JP2713838B2 - Spectral imaging sensor - Google Patents

Spectral imaging sensor

Info

Publication number
JP2713838B2
JP2713838B2 JP4277144A JP27714492A JP2713838B2 JP 2713838 B2 JP2713838 B2 JP 2713838B2 JP 4277144 A JP4277144 A JP 4277144A JP 27714492 A JP27714492 A JP 27714492A JP 2713838 B2 JP2713838 B2 JP 2713838B2
Authority
JP
Japan
Prior art keywords
spectral
filter
imaging device
dimensional solid
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4277144A
Other languages
Japanese (ja)
Other versions
JPH06129908A (en
Inventor
和二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP4277144A priority Critical patent/JP2713838B2/en
Publication of JPH06129908A publication Critical patent/JPH06129908A/en
Application granted granted Critical
Publication of JP2713838B2 publication Critical patent/JP2713838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To provide a spectroscopic imaging sensor wherein its mechanical strength is high and can be operated simply. CONSTITUTION:The imaging sensor is provided with a spectroscopic filter 12 in which a plurality of predetermined pixels are formed as one group, which corresponds to many groups of pixel arrays arranged repeatedly on a two-dimensional plane and in which group filter parts having arranged minute filter parts 13 having respectively different transmission spectroscopic characteristics with reference to the individual pixels in each group are arranged repeatedly so as to correspond to many groups, with a two-dimensional solid-state image sensing device 5 having many photoelectric conversion elements 7 installed so as to correspond to the individual pixels in a pixel array and with an optical filter plate 9 composed of the aggregate of optical fibers optically connecting the individual minute filter parts 13 to the individual photoelectric conversion elements 7. The imaging sensor is constituted in such a way that an image which is incident from the spectroscopic filter is sensed by the two-dimensional solid-state image-sensing device 5 via the optical fiber plate 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、被写体像を所定波長毎
に波長分解して撮像する分光イメージングセンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectral imaging sensor for resolving a subject image at predetermined wavelengths.

【0002】[0002]

【従来の技術】近年、高感度で広い波長感度領域を有す
るセンサの開発、および光学設計技術の向上と新しい光
学材料の開発に伴い、ポイント測定の分光分析より、2
次元分布測定、いわゆる画像の分光分析手法を用いた研
究、開発が盛んになってきている。その応用は天体観測
や、リモートセンシングなどの大きなスケールのものか
ら色彩計測、または顕微分光などの小さなスケールのも
のまで広範囲にわたっている。
2. Description of the Related Art In recent years, with the development of a sensor having a high sensitivity and a wide wavelength sensitivity range, and the improvement of optical design technology and the development of a new optical material, a point measurement spectroscopic analysis has been conducted.
Research and development using dimension distribution measurement, a so-called image spectral analysis technique, have become active. Its applications range from large-scale ones such as astronomical observation and remote sensing to small-scale ones such as color measurement or microspectroscopy.

【0003】これらの研究・開発及び応用を促進するた
めに、構造的に安定で簡易に使用することができる分光
イメージングセンサの開発が望まれていた。
In order to promote these research, development and applications, there has been a demand for the development of a spectral imaging sensor which is structurally stable and can be easily used.

【0004】従来の分光イメージングセンサとしては、
例えば以下に述べるような数種類のものが代表的に知ら
れている。
[0004] Conventional spectral imaging sensors include:
For example, several types described below are typically known.

【0005】まず、夫々特定波長の光のみを透過させる
複数個の干渉フィルタが配列されたターレットとイメー
ジセンサとを備え、ターレットを機械的に回転等させる
ことにより、被写体とイメージセンサ間に介在する干渉
フィルタを入れ替えて、夫々のフィルタの透過波長帯毎
の被写体像をイメージセンサで撮像して映像信号処理す
る、ターレット型分光フィルタを適用した分光イメージ
ングセンサがあり、顕微鏡への使用例が知られている。
[0005] First, a turret in which a plurality of interference filters each transmitting only light of a specific wavelength are arranged and an image sensor are provided, and the turret is interposed between the subject and the image sensor by mechanically rotating or the like. There is a spectral imaging sensor that uses a turret type spectral filter that replaces the interference filters and captures the subject image for each transmission wavelength band of each filter with an image sensor and processes the video signal. ing.

【0006】又、主光軸上に配置された複数個のハーフ
ミラーと干渉フィルタと、これらのハーフミラー面毎に
対向して設けられた複数個のイメージセンサとを備え、
これらのハーフミラーと干渉フィルタ面を通過する特定
波長帯毎の被写体像を夫々特定のイメージセンサで撮像
する、ハーフミラーと干渉フィルタを適用した分光イメ
ージングセンサがあり、生物組織の撮像装置等への使用
例が知られている。
In addition, the apparatus includes a plurality of half mirrors and interference filters arranged on the main optical axis, and a plurality of image sensors provided to face each of these half mirror surfaces.
There is a spectral imaging sensor that applies a half mirror and an interference filter, each of which captures a subject image for each specific wavelength band passing through the half mirror and the interference filter surface with a specific image sensor. Use cases are known.

【0007】又、光音響フィルタをイメージセンサに適
用して複数の波長帯毎の被写体像を撮像する分光イメー
ジングセンサや、液晶偏光干渉計を用いた像面フーリエ
分光映像法を適用して分光画像を得る分光イメージング
センサ等が知られている。
Further, a spectral imaging sensor that applies a photoacoustic filter to an image sensor to capture an image of a subject in each of a plurality of wavelength bands, and a spectral image obtained by applying an image plane Fourier spectral imaging method using a liquid crystal polarization interferometer. Are known.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記ターレ
ット型分光フィルタを適用した分光イメージングセンサ
にあっては、ターレットを機械的に回転動作させるの
で、高速撮像を行うことができない等の機能上の限界
や、適用分野が限定されてしまう等の問題や、機械的精
度や経年変化、装置全体が大型となる等の問題もあっ
た。
However, in the spectral imaging sensor to which the turret type spectral filter is applied, since the turret is mechanically rotated, high-speed imaging cannot be performed. Also, there are problems such as a limited application field, mechanical accuracy and aging, and a large size of the entire device.

【0009】又、上記ハーフミラーと干渉フィルタを適
用した分光イメージングセンサにあっては、光軸合わせ
等の調整精度によって分光特性が変動するので、かかる
調整が繁雑であり、更に機械的精度や経年変化、コスト
高を招来する等の問題があった。 又、光音響フィルタ
を適用した分光イメージングセンサにあっては、光音響
フィルタ内の音波の不完全さによって生じる、最終像の
色の滲みや揺らぎを除去できないので、実用域に到達さ
せるまでに極めて多くの解決すべき課題が残されてい
る。
In a spectral imaging sensor to which the above-mentioned half mirror and interference filter are applied, since the spectral characteristics fluctuate depending on the adjustment accuracy such as optical axis alignment, such adjustment is complicated, and furthermore, the mechanical accuracy and the aging are not improved. There were problems such as changes and high costs. Further, in a spectral imaging sensor to which a photoacoustic filter is applied, since blurring and fluctuation of the color of a final image caused by imperfections of sound waves in the photoacoustic filter cannot be removed, it is extremely difficult to reach a practical range. Many issues remain to be solved.

【0010】又、液晶偏光干渉計を用いた像面フーリエ
分光映像法を適用した分光イメージングセンサにあって
は、光音響フィルタと同様の問題、即ち液晶の不安定性
に起因する、最終像の色の滲みや揺らぎを除去できない
という問題と、液晶の制御信号に対する応答特性が悪い
等の問題があり、実用域に到達させるまでに極めて多く
の解決すべき課題が残されている。
Also, in a spectral imaging sensor to which an image plane Fourier spectroscopic imaging method using a liquid crystal polarization interferometer is applied, the same problem as the photoacoustic filter, that is, the color of the final image caused by the instability of the liquid crystal. There is a problem that bleeding and fluctuation of the liquid crystal cannot be removed and a problem that response characteristics of the liquid crystal to a control signal are poor, and there are still many problems to be solved before reaching a practical range.

【0011】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、機械的強度が高く、簡易に使
用することができる分光イメージングセンサを提供する
ことを目的とする。
The present invention has been made in view of such problems of the prior art, and has as its object to provide a spectral imaging sensor having high mechanical strength and easy use.

【0012】[0012]

【課題を解決するための手段】このような目的を達成す
るために本発明は、波長幅が狭く実用上単色光とみなせ
る準単色光を検出する分光イメージングセンサにおい
て、夫々の中心波長が異なり半値全幅が20nm以下で
相互に重なり合わない透過分光特性を有する少なくとも
16個の微細な干渉フィルタを一群として、多数群が二
次元平面上に繰り返し配列されて成る分光フィルタと、
前記各干渉フィルタに対応する光電変換素子が二次元平
面上に多数個配列された構造を有する二次元固体撮像デ
バイスと、前記分光フィルタと前記二次元固体撮像デバ
イスとの間に密着されると共に、前記各干渉フィルタと
前記各光電変換素子との間を個々独立に光学結合する導
光路が多数個一体化されて成る光学ファイバプレート
と、前記二次元固体撮像デバイスと前記分光フィルタ及
び前記光学ファイバプレートを一体化して収容するキャ
ビティ及び、前記二次元固体撮像デバイスと電気的に接
続するリード端子を有するパッケージとを具備し、前記
分光フィルタに入射する光について、前記少なくとも1
6個の準単色光の分光情報及び各々の準単色光の入射位
置の情報を含む画像情報を二次元検出する構造とした。
According to the present invention, there is provided a spectral imaging sensor for detecting quasi-monochromatic light having a narrow wavelength width and practically regarded as monochromatic light. A spectral filter in which a large number of groups are repeatedly arranged on a two-dimensional plane, with a group including at least 16 fine interference filters having a transmission spectral characteristic having a total width of 20 nm or less and not overlapping each other;
A two-dimensional solid-state imaging device having a structure in which a large number of photoelectric conversion elements corresponding to the respective interference filters are arranged on a two-dimensional plane, and closely adhered between the spectral filter and the two-dimensional solid-state imaging device, An optical fiber plate formed by integrating a plurality of light guide paths for individually and optically coupling the interference filters and the photoelectric conversion elements, the two-dimensional solid-state imaging device, the spectral filter, and the optical fiber plate And a package having a lead terminal electrically connected to the two-dimensional solid-state imaging device, wherein the at least one light is incident on the spectral filter.
The image information including the spectral information of the six quasi-monochromatic lights and the information of the incident position of each quasi-monochromatic light is two-dimensionally detected.

【0013】また、波長幅が狭く実用上単色光とみなせ
る準単色光を検出する分光イメージングセンサにおい
て、夫々の中心波長が異なり半値全幅が20nm以下で
相互に重なり合わない透過分光特性を有する少なくとも
16個の微細な干渉フィルタを一群として、多数群が二
次元平面上に繰り返し配列されて成る分光フィルタと、
二次元平面上に配列された多数個の光電変換素子を有
し、前記各干渉フィルタと前記各光電変換素子が対応付
けられて前記分光フィルタが密着された二次元固体撮像
デバイスと、前記分光フィルタの前記二次元固体撮像デ
バスとは反対側に密着されると共に、前記各干渉フィル
タに個々独立に光学結合する導光路が多数個一体化され
て成る光学ファイバプレートと、前記二次元固体撮像デ
バイスと前記分光フィルタ及び前記光学ファイバプレー
トを一体化して収容するキャビティ及び、前記二次元固
体撮像デバイスと電気的に接続するリード端子を有する
パッケージとを具備し、前記光ファイバプレートに入射
する光について、前記少なくとも16個の準単色光の分
光情報及び各々の準単色光の入射位置の情報を含む画像
情報を二次元検出する構造とした。
Further, in a spectral imaging sensor for detecting quasi-monochromatic light having a narrow wavelength width and practically regarded as monochromatic light, at least 16 having different central wavelengths, full width at half maximum of 20 nm or less, and transmission spectral characteristics which do not overlap each other. A spectral filter in which a large number of groups are repeatedly arranged on a two-dimensional plane,
A two-dimensional solid-state imaging device having a plurality of photoelectric conversion elements arranged on a two-dimensional plane, the interference filter and the photoelectric conversion elements being associated with each other, and the spectral filter being in close contact with the photoelectric conversion element, and the spectral filter The two-dimensional solid-state imaging device is in close contact with the opposite side, and an optical fiber plate formed by integrating a plurality of light guide paths individually and optically coupled to the respective interference filters, and the two-dimensional solid-state imaging device A cavity having the spectral filter and the optical fiber plate integrally accommodated therein, and a package having a lead terminal electrically connected to the two-dimensional solid-state imaging device, for light incident on the optical fiber plate, Two-dimensionally detecting image information including spectral information of at least 16 quasi-monochromatic lights and information on the incident position of each quasi-monochromatic light. It has a structure.

【0014】[0014]

【作用】かかる構成を有する本発明の分光イメージング
センサによれば、被写体像は、分光フィルタの各々の群
に区分けさられた所定数の微小フィルタ部によって、該
所定数分の異なった透過波長帯の光に分離されると共
に、二次元平面上に多数配列されている群の数の分の組
み合わせ透過波長帯の光に分光される。例えば、1つの
群が、透過波長帯の異なる16個の微小フィルタ部で構
成され、かかる群が二次元平面上に繰り返して多数配列
されているとすれば、16種類の波長帯の光が群フィル
タ部の数と配列に対応して発生する。そして、夫々の光
は二次元固体撮像デバイスの各々の光電変換素子によっ
て光電変換されるので、16種類の波長帯のピクセル信
号が群の数と配列に対応して得られる。又、光学ファイ
バプレートの各光学ファイバが各々のピクセルに対応し
ているので、ピクセル間でのクロストークが少ない。
又、光学ファイバプレートと分光フィルタ及び二次元固
体撮像デバイスは機械的強度が高く、更にこれらの要素
間は定常的に固定化されていて可動部分が存在しないの
で、全体として機械強度が高く、且つ調整が不要である
ので簡易に使用することができる。更に、光学ファイバ
プレートと分光フィルタ及び二次元固体撮像デバイスを
微細且つ高密度に製造できるので、処理すべき全波長帯
における各分光波長帯を細かくして分解能を上げても、
機能に比して装置の大型化を招来せず、小型の分光イメ
ージングセンサを実現することができる。そして、測色
や、映像機器の色再現、各種化学的・物理的現象のスペ
クトル分析、その他の広範な技術分野への応用が可能で
ある。
According to the spectral imaging sensor of the present invention having the above-mentioned structure, the subject image is separated by the predetermined number of minute filter sections divided into the respective groups of the spectral filters, so that the predetermined number of different transmission wavelength bands are provided. , And is split into light in the combined transmission wavelength band corresponding to the number of groups arranged in a large number on a two-dimensional plane. For example, if one group is composed of 16 microfilter sections having different transmission wavelength bands, and a large number of such groups are repeatedly arranged on a two-dimensional plane, light of 16 types of wavelength bands is grouped. Occurs according to the number and arrangement of the filter units. Then, since each light is photoelectrically converted by each photoelectric conversion element of the two-dimensional solid-state imaging device, pixel signals of 16 kinds of wavelength bands are obtained corresponding to the number and arrangement of the groups. Further, since each optical fiber of the optical fiber plate corresponds to each pixel, crosstalk between pixels is small.
In addition, the optical fiber plate, the spectral filter, and the two-dimensional solid-state imaging device have high mechanical strength. Further, since these elements are constantly fixed and have no moving parts, the mechanical strength is high as a whole, and Since no adjustment is required, it can be used easily. Furthermore, since an optical fiber plate, a spectral filter, and a two-dimensional solid-state imaging device can be manufactured finely and with high density, even if each spectral wavelength band in all the wavelength bands to be processed is made finer, the resolution can be increased.
A small-sized spectral imaging sensor can be realized without increasing the size of the device as compared with the function. It can be applied to colorimetry, color reproduction of video equipment, spectral analysis of various chemical and physical phenomena, and other broad technical fields.

【0015】[0015]

【実施例】以下、本発明の一実施例を図面と共に説明す
る。まず、図1に示すように、この実施例の分光イメー
ジングセンサは、分光機能を有する分光機構1が半導体
パッケージ2のキャビティ3内に収納され、分光機構1
の構成要素である二次元固体撮像デバイス5に設けられ
ている所定の接続端子群と半導体パッケージ2に設けら
れている複数のリード端子4とが電気的に接続され、更
に、透明ガラス板6で封止された一体化構造となってい
る。そして、透明ガラス板6を透過してきた被写体像の
光hνを分光機構1が分光し、二次元固体撮像デバイス
5がそれを光電変換して所定のリード端子4に出力す
る。
An embodiment of the present invention will be described below with reference to the drawings. First, as shown in FIG. 1, in the spectral imaging sensor of this embodiment, a spectral mechanism 1 having a spectral function is housed in a cavity 3 of a semiconductor package 2, and the spectral mechanism 1
A predetermined connection terminal group provided on the two-dimensional solid-state imaging device 5 which is a component of the above is electrically connected to a plurality of lead terminals 4 provided on the semiconductor package 2. It has a sealed integrated structure. Then, the spectroscopic mechanism 1 disperses the light hν of the subject image transmitted through the transparent glass plate 6, and the two-dimensional solid-state imaging device 5 photoelectrically converts the light hν and outputs it to a predetermined lead terminal 4.

【0016】分光機構1は、図2及び図3に示す構造と
なっている。即ち、縦断面構造を示す図2において、二
次元固体撮像デバイス5は、(x−y)二次元平面上に
おいて予め設定された二次元ピクセル配列に対応して、
多数の光電変換素子(フォトダイオード等)7がマトリ
クス状に配列形成されている。図示しないが、これらの
光電変換素子7に発生する各々のピクセル信号は、信号
読出しのための走査読出回路の制御に基いて所定のリー
ド端子4に出力されるようになっており、かかる走査制
御回路と多数の光電変換素子7は半導体製造技術によっ
て二次元固体撮像デバイス5に一体形成されている。し
たがって、多数の光電変換素子7は、図3(c)に示す
ような配列で形成されている。
The spectroscopic mechanism 1 has the structure shown in FIGS. That is, in FIG. 2 showing the vertical cross-sectional structure, the two-dimensional solid-state imaging device 5 corresponds to a two-dimensional pixel array preset on an (x-y) two-dimensional plane.
A large number of photoelectric conversion elements (photodiodes or the like) 7 are arranged in a matrix. Although not shown, each pixel signal generated in these photoelectric conversion elements 7 is output to a predetermined lead terminal 4 based on the control of a scanning readout circuit for signal readout. The circuit and a number of photoelectric conversion elements 7 are formed integrally with the two-dimensional solid-state imaging device 5 by a semiconductor manufacturing technique. Therefore, many photoelectric conversion elements 7 are formed in an arrangement as shown in FIG.

【0017】二次元固体撮像デバイス5の光電変換素子
7が形成されている端面(受光面)には、光学ボンド若
しくは光学グリスによる固着層8によって光学ファイバ
プレート9の端面(光を出力する側の端面)が固着され
ている。即ち、図3(b)に示すように、光学ファイバ
プレート9は、微細で光学特性が均質な多数の光学ファ
イバ10の集合から成り、夫々の光学ファイバ10の側
端が光を透過しない接着材層11によって一体に固着さ
れている。又、これらの光学ファイバ10は多数の光電
変換素子7に対向して配列され、所定本数ずつの光学フ
ァイバ10が、二次元固体撮像デバイス5の各々の光電
変換素子7に対向している。図3は、一例として4本ず
つの光学ファイバ10が、各光電変換素子7に対向した
構造を示している。但し、これは一例であり、更に微細
な光学ファイバを適用して多数本ずつを各光電変換素子
7に対向させるようにしてもよいし、各光電変換素子7
の受光面に対向する直径の光学ファイバを適用して、各
光学ファイバ10と光電変換素子7を一対一に対応づけ
るようにしてもよい。
On the end face (light receiving face) of the two-dimensional solid-state imaging device 5 where the photoelectric conversion element 7 is formed, an end face of the optical fiber plate 9 (a light output side) is fixed by a fixing layer 8 made of optical bond or optical grease. End face) is fixed. That is, as shown in FIG. 3B, the optical fiber plate 9 is composed of a set of a large number of optical fibers 10 having fine and uniform optical characteristics, and the side end of each optical fiber 10 is an adhesive material that does not transmit light. The layers 11 are integrally fixed. The optical fibers 10 are arranged so as to face a large number of photoelectric conversion elements 7, and a predetermined number of the optical fibers 10 face each photoelectric conversion element 7 of the two-dimensional solid-state imaging device 5. FIG. 3 shows a structure in which four optical fibers 10 face each photoelectric conversion element 7 as an example. However, this is only an example, and a finer optical fiber may be applied so that a large number of fibers may be opposed to each photoelectric conversion element 7 or each photoelectric conversion element 7
Each optical fiber 10 and the photoelectric conversion element 7 may be associated one-to-one by applying an optical fiber having a diameter facing the light receiving surface of the optical fiber.

【0018】光学ファイバプレート9の光入射側の端面
には、分光フィルタ12が積層されている。かかる分光
フィルタ12は、各々が異なった透過分光特性を有する
複数の微小フィルタ部13で構成され、これら微小フィ
ルタ部13は、光電変換素子7の配列及び光学ファイバ
プレート9の光学ファイバ10の配列と一対一に対応し
て配列されている。更に、各々が異なった分光特性を有
し所定配列された所定数nの微小フィルタ部13を一群
とし、これと同一の群を(x−y)二次元平面上に繰り
返し配列された構造となっている。したがって、夫々の
群はピクセル配列に対応するn種類の透過分光特性を有
し、分光フィルタ12全体としてこの透過分光特性を有
する群を例えばm個備えた構造となっている。図3
(a)は、一つの群の構造を、二次元固体撮像デバイス
5の光電変換素子7の配列と光学ファイバプレート9の
光学ファイバ10の配列に対応して例示している。即
ち、各々の光電変換素子7に対応する所定数(この実施
例では4本)の光学ファイバ10の光入射端面に対し
て、1個の微小フィルタ部13が対応しており、この実
施例では、n=16個の微小フィルタ部13から成って
いる。したがって、各々の微小フィルタ部13を透過し
た光は、所定の光学ファイバ10を通って、所定の光電
変換素子7で受光される。
A spectral filter 12 is laminated on the end face of the optical fiber plate 9 on the light incident side. The spectral filter 12 is composed of a plurality of fine filter units 13 each having different transmission spectral characteristics, and these fine filter units 13 correspond to the arrangement of the photoelectric conversion elements 7 and the arrangement of the optical fibers 10 of the optical fiber plate 9. They are arranged in a one-to-one correspondence. Further, a predetermined number n of small filter units 13 each having a different spectral characteristic and arranged in a predetermined group are grouped together, and the same group is repeatedly arranged on a (xy) two-dimensional plane. ing. Accordingly, each group has n types of transmission spectral characteristics corresponding to the pixel arrangement, and the spectral filter 12 as a whole has a structure including, for example, m groups having the transmission spectral characteristics. FIG.
(A) illustrates the structure of one group corresponding to the arrangement of the photoelectric conversion elements 7 of the two-dimensional solid-state imaging device 5 and the arrangement of the optical fibers 10 of the optical fiber plate 9. That is, one micro filter unit 13 corresponds to a light incident end face of a predetermined number (four in this embodiment) of optical fibers 10 corresponding to each photoelectric conversion element 7, and in this embodiment, , N = 16 micro filter units 13. Therefore, the light transmitted through each of the micro filter sections 13 passes through the predetermined optical fiber 10 and is received by the predetermined photoelectric conversion element 7.

【0019】尚、この分光フィルタ12は、例えば干渉
フィルタ等で形成され、16個の微小フィルタ部13の
透過分光特性は、400nm〜700nmの波長範囲を
20nmの波長帯ずつに分割した夫々の特性を有するよ
うに設計されている。
The spectral filter 12 is formed of, for example, an interference filter or the like. The transmission spectral characteristics of the 16 minute filter portions 13 are obtained by dividing the wavelength range of 400 nm to 700 nm into 20 nm wavelength bands. It is designed to have

【0020】このように、この実施例によれば、n個の
波長帯の光に分光して二次元撮像することができ、機械
的可動部分が無いので、光学的調整が不要であり、経年
変化の問題も無い。
As described above, according to this embodiment, two-dimensional imaging can be performed by dispersing light in n wavelength bands, and since there is no mechanically movable part, optical adjustment is not required. There is no problem of change.

【0021】次に、他の実施例を図4と共に説明する。
尚、図4は図2に対応して示す縦断面図である。図1〜
図3に示した先の実施例との相違点を述べると、分光フ
ィルタ12の光入射側に、更に光学ボンド層や光学グリ
スから成る固着層14を介して副透過帯カットフィルタ
15が固着されている。尚、分光フィルタ12と光学フ
ァイバプレート9及び二次元固体撮像デバイス5の対応
構造は先の実施例と等しくなっている。この実施例で
は、副透過帯カットフィルタ15が、処理すべき波長帯
域以外の波長を予め除去するので、分光特性の更なる向
上を図ることができる。
Next, another embodiment will be described with reference to FIG.
FIG. 4 is a longitudinal sectional view corresponding to FIG. Figure 1
The difference from the previous embodiment shown in FIG. 3 is that the sub-transmission band cut filter 15 is fixed to the light incident side of the spectral filter 12 via a fixing layer 14 made of an optical bond layer or optical grease. ing. The corresponding structures of the spectral filter 12, the optical fiber plate 9, and the two-dimensional solid-state imaging device 5 are the same as those in the previous embodiment. In this embodiment, the sub-transmission band cut filter 15 removes wavelengths other than the wavelength band to be processed in advance, so that the spectral characteristics can be further improved.

【0022】次に、更に他の実施例を図5に基いて説明
する。尚、図5は図2及び図4に対応して示す縦断面図
であり、同一又は相当する部分を同一符号で示してい
る。図1〜図4に示した二実施例との相違点を述べる
と、二次元固体撮像デバイス5の多数の光電変換素子7
が形成されている側に、光学ボンド層や光学グリスから
成る固着層16を介して分光フィルタ12が固着され、
更に分光フィルタ12は光学ファイバプレート9の光出
力端に固着されている。光学ファイバプレート9の光入
射端には、光学ボンド層17を介して副透過帯カットフ
ィルタ15が固着されている。尚、光学ファイバプレー
ト9と分光フィルタ12及び二次元固体撮像デバイス5
の対応構造は先の実施例と等しくなっている。そして、
副透過帯カットフィルタ15でまず被写体像の処理すべ
き波長帯域以外の波長を除去して光学フィルタ9の各光
学ファイバ10に通し、分光フィルタ12の所定透過分
光特性を有する各々の微小フィルタ部で分光し、夫々の
波長の光を二次元固体撮像デバイス5の各々の光電変換
素子7で受光して光電変換する。この実施例も、機械的
強度が高く、簡易に使用することができるという効果が
得られる。
Next, still another embodiment will be described with reference to FIG. FIG. 5 is a longitudinal sectional view corresponding to FIGS. 2 and 4, and the same or corresponding parts are denoted by the same reference numerals. The difference from the two embodiments shown in FIGS. 1 to 4 is that many photoelectric conversion elements 7 of the two-dimensional solid-state imaging device 5 are described.
On the side where is formed, the spectral filter 12 is fixed via a fixing layer 16 made of an optical bond layer or optical grease,
Further, the spectral filter 12 is fixed to the light output end of the optical fiber plate 9. A sub-transmission band cut filter 15 is fixed to the light incident end of the optical fiber plate 9 via an optical bond layer 17. The optical fiber plate 9, the spectral filter 12, and the two-dimensional solid-state imaging device 5
Is the same as that of the previous embodiment. And
First, the sub-transmission band cut filter 15 removes wavelengths other than the wavelength band to be processed of the subject image, passes through the respective optical fibers 10 of the optical filter 9, and passes through the respective fine filter portions of the spectral filter 12 having the predetermined transmission spectral characteristics. The two-dimensional solid-state image pickup device 5 receives the light of each wavelength and receives light of each wavelength to perform photoelectric conversion. This embodiment also has the effect that the mechanical strength is high and it can be used easily.

【0023】尚、上記の3実施例では、光学ファイバプ
レート9を互いに平行に配置した多数の光学ファイバ1
0の束として構成したが、分光フィルタ12の各々の微
小フィルタ部13と二次元固体撮像デバイス5の各々の
光電変換素子7とが所定のピクセル配列に対応づけられ
た関係になっていれば、例えば、図6に示すように、各
々の微小フィルタ部13の光入射面積に対して各々の光
電変換素子7の受光面積を小さくして、各々の光学ファ
イバ10の微小フィルタ部13に対向する側の直径を大
きくし、光電変換素子7に対向する側の直径を小さくし
た光学ファイバを適用する構造としてもよい。
In the above-described three embodiments, a large number of optical fibers 1 having optical fiber plates 9 arranged in parallel with each other are used.
Although it is configured as a bundle of zeros, if each of the minute filter units 13 of the spectral filter 12 and each of the photoelectric conversion elements 7 of the two-dimensional solid-state imaging device 5 have a relationship associated with a predetermined pixel array, For example, as shown in FIG. 6, the light receiving area of each photoelectric conversion element 7 is made smaller with respect to the light incident area of each minute filter section 13, and the side of each optical fiber 10 facing the minute filter section 13. The optical fiber may have a larger diameter and a smaller diameter on the side facing the photoelectric conversion element 7.

【0024】更に、これらの実施例では、ピクセル配列
を二次元平面上の直交座標(x−y)に沿ってマトリク
ス状に設定し、このピクセル配列に従って光電変換素子
7と光学ファイバ10及び微小フィルタ部13を対応さ
せるようにしたが、本発明は、このような直交座標に沿
った配列構造に限定されるものではない。即ち、微小フ
ィルタ部13と光学ファイバ10と光電変換素子7とが
所定のピクセル配列に従って互いに対応していればピク
セル配列は適宜に設定してよい。例えば、周知の光学フ
ァイバ製造技術によって多数の光学ファイバ束から成る
光学ファイバプレートを製造する場合、まず、1本の光
学ファイバを加熱しながら引伸ばして細線状にし、これ
を更に複数本束ねてから同様に引伸し、更にそれを複数
本束ねて同様に引伸ばすという処理工程を多数回にわた
って繰り返すが、このような製造工程を経ると最終的に
形成された各々の細い光学ファイバの配列は、正六角形
の頂点位置に配列された蜂の巣状の配列となる。したが
って、従来の光学ファイバプレートを適用するようにピ
クセル配列を設定して、その配列に対応するように分光
フィルタの微小フィルタ部の形状と配列を設定すると共
に、二次元固体撮像デバイスの各々の光電変換素子の受
光面の形状及び配列を設定してもよい。
Further, in these embodiments, the pixel array is set in a matrix along the orthogonal coordinates (xy) on a two-dimensional plane, and the photoelectric conversion element 7, the optical fiber 10, and the fine filter are arranged in accordance with the pixel array. Although the unit 13 is made to correspond, the present invention is not limited to the arrangement structure along such rectangular coordinates. That is, the pixel arrangement may be appropriately set as long as the micro filter unit 13, the optical fiber 10, and the photoelectric conversion element 7 correspond to each other according to a predetermined pixel arrangement. For example, when manufacturing an optical fiber plate composed of a number of optical fiber bundles by a well-known optical fiber manufacturing technique, first, one optical fiber is stretched while heating to form a thin line, and then a plurality of bundles are bundled. Similarly, the process of stretching, further bundling a plurality of bundles, and stretching in a similar manner is repeated many times, but after such a manufacturing process, the arrangement of each thin optical fiber finally formed becomes a regular hexagon. It becomes a honeycomb-like array arranged at the vertex position of. Therefore, the pixel array is set so as to apply the conventional optical fiber plate, the shape and the array of the minute filter portion of the spectral filter are set so as to correspond to the array, and each photoelectric element of the two-dimensional solid-state imaging device is set. The shape and arrangement of the light receiving surface of the conversion element may be set.

【0025】更に、これらの実施例のように、分光フィ
ルタ12の各群フィルタ部毎の微小フィルタ部の透過分
光帯を波長帯に従って順番に配列することに限定される
ものではない。適用分野に応じて任意の配列にしてもよ
い。
Further, as in these embodiments, the present invention is not limited to arranging the transmission spectral bands of the minute filter unit for each group filter unit of the spectral filter 12 in order according to the wavelength band. Arbitrary arrangement may be made according to the field of application.

【0026】ところで、以上に説明した実施例の分光イ
メージングセンサは、例えば、次のような分野に適用す
ることが可能であり、優れた効果を発揮する。
By the way, the spectral imaging sensor of the embodiment described above can be applied to, for example, the following fields, and exhibits excellent effects.

【0027】まず、染色物、塗装面などの測定をこのセ
ンサを用いて行えば測定面全体の分光データを用いるこ
とにより、染色物、塗装面に用いられている色材の判定
だけでなく、染色物の染着濃度、染色分布の判定,評価
ならびに塗膜中の顔料濃度,濃度分布の判定評価が可能
となる。その上、実施例の分光イメージセンサは機械的
走査を必要とせず簡易なセンサである為、オンライン上
でも使用可能となる。又、色技術の分野においては、4
00nm〜700nmの波長域で5nm,10nm,2
0nm毎の光に分光して処理することの規格化がおこな
われているが、本発明の分光イメージングセンサの構造
によれば、このような多数の波長光を同時に且つ簡易に
処理することができるセンサを簡易に製造することがで
きる。又、顕微鏡分光画像計測に応用した場合、各部位
毎の分光データを用いることにより、観測画像内に含ま
れている成分数ならびに各物質の空間分布も推定でき、
またそれらを画像化できるなどの利点がある。特に、実
施例の分光イメージセンサはモジュール化されたひとつ
のセンサである為、顕微鏡に簡単に取付けることができ
るという特徴を持つ。
First, if the measurement of a dyed object or a painted surface is performed using this sensor, not only the determination of the coloring material used for the dyed object or the painted surface but also the use of the spectral data of the entire measured surface can be performed. This makes it possible to judge and evaluate the dyeing concentration and dyeing distribution of the dyed product and to judge and evaluate the pigment concentration and the density distribution in the coating film. In addition, since the spectral image sensor of the embodiment is a simple sensor that does not require mechanical scanning, it can be used online. In the field of color technology, 4
5 nm, 10 nm, 2 in the wavelength range of 00 nm to 700 nm
Although the standardization of spectrally processing the light of every 0 nm has been performed, according to the structure of the spectral imaging sensor of the present invention, such a large number of wavelengths of light can be processed simultaneously and easily. The sensor can be easily manufactured. In addition, when applied to microscope spectroscopic image measurement, the number of components contained in the observed image and the spatial distribution of each substance can be estimated by using spectral data for each site,
There is also an advantage that they can be imaged. In particular, since the spectral image sensor of the embodiment is a single sensor made into a module, it has a feature that it can be easily attached to a microscope.

【0028】他に、現在研究が盛んな光CTのセンサと
して用いた場合、生体における各部位毎の分光情報も同
時にとり込むことができる為、生体中の物質まで判定で
きるようになる。
In addition, when used as a sensor for optical CT, which has been actively studied at present, spectral information for each part of the living body can be taken in at the same time, so that substances in the living body can be determined.

【0029】特に、実施例の分光イメージセンサはモジ
ュール化された、ひとつのセンサである為、光CT用の
センサとして簡易に取付け可能という特徴を持つ。
In particular, since the spectral image sensor of the embodiment is a modularized one sensor, it has a feature that it can be easily attached as a sensor for optical CT.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、被
写体像を、分光フィルタの各々の群フィルタ部に設けら
れた所定数の微小フィルタ部によって該所定数分の異な
った透過波長帯の光に分離すると共に、二次元平面上に
多数配列されている群フィルタ分の組み合わせ透過波長
帯の光に分光し、光学ファイバプレートを介して被写体
像或いは分光後の光を伝送させ、夫々の光を二次元固体
撮像デバイスの各々の光電変換素子によって光電変換す
る構造としたので、ピクセル間でのクロストークが少な
く、全体として機械強度が高く、且つ調整が不要な簡易
な分光イメージングセンサを提供することができる。更
に本発明の構造によれば、光学ファイバプレートと分光
フィルタ及び二次元固体撮像デバイスを微細且つ高密度
に製造できるので、処理すべき全波長帯における各分光
波長帯を細かくして分解能を上げても、機能に比して装
置の大型化を招来せず、小型の分光イメージングセンサ
を実現することができる。そして、測色や、映像機器の
色再現、各種化学的・物理的現象のスペクトル分析、そ
の他の広範な技術分野への応用が可能である。
As described above, according to the present invention, a subject image is divided into a predetermined number of different transmission wavelength bands by a predetermined number of minute filter sections provided in each group filter section of the spectral filter. In addition to splitting the light into light, the light is separated into light in the combined transmission wavelength band of the group filters arranged in a large number on the two-dimensional plane, and the subject image or the light after the separation is transmitted through the optical fiber plate. Has a structure in which photoelectric conversion is performed by each photoelectric conversion element of a two-dimensional solid-state imaging device, so that a simple spectral imaging sensor that has little crosstalk between pixels, has high mechanical strength as a whole, and requires no adjustment is provided. be able to. Further, according to the structure of the present invention, the optical fiber plate, the spectral filter, and the two-dimensional solid-state imaging device can be manufactured finely and at a high density. However, it is possible to realize a small-sized spectral imaging sensor without increasing the size of the device as compared with the function. It can be applied to colorimetry, color reproduction of video equipment, spectral analysis of various chemical and physical phenomena, and other broad technical fields.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の全体構造を分解して示す分解斜視図
である。
FIG. 1 is an exploded perspective view showing an entire structure of an embodiment in an exploded manner.

【図2】一実施例の分光機構1の縦断面構造を示す断面
図である。
FIG. 2 is a cross-sectional view illustrating a vertical cross-sectional structure of the spectroscopic mechanism 1 according to one embodiment.

【図3】一実施例の分光機構1の要部構造を分解して示
す分解斜視図である。
FIG. 3 is an exploded perspective view showing an exploded main part structure of the spectroscopic mechanism 1 of the embodiment.

【図4】他の実施例の構造を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing the structure of another embodiment.

【図5】更に他の実施例の構造を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing the structure of still another embodiment.

【図6】更に他の実施例の構造を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing the structure of still another embodiment.

【符号の説明】[Explanation of symbols]

1…分光機構、5…二次元固体撮像デバイス、7…光電
変換素子、8,14,16…固着層、9…光学ファイバ
プレート、10…光学ファイバ、11…接着材層、12
…分光フィルタ、13…微小フィルタ部。
DESCRIPTION OF SYMBOLS 1 ... Dispersion mechanism, 5 ... Two-dimensional solid-state imaging device, 7 ... Photoelectric conversion element, 8, 14, 16 ... Fixed layer, 9 ... Optical fiber plate, 10 ... Optical fiber, 11 ... Adhesive layer, 12
... Spectral filter, 13 ... Micro filter part.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】波長幅が狭く実用上単色光とみなせる準単
色光を検出する分光イメージングセンサにおいて、 夫々の中心波長が異なり半値全幅が20nm以下で相互
に重なり合わない透過分光特性を有する少なくとも16
個の微細な干渉フィルタを一群として、多数群が二次元
平面上に繰り返し配列されて成る分光フィルタと、 前記各干渉フィルタに対応する光電変換素子が二次元平
面上に多数個配列された構造を有する二次元固体撮像デ
バイスと、 前記分光フィルタと前記二次元固体撮像デバイスとの間
に密着されると共に、前記各干渉フィルタと前記各光電
変換素子との間を個々独立に光学結合する導光路が多数
個一体化されて成る光学ファイバプレートと、 前記二次元固体撮像デバイスと前記分光フィルタ及び前
記光学ファイバプレートを一体化して収容するキャビテ
ィ及び、前記二次元固体撮像デバイスと電気的に接続す
るリード端子を有するパッケージとを具備し、 前記分光フィルタに入射する光について、前記少なくと
も16個の準単色光の分光情報及び各々の準単色光の入
射位置の情報を含む画像情報を二次元検出することを特
徴とする分光イメージングセンサ。
1. A spectral imaging sensor for detecting quasi-monochromatic light having a narrow wavelength width and practically regarded as monochromatic light, wherein at least 16 having different central wavelengths, full width at half maximum of 20 nm or less and non-overlapping transmission spectral characteristics.
A plurality of fine interference filters as a group, a spectral filter in which a large number of groups are repeatedly arranged on a two-dimensional plane, and a structure in which a large number of photoelectric conversion elements corresponding to the respective interference filters are arranged on a two-dimensional plane. A two-dimensional solid-state imaging device having a light guide path that is closely adhered between the spectral filter and the two-dimensional solid-state imaging device and optically independently couples each of the interference filters and each of the photoelectric conversion elements. A plurality of integrated optical fiber plates, a cavity for integrally storing the two-dimensional solid-state imaging device, the spectral filter, and the optical fiber plate, and a lead terminal for electrically connecting to the two-dimensional solid-state imaging device Wherein the light incident on the spectral filter is divided into at least 16 quasi-monochromatic lights. A spectral imaging sensor for two-dimensionally detecting image information including information and information on an incident position of each quasi-monochromatic light.
【請求項2】波長幅が狭く実用上単色光とみなせる準単
色光を検出する分光イメージングセンサにおいて、 夫々の中心波長が異なり半値全幅が20nm以下で相互
に重なり合わない透過分光特性を有する少なくとも16
個の微細な干渉フィルタを一群として、多数群が二次元
平面上に繰り返し配列されて成る分光フィルタと、 二次元平面上に配列された多数個の光電変換素子を有
し、前記各干渉フィルタと前記各光電変換素子が対応付
けられて前記分光フィルタが密着された二次元固体撮像
デバイスと、 前記分光フィルタの前記二次元固体撮像デバスとは反対
側に密着されると共に、前記各干渉フィルタに個々独立
に光学結合する導光路が多数個一体化されて成る光学フ
ァイバプレートと、 前記二次元固体撮像デバイスと前記分光フィルタ及び前
記光学ファイバプレートを一体化して収容するキャビテ
ィ及び、前記二次元固体撮像デバイスと電気的に接続す
るリード端子を有するパッケージとを具備し、 前記光ファイバプレートに入射する光について、前記少
なくとも16個の準単色光の分光情報及び各々の準単色
光の入射位置の情報を含む画像情報を二次元検出するこ
とを特徴とする分光イメージングセンサ。
2. A spectral imaging sensor for detecting quasi-monochromatic light having a narrow wavelength width and practically regarded as monochromatic light, wherein at least 16 light-transmitting spectral characteristics having different center wavelengths and a full width at half maximum of 20 nm or less and not overlapping each other.
A plurality of fine interference filters as a group, a spectral filter in which a large number of groups are repeatedly arranged on a two-dimensional plane, and a large number of photoelectric conversion elements arranged on a two-dimensional plane. A two-dimensional solid-state imaging device in which the photoelectric conversion elements are associated with each other and the spectral filter is in close contact with the two-dimensional solid-state imaging device in the spectral filter; An optical fiber plate in which a large number of light guide paths that are independently optically coupled are integrated; a cavity that integrally houses the two-dimensional solid-state imaging device, the spectral filter, and the optical fiber plate; and the two-dimensional solid-state imaging device And a package having a lead terminal electrically connected to the optical fiber plate. A spectral imaging sensor for two-dimensionally detecting image information including at least 16 pieces of quasi-monochromatic light spectral information and information on the incident position of each quasi-monochromatic light.
【請求項3】前記分光フィルタの光入射側の面に、光学
ボンド又は光学グリスを介在させて副透過帯カットフィ
ルタが密着されている特徴とする請求項1に記載の分光
イメージングセンサ。
3. The spectral imaging sensor according to claim 1, wherein a sub-transmission band cut filter is closely attached to a light incident side surface of the spectral filter with an optical bond or optical grease interposed therebetween.
JP4277144A 1992-10-15 1992-10-15 Spectral imaging sensor Expired - Fee Related JP2713838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4277144A JP2713838B2 (en) 1992-10-15 1992-10-15 Spectral imaging sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4277144A JP2713838B2 (en) 1992-10-15 1992-10-15 Spectral imaging sensor

Publications (2)

Publication Number Publication Date
JPH06129908A JPH06129908A (en) 1994-05-13
JP2713838B2 true JP2713838B2 (en) 1998-02-16

Family

ID=17579418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4277144A Expired - Fee Related JP2713838B2 (en) 1992-10-15 1992-10-15 Spectral imaging sensor

Country Status (1)

Country Link
JP (1) JP2713838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983120B2 (en) 2013-02-05 2018-05-29 Seiko Epson Corporation Colorimetry method and colorimetry apparatus

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054994A (en) * 2000-08-11 2002-02-20 Sony Corp Image pickup device, image pickup display system and image pickup printing system
IL159113A (en) * 2002-11-27 2008-11-26 Given Imaging Ltd Method and device of imaging with an imager having a fiber plate cover
WO2007029714A1 (en) * 2005-09-06 2007-03-15 Tohoku Techno Arch Co., Ltd. Wavelength division image measuring device
WO2008012715A2 (en) * 2006-07-28 2008-01-31 Koninklijke Philips Electronics N.V. An integrated image recognition and spectral detection device and a device and method for automatically controlling the settings of a light by image recognition and spectral detection of the light
JP4887251B2 (en) * 2007-09-13 2012-02-29 浜松ホトニクス株式会社 Spectroscopic module
US8049887B2 (en) 2007-06-08 2011-11-01 Hamamatsu Photonics K.K. Spectroscopic module
JP4891840B2 (en) 2007-06-08 2012-03-07 浜松ホトニクス株式会社 Spectroscopic module
JP4980184B2 (en) * 2007-09-13 2012-07-18 浜松ホトニクス株式会社 Spectroscopic module
KR20100017083A (en) * 2007-06-08 2010-02-16 하마마츠 포토닉스 가부시키가이샤 Spectroscopic module
JP4887250B2 (en) * 2007-09-13 2012-02-29 浜松ホトニクス株式会社 Spectroscopic module
KR20100017086A (en) * 2007-06-08 2010-02-16 하마마츠 포토닉스 가부시키가이샤 Spectroscopic module
JP4891841B2 (en) 2007-06-08 2012-03-07 浜松ホトニクス株式会社 Spectroscopic module
US8031336B2 (en) 2007-06-08 2011-10-04 Hamamatsu Photonics K.K. Spectroscope
JP4887221B2 (en) 2007-06-08 2012-02-29 浜松ホトニクス株式会社 Spectroscopic module
JP5440110B2 (en) * 2009-03-30 2014-03-12 株式会社リコー Spectral characteristic acquisition apparatus, spectral characteristic acquisition method, image evaluation apparatus, and image forming apparatus
EP2522968B1 (en) * 2009-11-30 2021-04-21 IMEC vzw Integrated circuit for spectral imaging system
JP5663900B2 (en) * 2010-03-05 2015-02-04 セイコーエプソン株式会社 Spectroscopic sensor device and electronic device
US9357956B2 (en) 2010-03-05 2016-06-07 Seiko Epson Corporation Spectroscopic sensor and electronic apparatus
JP5998426B2 (en) * 2010-03-05 2016-09-28 セイコーエプソン株式会社 Optical sensor and electronic equipment
JP5663918B2 (en) 2010-03-29 2015-02-04 セイコーエプソン株式会社 Optical sensor and spectroscopic sensor
JP5948007B2 (en) 2010-03-29 2016-07-06 セイコーエプソン株式会社 Spectroscopic sensor and spectral filter
JP5589515B2 (en) 2010-04-05 2014-09-17 セイコーエプソン株式会社 Method for manufacturing inclined structure
EP2659263A4 (en) * 2011-02-07 2016-07-06 Canon Kk Light emission detection device and method of manufacturing the same
JP5862025B2 (en) 2011-03-16 2016-02-16 セイコーエプソン株式会社 Optical sensor and electronic equipment
JP5810565B2 (en) 2011-03-16 2015-11-11 セイコーエプソン株式会社 Optical sensor and electronic equipment
US9163984B2 (en) 2011-03-17 2015-10-20 Seiko Epson Corporation Spectroscopic sensor and angle limiting filter
JP5845690B2 (en) 2011-07-27 2016-01-20 セイコーエプソン株式会社 Tilting structure, manufacturing method of tilting structure, and spectroscopic sensor
JP5803419B2 (en) * 2011-08-19 2015-11-04 セイコーエプソン株式会社 Tilting structure, manufacturing method of tilting structure, and spectroscopic sensor
JP5970685B2 (en) * 2011-08-22 2016-08-17 セイコーエプソン株式会社 Optical sensor and electronic equipment
JP6253870B2 (en) 2011-10-04 2017-12-27 浜松ホトニクス株式会社 Spectroscopic sensor
JP5878723B2 (en) * 2011-10-04 2016-03-08 浜松ホトニクス株式会社 Spectroscopic sensor
WO2013064511A1 (en) * 2011-11-04 2013-05-10 Imec Spectral camera with integrated filters and multiple adjacent image copies projected onto sensor array
WO2013064512A1 (en) * 2011-11-04 2013-05-10 Imec Spectral camera with mirrors for projecting multiple adjacent image copies onto sensor array
JP2013108788A (en) * 2011-11-18 2013-06-06 Tokyo Institute Of Technology Multispectral image information acquisition device and multispectral image information acquisition method
JP5926610B2 (en) 2012-05-18 2016-05-25 浜松ホトニクス株式会社 Spectroscopic sensor
JP5988690B2 (en) 2012-05-18 2016-09-07 浜松ホトニクス株式会社 Spectroscopic sensor
JP5875936B2 (en) * 2012-05-18 2016-03-02 浜松ホトニクス株式会社 Spectroscopic sensor
DE102014105222A1 (en) * 2014-04-11 2015-10-15 Jenoptik Optical Systems Gmbh Camera with integrated spectrometer
US20160124124A1 (en) * 2014-10-29 2016-05-05 SUNMOON UNIVERSITY Industry-University Cooperation Optic apparatus
US9677935B2 (en) * 2014-11-03 2017-06-13 Trutag Technologies, Inc. Fabry-perot spectral image measurement
JP5928557B2 (en) * 2014-11-10 2016-06-01 セイコーエプソン株式会社 Spectroscopic sensor and angle limiting filter
JP5900585B2 (en) * 2014-12-08 2016-04-06 セイコーエプソン株式会社 Optical sensor and spectroscopic sensor
JP5862753B2 (en) * 2014-12-11 2016-02-16 セイコーエプソン株式会社 Spectroscopic sensor device and electronic device
EP3298453A4 (en) * 2015-05-19 2019-01-23 Newport Corporation Optical analysis system with optical conduit light delivery
JP6112190B2 (en) * 2015-12-25 2017-04-12 セイコーエプソン株式会社 Spectroscopic sensor and pulse oximeter
JP2016118787A (en) * 2015-12-25 2016-06-30 セイコーエプソン株式会社 Spectroscopic sensor
JP6237803B2 (en) * 2016-03-07 2017-11-29 セイコーエプソン株式会社 Optical sensor and spectroscopic sensor
JP2019145532A (en) 2016-06-15 2019-08-29 ソニー株式会社 Imaging apparatus and electronic apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151830A (en) * 1981-03-13 1982-09-20 Union Giken:Kk Spectrophotometer
JPS58100720A (en) * 1981-12-10 1983-06-15 Nec Corp Spectroscopic system of multiband radiometer
JPS60178788A (en) * 1984-02-24 1985-09-12 Nec Corp Solid-state image pickup device
JPH01217304A (en) * 1988-02-25 1989-08-30 Hamamatsu Photonics Kk Optical interference filter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983120B2 (en) 2013-02-05 2018-05-29 Seiko Epson Corporation Colorimetry method and colorimetry apparatus

Also Published As

Publication number Publication date
JPH06129908A (en) 1994-05-13

Similar Documents

Publication Publication Date Title
JP2713838B2 (en) Spectral imaging sensor
US6630999B2 (en) Color measuring sensor assembly for spectrometer devices
US6057925A (en) Compact spectrometer device
CN109856058B (en) High-resolution real-time polarization spectrum analysis device and method
KR100721414B1 (en) Confocal microscope, fluorescence measuring method and polarized light measuring method using confocal microscope
US6844930B2 (en) Spectrophotometer
US20060227328A1 (en) Light-sensing system that uses light guides
US20140055784A1 (en) Camera system for capturing two-dimensional spatial information and hyper-spectral information
CN104007528A (en) Spectroscopic camera
JP2007509351A (en) Optical readout system and method for spectral multiplexing of resonant waveguide gratings
CN113588085A (en) Miniature snapshot type spectrometer
US20050036145A1 (en) Small packaged spectroscopic sensor unit
CN109764964A (en) A kind of push-scanning type polarization light spectrum image-forming micro-system, imaging method and preparation method
JP3694559B2 (en) Display screen colorimetric measurement device
US20080043232A1 (en) Multi-angle and multi-channel inspecting device
US10564373B1 (en) Interferometric imaging systems with exchangeable imaging modules
JP3329898B2 (en) Multi-channel Fourier transform spectrometer
CN217236980U (en) Multispectral system structure based on optical fiber type
US10677650B2 (en) Fourier transform multi-channel spectral imager
US11802829B2 (en) Method and system for broadband photoreflectance spectroscopy
DE102020111150A1 (en) Device for coupling optical waveguides to a detector array
US20240019358A1 (en) Metasurface polarization filtering for characterization of samples
CN112484853A (en) Method for eliminating signal light crosstalk in spectral analysis module based on optical filter array
Stock et al. Fully integrated stokes snapshot imaging polarimeter
CN217982098U (en) Liquid crystal polarization camera system based on micro-lens array

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees