240℃、引
取速度700m/ m i nで紡糸し、単糸デニール
8.Odeの鞘芯型複合繊維を得た。なお、鞘成分と芯
成分は同心状に配置され、その断面積比率は1:1であ
る。
Example 1 Two single-screw extruders, 4 cylinders with hole diameter of 0, and 500 holes
Using composite fiber spinning equipment with a nozzle of
0, MI = 20> is the sheath component, and the high melting point component is crystalline polypropylene (Ube Industries (Kiku) Sl 15M, MI-
15> as a core component, the yarn was spun at a spinning temperature of 240° C. and a take-up speed of 700 m/min to obtain a single yarn denier of 8. A sheath-core type composite fiber of Ode was obtained. Note that the sheath component and the core component are arranged concentrically, and their cross-sectional area ratio is 1:1.

このマルチフィラメントをステーブルファイバー試作設
備にて延伸倍率5.0で延伸、オイリング、捲縮加工、
乾燥後、110℃の熱風で15分間熱処理した後、カッ
トを行ない、単糸デニール2de、カット長51mnv
、捲縮数18ケ/+nch、捲縮率13%の複合繊維を
得な。この複合繊維について、結晶性ポリプロピレンの
低温融解部分の融解熱量△Hと高温融解部分の融解熱量
Δl−12を、既に説明したJIS  K  7122
の方法に基づき求めたところ、表−1に示すようにそれ
ぞれ6.3KJ/Kg、50.4KJ/Kgであり、融
解熱量比△I〜(1/△H2は本発明の限定範囲(0,
35以下)に含まれる0、13であり、まな単糸の13
0°Cにおける熱収縮率も本発明の限定範囲(3,0%
以下)に含まれる2、3%であった。
This multifilament was stretched at a stretching ratio of 5.0 using stable fiber prototype equipment, oiled, crimped,
After drying, heat treatment was performed with hot air at 110°C for 15 minutes, and then cutting was carried out. Single yarn denier 2 de, cut length 51 mnv
, a composite fiber with a crimp count of 18/+nch and a crimp rate of 13% was obtained. Regarding this composite fiber, the heat of fusion ΔH of the low-temperature melting portion of crystalline polypropylene and the heat of fusion Δl-12 of the high-temperature melting portion are determined according to JIS K 7122, which has already been explained.
As shown in Table 1, they were calculated based on the method of
35 or less), and 13 of the mana single yarn.
The heat shrinkage rate at 0°C also falls within the limited range of the present invention (3.0%
It was 2.3% included in the following).

4二のステーブルファイバー プルカード機に3回通し、目付20g/イの均一なウェ
ッブを作成した。このウェッブを中350岨、速度5m
/分の金網ベルトに載せ、温度140±0.2℃、風速
4 m / SeCの熱風を5秒間吹き付けて複合繊維
を熱融着させて不織布を作成した。この不織布の物性(
比容積、裂断長)を測定した結果を表−1に示す、また
不織布の比容積とTD(横方向)裂断長の関係を第1図
に白丸1として示す。
The material was passed through a No. 42 stable fiber pull card machine three times to create a uniform web with a basis weight of 20 g/I. This web is 350 m high and the speed is 5 m.
The composite fibers were placed on a wire mesh belt at a temperature of 140±0.2° C. and a wind speed of 4 m/SeC for 5 seconds to thermally fuse the composite fibers to produce a nonwoven fabric. Physical properties of this nonwoven fabric (
The results of measuring the specific volume and tearing length are shown in Table 1, and the relationship between the specific volume and TD (transverse direction) tearing length of the nonwoven fabric is shown as white circle 1 in FIG.

実施例2−4 熱処理温度および捲縮率等を適宜変化させた以外は実施
例1と同様の条件でポリプロピレンの融解熱量比△H 
/△H2および単糸の130’Cにおける熱収縮率が本
発明の限定範囲に含まれる、3種の複合繊維を得た。得
られた複合繊維の単糸物性を表−1に示す。
Example 2-4 The heat of fusion ratio ΔH of polypropylene was determined under the same conditions as Example 1 except that the heat treatment temperature and crimp ratio were changed as appropriate.
/ΔH2 and single yarn heat shrinkage rate at 130'C are included in the limited range of the present invention, three types of composite fibers were obtained. Table 1 shows the physical properties of the single filament of the obtained composite fiber.

次に、得られた複合繊維を用いて、実施例1と同様の条
件で不織布を作成しな。得られた不織布の物性(比容積
、裂断長)を表−1に、不織布の比容積とT’D裂断長
の関係を第1図に、それぞれ白丸2(実施例2)、白丸
3(実施例3)、白丸・1(実施例4)として示す。
Next, a nonwoven fabric was produced using the obtained composite fibers under the same conditions as in Example 1. The physical properties (specific volume, tear length) of the obtained nonwoven fabric are shown in Table 1, and the relationship between the specific volume and T'D tear length of the nonwoven fabric is shown in Figure 1, with white circles 2 (Example 2) and white circles 3, respectively. (Example 3) and white circle 1 (Example 4).

比較例1〜4 未延伸デニールを8.Odeから6.Odeどし、延伸
倍率を5.0から3.7にし7たこと以外は実施例1と
同様にして4種の比較の複合繊維を得た。これらの比較
の複合繊維において、ポリプロピレンの融解熱量比へ8
1/H2は表−1に示すように、0.42〜0.52で
あって本発明の限定範囲(0.35以下)に含まれてい
なかった。
Comparative Examples 1 to 4 Unstretched denier 8. 6 from Ode. Four types of comparative conjugate fibers were obtained in the same manner as in Example 1, except that the stretching ratio was changed from 5.0 to 3.7. In these comparative composite fibers, the heat of fusion ratio of polypropylene to 8
As shown in Table 1, 1/H2 was 0.42 to 0.52 and was not included in the limited range of the present invention (0.35 or less).

次に、これらの比較の複合繊維を用いて、実施例1,と
同様の条件で不織布を作成した9得られた不織布の物性
(比容積、裂断長)を表−1.に、不織布の比容積とT
D裂断長の関係を第1図に、それぞれ黒丸1(比較例]
.)、黒丸2(比較例2)、黒丸3(比較例3)、黒丸
(比較例4)として示す。
Next, using these comparative conjugate fibers, a nonwoven fabric was created under the same conditions as in Example 1.9 The physical properties (specific volume, tearing length) of the obtained nonwoven fabric are shown in Table 1. , the specific volume of the nonwoven fabric and T
The relationship between D fracture length is shown in Figure 1, each black circle 1 (comparative example)
.. ), black circle 2 (comparative example 2), black circle 3 (comparative example 3), and black circle (comparative example 4).

次に、実施例1〜4および比較例1〜4で得られた不織
布について比容積と裂断長の関係について論する。
Next, the relationship between specific volume and tearing length for the nonwoven fabrics obtained in Examples 1 to 4 and Comparative Examples 1 to 4 will be discussed.

第1図から明らかなように、実施例1〜4で得られた不
織布においては、比容積とTD裂断長の関係を示す白丸
1〜4が高水準でほぼ直線A上に存在する。また表−1
から明らかなように、実施例1〜4の不織布はMD裂断
長が6360〜8800mであり、高い値を示している
As is clear from FIG. 1, in the nonwoven fabrics obtained in Examples 1 to 4, white circles 1 to 4 indicating the relationship between specific volume and TD tearing length are at a high level and exist approximately on straight line A. Also Table-1
As is clear from the figure, the MD tearing length of the nonwoven fabrics of Examples 1 to 4 is 6360 to 8800 m, which is a high value.

これに対して、第1図から明らかなように、比較例1〜
4で得られた不織布においては、比容積とTI)裂断長
の関係を示す黒丸]、〜4が低水準で直線Bの近傍部分
に存在する。また表−1から明らかなように、比較例1
〜4の不織布はMD裂断長が5020〜7430mであ
り、同一比容積(嵩高さ)で対比すると、実施例1〜4
の不織布よりも値が低い。
On the other hand, as is clear from FIG.
In the nonwoven fabric obtained in 4, black circles indicating the relationship between specific volume and TI) tearing length] ~4 exist at a low level in the vicinity of straight line B. Furthermore, as is clear from Table 1, Comparative Example 1
The nonwoven fabrics of Examples 1 to 4 have MD tearing lengths of 5020 to 7430 m, and when compared with the same specific volume (bulk height), the nonwoven fabrics of Examples 1 to 4
value is lower than that of non-woven fabrics.

これらの結果から、実施例1〜4の不織布が比較例1〜
4の不織布よりもTD裂断長及びMD裂断長がはるかに
高く、従って融着強力がはるかに高いことが明らかとな
った。
From these results, it can be seen that the nonwoven fabrics of Examples 1 to 4 are the same as those of Comparative Examples 1 to 4.
It became clear that the TD tearing length and MD tearing length were much higher than that of the nonwoven fabric No. 4, and therefore the fusion strength was much higher.

実施例5,6 延伸倍率を5.0から4.7(実施例5)、4゜5(実
施例6)に変化させたことおよび捲縮率等を適宜変化さ
せたこと以外は実施例1と同様の条件でポリプロピレン
の融解熱量比△H1/H2および単糸の130℃におけ
る熱収縮率が本発明の限定範囲に含まれる2種の複合繊
維を得た。得られた複合繊維の単糸物性を表−1に示す
Examples 5 and 6 Example 1 except that the stretching ratio was changed from 5.0 to 4.7 (Example 5) and 4°5 (Example 6) and the crimp ratio was changed as appropriate. Under the same conditions as above, two types of composite fibers were obtained whose heat of fusion ratio ΔH1/H2 of polypropylene and heat shrinkage rate of single yarn at 130° C. were within the limited range of the present invention. Table 1 shows the physical properties of the single filament of the obtained composite fiber.

次に、これらの複合繊維を用いて、実施例1と同様の条
件で不織布を作成した。得られた不織布の物性(比容積
、裂断長)を表−1に、不織布の比容積とTD裂断長の
関係を第1図に、それぞれ白丸5(実施例5〉、白丸6
(実施例6)として示す。
Next, a nonwoven fabric was created using these composite fibers under the same conditions as in Example 1. The physical properties (specific volume, tearing length) of the obtained nonwoven fabric are shown in Table 1, and the relationship between the specific volume and TD tearing length of the nonwoven fabric is shown in Figure 1, with white circles 5 (Example 5) and 6, respectively.
(Example 6).

第1図から明らかなように、白丸5,6で示される実施
例5,6の不織布は、白丸3で示される、はぼ同一比容
積の実施例3の不織布に比べTD裂断長かわずかに低い
だけであり、また表−1から明らかなようにMD裂断長
も満足すべき値となりているので、かなりの融着強力を
有することが明らかとなった。
As is clear from FIG. 1, the nonwoven fabrics of Examples 5 and 6, indicated by white circles 5 and 6, have a slightly smaller TD tear length than the nonwoven fabric of Example 3, which has the same specific volume and is indicated by white circles 3. Furthermore, as is clear from Table 1, the MD tearing length was also a satisfactory value, so it was clear that it had considerable fusion strength.

比較例5 熱処理温度を110’Cから105℃としたこと以外は
実施例5と同様にして比較の複合繊維を得た9得られた
比較の不織布の単糸物性を表−1に示すが、この比較の
複合繊維においては、単糸の130”Cにおける熱収縮
率か3,2″′!6であって本発明の限定範囲(3,0
%以下)に含まれていなかった。
Comparative Example 5 A comparative conjugate fiber was obtained in the same manner as in Example 5 except that the heat treatment temperature was changed from 110'C to 105°C.9 The physical properties of the single fibers of the obtained comparative nonwoven fabric are shown in Table 1. In this comparative composite fiber, the heat shrinkage rate at 130"C of a single yarn is 3.2"'! 6 and the limited range of the present invention (3,0
(% or less).

次に、この比較の複合繊維を用いて、実施例1と同様の
条件で不織布を作成した。得られた不織布の物性(比容
積、裂断長)を表−1に、不織布の比容積とTD裂断長
の関係を第1図に黒丸5として示す。
Next, a nonwoven fabric was created using this comparative conjugate fiber under the same conditions as in Example 1. The physical properties (specific volume, tearing length) of the obtained nonwoven fabric are shown in Table 1, and the relationship between the specific volume and TD tearing length of the nonwoven fabric is shown as black circle 5 in FIG.

第1図から明らかなように、比較例5の不織布の比容積
と裂断長の関係を示す黒丸5は、比較例1〜4の不織布
の比容積とTD裂断長の関係を示す黒丸1〜4にほぼ対
応する直線Bよりも上にあるが、実施例1〜4の不織布
の比容積とTD裂断長の関係を示す白丸1〜4に対応す
る直線Aよりもかなり低く、融着強力に劣ることが明ら
かとなった。
As is clear from FIG. 1, black circle 5 indicates the relationship between the specific volume and TD tear length of the nonwoven fabric of Comparative Example 5, and black circle 1 indicates the relationship between the specific volume and TD tear length of the nonwoven fabric of Comparative Examples 1 to 4. Although it is above straight line B, which approximately corresponds to 4, it is considerably lower than straight line A, which corresponds to white circles 1 to 4, which indicate the relationship between the specific volume and TD tearing length of the nonwoven fabrics of Examples 1 to 4. It became clear that it was less powerful.

これらの結果より、所望の比容積(嵩高性)を維持しつ
つ、高い融着強力を有する不織布を得るためには、高融
点成分としてのポリプロピレンの融解熱量比△H1/△
H2が0.35以下であり、かつ単糸の130℃におけ
る熱収縮率が360%以下である、本発明の熱融着性複
合繊維を使用する必要があることが判明した。
From these results, in order to obtain a nonwoven fabric with high fusion strength while maintaining the desired specific volume (bulkness), it is necessary to adjust the heat of fusion ratio △H1/△ of polypropylene as a high melting point component.
It has been found that it is necessary to use the heat-fusible conjugate fiber of the present invention, which has H2 of 0.35 or less and a single yarn having a heat shrinkage rate of 360% or less at 130°C.

(以下余白) [発明の効果] 以上に詳述した通り、本発明によれば所望の嵩高性を維
持しつつ、高い融着強力を有する不織布を得るに好適な
鞘芯型熱融着性複合繊維が提供された。
(The following is a blank space) [Effects of the Invention] As detailed above, the present invention provides a sheath-core type heat-fusible composite suitable for obtaining a nonwoven fabric having high fusion strength while maintaining desired bulk. fiber provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1〜6および比鮫例1〜5で得られた不
織布の比容積とTD裂断長の関係を示すグラフ、第2図
は本発明の複合繊維におけるポリプロピレンのDSC曲
線を示すグラフである。
Fig. 1 is a graph showing the relationship between the specific volume and TD breaking length of the nonwoven fabrics obtained in Examples 1 to 6 and Compound Examples 1 to 5, and Fig. 2 is a graph showing the DSC curve of polypropylene in the composite fiber of the present invention. This is a graph showing.

Claims (2)

【特許請求の範囲】[Claims] (1)高融点成分と低融点成分とを、そのいずれか一方
を鞘成分とし、他方を芯成分として溶融複合紡糸てなる
鞘芯型熱融着性複合繊維において、前記高融点成分がポ
リプロピレンからなり、このポリプロピレンの低温融解
部分の融解熱量を△H_1,高温融解部分の融解熱量を
△H_2としたときの融解熱量比△H_1/△H_2が
0.35以下であり、かつ単糸の130℃における熱収
縮率が3.0%以下であることを特徴とする鞘芯型熱融
着性複合繊維。
(1) A sheath-core heat-fusible composite fiber formed by melt-spinning a high melting point component and a low melting point component, one of which is used as a sheath component and the other as a core component, wherein the high melting point component is made from polypropylene. The heat of fusion ratio △H_1/△H_2 is 0.35 or less when the heat of fusion of the low-temperature melting portion of this polypropylene is △H_1 and the heat of fusion of the high-temperature melting portion is △H_2, and the temperature of the single yarn is 130°C. A sheath-core type heat-fusible composite fiber having a heat shrinkage rate of 3.0% or less.
(2)請求項(1)に記載の鞘芯型熱融着性複合繊維か
ら得られる不織布。
(2) A nonwoven fabric obtained from the sheath-core type heat-fusible conjugate fiber according to claim (1).
JP63285292A 1988-11-11 1988-11-11 Heat-fusible composite fiber Expired - Fee Related JP2716169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285292A JP2716169B2 (en) 1988-11-11 1988-11-11 Heat-fusible composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285292A JP2716169B2 (en) 1988-11-11 1988-11-11 Heat-fusible composite fiber

Publications (2)

Publication Number Publication Date
JPH02133614A true JPH02133614A (en) 1990-05-22
JP2716169B2 JP2716169B2 (en) 1998-02-18

Family

ID=17689635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285292A Expired - Fee Related JP2716169B2 (en) 1988-11-11 1988-11-11 Heat-fusible composite fiber

Country Status (1)

Country Link
JP (1) JP2716169B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105060A (en) * 1995-10-09 1997-04-22 Chisso Corp Laminated nonwoven fabric and its production
WO2023191101A1 (en) * 2022-03-31 2023-10-05 大和紡績株式会社 Core-sheath type composite fiber, method for manufacturing same, and fiber aggregate including same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173312A (en) * 1983-03-23 1984-10-01 Chisso Corp Hot-melt magnetic fiber and its manufacture
JPS63135549A (en) * 1986-11-28 1988-06-07 チッソ株式会社 Production of nonwoven fabric

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173312A (en) * 1983-03-23 1984-10-01 Chisso Corp Hot-melt magnetic fiber and its manufacture
JPS63135549A (en) * 1986-11-28 1988-06-07 チッソ株式会社 Production of nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105060A (en) * 1995-10-09 1997-04-22 Chisso Corp Laminated nonwoven fabric and its production
WO2023191101A1 (en) * 2022-03-31 2023-10-05 大和紡績株式会社 Core-sheath type composite fiber, method for manufacturing same, and fiber aggregate including same

Also Published As

Publication number Publication date
JP2716169B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US5814569A (en) Uniaxially elastic nonwoven fabric
JPS58191215A (en) Polyethylene hot-melt fiber
EP0696655B1 (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
JPH06508892A (en) polyethylene bicomponent fiber
JPH0874128A (en) Heat-fusible conjugated fiber and nonwoven fabric using the same
JPH0320505B2 (en)
JPH02127553A (en) Stretchable non-woven fabric and production thereof
EP0503590A1 (en) Process for producing nonwoven fabric
JP3774114B2 (en) Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same
JP2925441B2 (en) Core-sheath type composite short fiber and method for producing the same
JPH02133614A (en) Heat-fusible conjugate fiber
US6001752A (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
JPH0770898A (en) Heat-bonded nonwoven cloth and its production
JPH05263344A (en) Stretchable nonwoven fabric of filament and its production
JPH11140766A (en) Polyolefin conjugated continuous filament nonwoven fabric
JP2741122B2 (en) Stretchable bulky long-fiber nonwoven fabric and method for producing the same
JP2002088630A (en) Weather-resistant filament nonwoven fabric
US20050042446A1 (en) Hollow, side by side type polyethylene/polypropylene conjugated fiber with high stretchability and lightweight and method for producing non-woven fabrics by use of it
JPH1088456A (en) Elastic nonwoven fabric of filament and its production
JPH0770899A (en) Heat-bonded nonwoven cloth and its production
JPS62156310A (en) Polypropylene adhesive fiber
JPH06146113A (en) Thermally fusible conjugate yarn, its production and nonwoven fabric using the same yarn
JPH0364519A (en) Conjugate type thermally bondable yarn and nonwoven fabric using the same yarn
KR20130008477A (en) Stretchable nonwoven fabric and production thereof
JPH0559614A (en) Conjugate fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees