JP2713012B2 - Roll cooling method for metal strip - Google Patents

Roll cooling method for metal strip

Info

Publication number
JP2713012B2
JP2713012B2 JP4098536A JP9853692A JP2713012B2 JP 2713012 B2 JP2713012 B2 JP 2713012B2 JP 4098536 A JP4098536 A JP 4098536A JP 9853692 A JP9853692 A JP 9853692A JP 2713012 B2 JP2713012 B2 JP 2713012B2
Authority
JP
Japan
Prior art keywords
cooling
roll
steel strip
δtf
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4098536A
Other languages
Japanese (ja)
Other versions
JPH05271791A (en
Inventor
俊雄 佐藤
豊 鈴川
峻一 杉山
秀峰 小林
和範 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP4098536A priority Critical patent/JP2713012B2/en
Publication of JPH05271791A publication Critical patent/JPH05271791A/en
Application granted granted Critical
Publication of JP2713012B2 publication Critical patent/JP2713012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は鋼帯等の金属帯の連続
焼鈍において冷却ロールにより該金属帯を冷却する際
に、絞り等の形状不良なく安定通板させるための金属帯
のロール冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a metal strip such as a steel strip in a continuous annealing process by using a cooling roll to cool the metal strip by a cooling roll so that the metal strip can be stably passed without a shape defect such as drawing. About.

【0002】[0002]

【従来の技術】冷媒を内部通路に流通させてその外表面
に接触する金属帯等の冷却を行なう冷却ロールによる冷
却は、冷却速度がガスジェットの様な気体冷却法に比べ
速く、品質向上に効果があることから金属帯の連続焼鈍
設備等で多用されている。
2. Description of the Related Art Cooling by a cooling roll that circulates a coolant through an internal passage and cools a metal band or the like that comes into contact with the outer surface thereof is faster than a gas cooling method such as a gas jet, thereby improving quality. Since it is effective, it is frequently used in continuous annealing equipment for metal strips.

【0003】[0003]

【発明が解決しようとする課題】図10は代表的なロー
ル冷却設備の例であり、図中10は水冷の冷却ロール、
20は鋼帯を示している。これら#1〜#5の冷却ロール
10を通過した時該鋼帯20がロール10と接触する箇所と非
接触の箇所は、同図(ロ)の夫々α、βで示されるよう
な状態になり、ここで図11(イ)(ロ)に示される様
に鋼帯長手方向に温度差を生じているため、図10
(ハ)に示される様に鋼帯20幅方向に熱応力を生じる。
この熱応力のために該鋼帯20の形状が崩れ易く、甚しい
場合は、「絞り」と称する鋼帯長手方向の縦じわが生
じ、製品不良や鋼帯20の蛇行に伴なう破断事故等重大な
トラブルを引き起こす等の問題があった。
FIG. 10 shows an example of a typical roll cooling equipment, in which 10 is a water-cooled cooling roll,
Reference numeral 20 denotes a steel strip. These # 1 to # 5 cooling rolls
When the steel strip 20 passes through the roll 10, the portions where the steel strip 20 comes into contact with the roll 10 and the portions where the steel strip 20 does not come into contact are in the state indicated by α and β in FIG. Since a temperature difference is generated in the longitudinal direction of the steel strip as shown in (b), FIG.
As shown in (c), thermal stress is generated in the width direction of the steel strip 20.
Due to this thermal stress, the shape of the steel strip 20 is likely to collapse, and in severe cases, vertical wrinkles in the longitudinal direction of the steel strip called "drawing" occur, resulting in product failure and breakage accidents accompanying the meandering of the steel strip 20. There were problems such as causing serious trouble.

【0004】この絞りの主たる原因は、冷却ロールに鋼
帯が接触する入側直前部において鋼帯長手方向の温度差
に伴ない発生する幅方向の圧縮の熱応力が引金となって
おり、鋼帯の座屈を引き起こすためであることが知られ
ている。
[0004] The main cause of the drawing is that the thermal stress of the compression in the width direction generated due to the temperature difference in the longitudinal direction of the steel strip immediately before the entry side where the steel strip comes into contact with the cooling roll is triggered. It is known to cause buckling of the steel strip.

【0005】この為、冷却ロール入側直前部における鋼
帯の幅方向圧縮応力を軽減し、絞りや座屈に対する耐力
を高める工夫が種々提案されている。
For this reason, various measures have been proposed to reduce the compressive stress in the width direction of the steel strip immediately before the cooling roll entrance side and to increase the resistance to drawing and buckling.

【0006】例えば特開昭59−107031号では図
12(イ)に示される様に鋼帯20の冷却ロール10入側直
前部(1m以内)を冷却ノズル34等で冷却し、同図(ロ)
に示される様に入側直前の鋼帯長手方向の温度勾配を緩
和し、絞りに対する耐力を向上させる方法が開示されて
いる。又特開平1−268820号では、絞りの原因と
なる鋼帯の面外変形増大箇所を検知し、そこに集中的に
冷却ガスを吹き付ける方法が開示されている。
For example, in Japanese Patent Laid-Open Publication No. Sho 59-107031, as shown in FIG. 12A, a portion (within 1 m) of the steel strip 20 immediately before entering the cooling roll 10 is cooled by a cooling nozzle 34 or the like. )
Discloses a method of relaxing the temperature gradient in the longitudinal direction of the steel strip immediately before the entry side and improving the proof stress against drawing. Also, Japanese Patent Application Laid-Open No. 1-268820 discloses a method of detecting an out-of-plane deformation increase portion of a steel strip which causes a drawing and spraying a cooling gas intensively thereat.

【0007】しかしこれらの技術は幅広薄物の金属帯に
対しては必ずしも有効ではなく、鋼帯等の金属帯の絞り
防止に対しより効果的なロール冷却方法が求められてい
た。
However, these techniques are not always effective for wide and thin metal strips, and a more effective roll cooling method for preventing drawing of metal strips such as steel strips has been required.

【0008】本発明は従来技術の以上の様な問題に鑑み
創案されたもので、金属帯の絞り等の形状不良なく安定
通板を可能ならしめる金属帯のロール冷却方法を提供せ
んとするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is an object of the present invention to provide a method of cooling a metal strip roll which enables stable thread passing without a shape defect such as drawing of the metal strip. It is.

【0009】[0009]

【課題を解決するための手段】そのため本発明のロール
冷却方法は、冷却ロールにより金属帯の冷却を行なう際
に、ロール入側直前の金属帯中央部をその幅方向に該板
幅の15〜85%の範囲で、且つ入側直前から長手方向
上流側に0.3〜10mの範囲で冷却せしめると共に、
該前面冷却を行なう場合に、その前面冷却による温度勾
配ΔTf/bを次式数3に示す範囲内に、且つ該前面冷
却による金属帯長手方向の温度差ΔTfを次式数4に示
す範囲内に制御することを特徴としている。
According to the roll cooling method of the present invention, when cooling a metal strip by a cooling roll, the center of the metal strip immediately before the roll entry side is moved in the width direction by 15 to 15 mm of the sheet width. While cooling in the range of 85%, and in the range of 0.3 to 10 m from just before the entrance side to the upstream side in the longitudinal direction ,
When performing the front cooling, the temperature gradient due to the front cooling
The distribution ΔTf / b is within the range shown in the following equation 3, and
Equation 4 shows the temperature difference ΔTf in the longitudinal direction of the metal strip due to the cooling.
It is characterized in that it is controlled within the range.

【0010】[0010]

【数3】 (Equation 3)

【0011】但しΔTf:前面冷却による金属帯長手方向の温度差
(℃) b:金属帯の前面冷却長さ(m) W:金属帯の板幅(m) t:金属帯の板厚(m)
Where ΔTf is the temperature difference in the longitudinal direction of the metal band due to cooling of the front surface.
(° C) b: Front cooling length of metal strip (m) W: Sheet width of metal strip (m) t: Sheet thickness of metal strip (m)

【0012】[0012]

【数4】ΔTf≦50℃ 数 Tf ≦ 50 ° C.

【0013】本発明者等は以上の様な構成の創案に至る
過程で、前記特開昭59−107031号や特開平1−
268820号に示された様な冷却ロール入側直前部を
冷却する追試実験を行なったが、その様な冷却では幅広
薄物の金属帯に対しては絞り防止に十分な効果が得られ
なかった。
In the process of inventing the above-described structure, the inventors of the present invention disclosed in the above-mentioned JP-A-59-107031 and JP-A-Hei.
An additional test was conducted to cool the portion immediately before the entrance of the cooling roll as shown in Japanese Patent No. 268820. However, such cooling did not provide a sufficient effect to prevent the drawing of a wide and thin metal band.

【0014】この理由は金属帯の前面を冷却する範囲が
図13に示される様にロール入側直前部Yに局限されて
おり、必ずしもこの部分の幅方向圧縮応力の緩和には有
効でなく、又この部分の冷却のみによって幅方向圧縮応
力を緩和しようとするならばかなりの冷却が必要とな
り、逆にこれによって新しい座屈や絞りの発生があるか
らである。
The reason for this is that the range for cooling the front surface of the metal strip is limited to the portion Y just before the roll entrance as shown in FIG. 13, and it is not necessarily effective for relaxing the compressive stress in the width direction of this portion. If the compression stress in the width direction is to be relaxed only by cooling this portion, a considerable amount of cooling is required, and on the contrary, new buckling and reduction occur.

【0015】そもそもロール冷却による金属帯の絞りの
発生は、前記図10(ロ)(ハ)に示される様に、鋼帯
20がロール10上で冷却されるため、その長手方向に生ず
る温度差に起因する熱応力によって引き起こされる。こ
の長手方向の温度差により冷却ロール10上の鋼帯20はロ
ール出側において、ロールに接していないそれより温度
の低い部分からの拘束を受けてこれにより幅方向に引張
応力が作用し、反対にロール入側部のこれに接触してい
ない鋼帯20では、ロール10上における鋼帯20の熱収縮の
影響を受ける為、幅方向の圧縮応力が働く。この圧縮応
力は図13に示される様に金属帯2のロール入側中央部
で最大σminとなり、座屈限界に達すると、この部分の
面外変形が急激に起こり、該変形がロール1上に乗り上
げてつぶれることで絞りを発生させる。本発明者等はこ
の圧縮応力に着目し、この応力の緩和及び絞り防止に有
効な構成につき、再度検討を重ねた。
In the first place, as shown in FIGS. 10 (b) and 10 (c), the occurrence of the drawing of the metal band due to the roll cooling is caused by the steel band.
As 20 is cooled on the roll 10, it is caused by thermal stresses due to the temperature difference occurring in its longitudinal direction. Due to the temperature difference in the longitudinal direction, the steel strip 20 on the cooling roll 10 is restrained on the roll exit side from a portion having a lower temperature that is not in contact with the roll, whereby a tensile stress acts in the width direction, and conversely. In the steel strip 20 on the roll entry side that is not in contact with the roll, the steel strip 20 on the roll 10 is affected by the heat shrinkage, so that a compressive stress acts in the width direction. This compressive stress reaches a maximum σmin at the center of the metal band 2 on the roll entry side as shown in FIG. 13, and when the buckling limit is reached, out-of-plane deformation of this portion occurs rapidly, and the deformation is generated on the roll 1. The iris is generated by riding and collapsing. The present inventors have paid attention to this compressive stress, and have again examined the configuration effective for relaxing this stress and preventing drawing.

【0016】本発明者等の検討によって確認されたこと
は、絞り発生防止に効果のある前面冷却には、これまで
の様なロール接触直前の一点のみを冷却する構成ではな
く、図1に示される様に、ある適正な長さb及び幅wで
冷却した方が良いこと、及びその冷却自身についてもや
みくもに冷却量を多くするといったものではなく、金属
帯2長手方向における温度勾配ΔTf/bをある適正な
範囲に制御しなければならないということであった。
It has been confirmed by the study of the present inventors that the cooling of the front surface which is effective in preventing the occurrence of the drawing does not have a structure in which only one point just before the roll contact is cooled as in the conventional case, but is shown in FIG. Therefore, it is better not to cool with a certain appropriate length b and width w, and the cooling itself is not a matter of blindly increasing the cooling amount, but the temperature gradient ΔTf / b in the longitudinal direction of the metal strip 2. Must be controlled within an appropriate range.

【0017】そのうち予備実験によって図13に示され
る金属帯2の冷却ロール入側中央部に発生する幅方向圧
縮応力は冷却ロール1上での金属帯長手方向における温
度勾配dT/dx(℃/m)に比例することがまず確認
された。次に冷却ロール1入側前面の金属帯2をある温度
勾配で冷却した場合、この部分の冷却によってロール入
側の金属帯2にはその幅方向に引張応力が作用すること
になり、ロール冷却に伴なって発生している幅方向最大
圧縮応力がこれによって緩和され、絞りが防止されるこ
とが明らかとなった。更にこれらの予備実験で得られた
知見は、必ずしもロール前面部の冷却が全てにおいて効
果があるというわけではなく、場合によっては逆効果の
ケースもあることであった。
Of these, the compressive stress in the width direction generated at the center of the metal strip 2 on the cooling roll entrance side shown in FIG. 13 by the preliminary experiment is a temperature gradient dT / dx (° C./m) in the longitudinal direction of the metal strip on the cooling roll 1. ) Was first confirmed. Next, when the metal band 2 on the front side of the cooling roll 1 is cooled at a certain temperature gradient, a tensile stress acts on the metal band 2 on the roll entry side in the width direction due to the cooling of this portion. It has been clarified that the maximum compressive stress in the width direction generated along with this is alleviated by this, and drawing is prevented. Furthermore, the findings obtained in these preliminary experiments showed that the cooling of the roll front part was not always effective in all cases, and that in some cases the effect was adverse.

【0018】そこで本発明者等は絞り防止に効果のある
前面冷却の仕方として、ある適正な冷却長さ、冷却幅及
び前面冷却温度勾配があるとの予測を立て、実機による
系統的な絞り実験を行なった。
Therefore, the present inventors have predicted that there is a certain appropriate cooling length, cooling width, and front cooling temperature gradient as a method of cooling the front surface which is effective in preventing drawing, and systematic drawing experiments using an actual machine. Was performed.

【0019】まず鋼帯のロール冷却を対象とした場合
に、前述した前面冷却時における絞り防止効果の指標を
決めた。即ち、図1に示される様に鋼帯の冷却ロール入
側温度Tin(℃)及び出側温度Tout(℃)とした時、
前面冷却がない場合の絞り限界温度差TR(℃)(TR
Tin−Tout)を原点の基準温度差とし、更に前面冷却
により鋼帯の絞り限界温度に変化があった場合の上記基
準温度差からの増分ΔTR(℃)をその指標とした。
First, in the case of roll cooling of a steel strip, an index of the drawing prevention effect at the time of cooling the front surface was determined. That is, as shown in FIG. 1, when the cooling roll inlet side temperature Tin (° C.) and the outlet side temperature Tout (° C.) of the steel strip are set,
Limiting temperature difference T R (° C) when there is no front cooling (T R =
(Tin-Tout) was taken as the reference temperature difference at the origin, and the increment ΔT R (° C.) from the reference temperature difference when the drawing limit temperature of the steel strip changed due to front cooling was used as the index.

【0020】この指標を決定するため本発明者等は、板
厚(t)0.66mm×板幅(W)1450mm、同0.5mm×1500mm、
同0.5mm×1800mmの各サイズからなる軟質の焼鈍材に対
しロール冷却と共に前面冷却を実施し、この時の前面冷
却幅wと前面冷却温度勾配ΔTf/b(℃/m)を種々
変化させて前記ΔTRを求める実験を行なった(但し前
面冷却長さbは1mとした)。その結果を図2に示す。同
図から前面冷却の温度勾配ΔTf/bをある適切な温度
勾配(図中では10.0℃/m以下)としてあれば、冷却幅
/板幅(w/W)の広い範囲、特に0.15≦w/W≦0.85
の範囲でΔTRが約5℃から12℃近くまで上昇し、絞り防
止の効果が得られていることがわかる。
In order to determine this index, the present inventors have determined that the sheet thickness (t) is 0.66 mm, the sheet width (W) is 1450 mm, and the sheet thickness (t) is 0.5 mm × 1500 mm.
Roll cooling and front cooling were performed on the soft annealed material of each size of 0.5 mm × 1800 mm, and the front cooling width w and the front cooling temperature gradient ΔTf / b (° C./m) were variously changed. An experiment for determining the ΔT R was performed (however, the front cooling length b was 1 m). The result is shown in FIG. From the figure, if the temperature gradient ΔTf / b of the front cooling is set to a certain appropriate temperature gradient (in the figure, 10.0 ° C./m or less), a wide range of cooling width / plate width (w / W), particularly 0.15 ≦ w / W ≦ 0.85
ΔT R rises from about 5 ° C. to nearly 12 ° C. in the range, and it can be seen that the effect of preventing drawing is obtained.

【0021】一方、前面冷却温度勾配ΔTf/bを大き
くしていく(12.0℃/m、15℃/m、23℃/m)と、同図
に示される様に、逆に同じw/WであってもΔTRを下
落させ、逆効果となっていることがわかる。これは過度
の前面冷却により鋼帯入側前面部に座屈が生じ、冷却ロ
ールにおいて絞りが発生し易くなるからである。
On the other hand, when the front cooling temperature gradient ΔTf / b is increased (12.0 ° C./m, 15 ° C./m, 23 ° C./m), as shown in FIG. Even if there is, it can be seen that ΔT R is lowered and the effect is opposite. This is because excessive front cooling causes buckling of the front side of the steel strip entry side, so that squeezing easily occurs in the cooling roll.

【0022】次に最適な前面冷却温度勾配を特定する
為、本発明者等は絞りに悪影響を及ぼす鋼帯入側前面部
の座屈を発生させる前面冷却温度勾配(ΔTf/b)c
rについて、前記実験に用いられたものと同じサイズ及
び同じ材質の鋼帯に対し、前面冷却幅/板幅(w/W)
及び前面冷却長さb(0.3〜10.0m)を変えて一
連の実験を行なった(尚、W/t=2200については
前面冷却長さbを0.3m、1.0m、3.0mに変化
させて実験を行なった)。その結果、座屈を発生させる
前面冷却温度勾配(ΔTf/b)crは、図3に示され
る様に、冷却長さbおよび冷却幅/板幅(w/W)には
影響されず、板幅/板厚(W/t)に依存していること
が明らかとなった。即ち、同図ではW/tが2200
時、bを0.3、1.0、3.0mと変えても(ΔTf
/b)crは略同じ位置にあって変化がなく、しかもw
/Wを変えてもその値は略変わらない。これに対してW
/tが2200、3000、3600と変わった場合は
(ΔTf/b)crは異なった値となった。
Next, in order to specify an optimum front cooling temperature gradient, the present inventors have determined that a front cooling temperature gradient (ΔTf / b) c which causes buckling of the front portion on the steel strip entrance side which adversely affects the drawing.
Regarding r, for the steel strip of the same size and the same material as those used in the above experiment, the front cooling width / plate width (w / W)
A series of experiments were performed while changing the front cooling length b (0.3 to 10.0 m) (for W / t = 2200, the front cooling length b was set to 0.3 m, 1.0 m, 3. The experiment was carried out by changing to 0 m). As a result, the front cooling temperature gradient (ΔTf / b) cr that causes buckling is not affected by the cooling length b and the cooling width / plate width (w / W) as shown in FIG. It became clear that it depends on the width / thickness (W / t). In other words, in the figure, when W / t is 2200 , even if b is changed to 0.3, 1.0, and 3.0 m, (ΔTf
/ B) cr is substantially unchanged at the same position, and w
Even if / W is changed, the value does not substantially change. On the other hand, W
When / t changed to 2200, 3000, and 3600, (ΔTf / b) cr became a different value.

【0023】以上の結果が得られたことから、これらを
踏まえて、多くのサイズの(即ちW/tの異なる)鋼帯
を通板せしめた時のW/tと(ΔTf/b)crの関係
を求める実験を行ない、図4に示される結果を得た。同
図から次式数に示される範囲内の前面冷却温度勾配Δ
Tf/bに設定された場合に、前面冷却による冷却ロー
ル入側前面の座屈が発生せず、鋼帯の絞り発生防止に有
効であることがわかった。
From the above results, based on these, based on these, W / t and (ΔTf / b) cr when steel strips of many sizes (ie, different W / t) were passed through An experiment was performed to determine the relationship, and the results shown in FIG. 4 were obtained. From the figure, the front cooling temperature gradient Δ within the range shown by the following equation ( 5)
When it was set to Tf / b, it was found that buckling of the cooling roll entrance side front surface due to front surface cooling did not occur, which was effective for preventing the occurrence of drawing of the steel strip.

【0024】[0024]

【数5】 (Equation 5)

【0025】次にこれらの実験結果から、W/t、w/
パラメータとして、前記ΔTの増大に及ぼす前面
冷却温度勾配ΔTf/bの影響を整理したところ、図5
に示す様な結果となった。この図においてW/tが22
00である例に示される様に、w/Wが0.25、0.
5、0.75と変わってもΔTf/bにあまり変化がな
い。これに対しW/tが2200、3000、3600
と変わるとΔTf/bが全く変わり、それに伴なってΔ
も全く異なる変化を示している。
Next, from these experimental results, W / t, w /
W as a parameter, was to organize the influence of the ΔT front cooling temperature on the increase in the R gradient .DELTA.Tf / b, Fig. 5
The result was as shown in the figure. In this figure, W / t is 22
00, the w / W is 0.25, 0.
Even if it changes to 5, 0.75, there is not much change in ΔTf / b. On the other hand, W / t is 2200, 3000, 3600
ΔTf / b changes completely, and accordingly, ΔTf / b
T R shows a completely different change.

【0026】同図からΔTf/bが下記数6に示される
範囲内に制御されていれば、ΔTの増大に効果がある
ことがわかる。
[0026] If it is controlled within a range .DELTA.Tf / b from the figure shown in following equation 6, it is found to be effective in increasing [Delta] T R.

【0027】[0027]

【数6】 (Equation 6)

【0028】更に、前面冷却長さbの最適範囲を特定す
る為、W/tをパラメータとし、ΔTf/bを上記数1
に示す最適値の範囲内(4.9、6.8、10.0℃/m)に設定
して一連の実験を行なった。その時の結果を図6に示
す。同図から前面冷却長さbが0.2mの場合ではΔTR
増大には逆効果となっていることがわかる。このΔTR
は前面冷却長さbが0.3m弱から正の値に転じ、同長さが
1m近傍で最大となった後飽和し、それから3〜5mまで平
坦部を作った後低下しており、W/tにもよるが、前面
冷却長さbが5〜10mでΔTRの増大効果が失なわれる。
これは前面冷却長さb及び同温度勾配ΔTf/bが増大
するに伴ない、鋼帯の両サイドに耳波と称する面外変形
を生じ、特に鋼帯長手方向の温度差をその幅方向に複数
とって調べた場合の最大温度差ΔTfmaxが50℃以上に
なると、耳波が非常に大きくなり、振動の発生や入側形
状不良の発生のため、前面冷却を行なってもΔTRを増
大する効果がなくなり、却って冷却ロール上での絞りが
発生し易くなるためである。又同図からわかる様に、W
/tのより大きな鋼帯の通板を考えた場合でも、前面冷
却長さbmの最適範囲が10m以上になることは考えづら
く、一方設備的にも大掛かりなものとなるのであまり現
実的ではない。これらの実験結果から、前面冷却長さb
として0.3〜10mの範囲が最適であること、及び前面冷却
による鋼帯長手方向の温度差ΔTfとして50℃以下に制
御すべきことが明らかとなった。
Further, in order to specify the optimum range of the front cooling length b, W / t is used as a parameter, and ΔTf / b is calculated by the above equation (1).
A series of experiments were carried out with the values set within the optimum values shown in (4) (4.9, 6.8, 10.0 ° C / m). The result at that time is shown in FIG. It can be seen from the figure that when the front cooling length b is 0.2 m, the increase in ΔT R has an adverse effect. This ΔT R
Changes from the front cooling length b to a positive value from less than 0.3m,
Saturates after reaching a maximum near 1 m, then decreases after forming a flat part to 3 to 5 m, and depending on W / t, the effect of increasing ΔT R when the front cooling length b is 5 to 10 m Is lost.
As the front cooling length b and the temperature gradient ΔTf / b increase, an out-of-plane deformation called an ear wave occurs on both sides of the steel strip, and the temperature difference in the longitudinal direction of the steel strip is particularly reduced in the width direction. If the maximum temperature difference ΔTfmax of a plurality of examinations is 50 ° C. or more, the ear wave becomes very large, and the occurrence of vibration and the failure of the inlet side shape cause the occurrence of ΔT R even when the front surface is cooled. This is because the effect is lost, and rather, squeezing on the cooling roll is more likely to occur. As can be seen from FIG.
Even when a steel strip having a larger / t is considered, it is difficult to imagine that the optimum range of the front cooling length bm is 10 m or more. On the other hand, it is not realistic because it requires a large facility. . From these experimental results, the front cooling length b
It was found that the range of 0.3 to 10 m was optimal, and that the temperature difference ΔTf in the longitudinal direction of the steel strip due to the front cooling was to be controlled to 50 ° C. or less.

【0029】[0029]

【実施例】以下本発明法の一実施例につき詳述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method of the present invention will be described below in detail.

【0030】本発明者等は鋼帯20の連続焼鈍設備におい
て図7及び図8の各構成を有したロール冷却設備により
本発明法を実施した。
The present inventors carried out the method of the present invention in a continuous annealing facility for steel strip 20 using a roll cooling facility having the respective configurations shown in FIGS.

【0031】これらのロール冷却設備構成では、鋼帯20
が冷却ロール10に接触する直前の部分で該鋼帯20の反接
触面側に冷却ガスを噴出せしめて前面冷却を行なう前面
冷却装置3が設けられている。該冷却装置3の冷却ヘッダ
30は、幅wが0.6m、長さbが1mの大きさの箱体で構成さ
れ、そのガス噴出面には約0.1mピッチで径25mmのガス噴
出孔(図示なし)が多数設けられており、前述の様に鋼
帯20が冷却ロール10に接触する直前の部分に設置されて
いる。
In these roll cooling equipment configurations, the steel strip 20
There is provided a front cooling device 3 for injecting a cooling gas to the opposite side of the steel strip 20 just before coming into contact with the cooling roll 10 to perform front cooling. The cooling header of the cooling device 3
Reference numeral 30 denotes a box having a width w of 0.6 m and a length b of 1 m. The gas ejection surface has a large number of gas ejection holes (not shown) having a pitch of about 0.1 m and a diameter of 25 mm. As described above, the steel strip 20 is provided in a portion immediately before coming into contact with the cooling roll 10.

【0032】又冷却ロール10は図面上左右に移動して鋼
帯20との接触長の調整が可能となっており、そのため上
記冷却ヘッダ30と鋼帯20との接触を避け、且つ前面冷却
温度勾配ΔTf/b等が設定していた値から大きくかけ
離れてしまうことを避ける目的から、前記冷却ロール10
の移動に追従して該冷却ヘッダ30も同方向に移動できる
ような構成になっており、その移動形式の違いに対応し
て図7と図8の構成が採用されている。即ち、図7では
入側デフレクタロール11から鋼帯20が離れる点の近傍に
前記冷却ヘッダ30の回転固定軸31が設けられ、冷却ロー
ル10の移動信号を検出した制御装置(図示なし)によっ
てその伸縮が制御されるシリンダ32により、該軸31を中
心に冷却ヘッダ30が回転せしめられるようになってお
り、常にこの冷却ヘッダ30が鋼帯20表面と平行乃至は平
行に近い状態に保持される様にしている。一方、図8で
はまず冷却ヘッダ30自身が傾斜した状態で鋼帯20の冷却
ロール10接触点直前に配されると共に、該冷却ロール10
移動方向と同じ方向に移動できる様な状態に設置されて
おり、前述と同様、冷却ロール10の移動信号を検知した
制御装置(図示なし)によってその伸縮が制御されるシ
リンダ33により、該冷却ヘッダ30は平行移動せしめられ
るようになっており、常に該冷却ヘッダ30が鋼帯20表面
に近接した状態に保持される様にしている。
The cooling roll 10 can be moved left and right in the drawing to adjust the contact length with the steel strip 20, so that the cooling header 30 can be prevented from contacting with the steel strip 20, and the front cooling temperature can be reduced. For the purpose of avoiding that the gradient ΔTf / b and the like greatly deviate from the set values, the cooling roll 10
The cooling header 30 can also be moved in the same direction following the movement of the cooling head, and the structures shown in FIGS. That is, in FIG. 7, a rotation fixed shaft 31 of the cooling header 30 is provided near a point where the steel strip 20 is separated from the entry-side deflector roll 11, and a control device (not shown) that detects a movement signal of the cooling roll 10 provides the same. The cooling header 30 is rotated about the shaft 31 by a cylinder 32 whose expansion and contraction is controlled, and the cooling header 30 is always kept parallel or nearly parallel to the surface of the steel strip 20. I am doing it. On the other hand, in FIG. 8, first, the cooling header 30 is disposed immediately before the contact point of the cooling roll 10 of the steel strip 20 in an inclined state, and the cooling
The cooling header is provided by a cylinder 33 whose expansion and contraction is controlled by a control device (not shown) which has detected a movement signal of the cooling roll 10 as described above. Numeral 30 is adapted to be translated so that the cooling header 30 is always kept close to the surface of the steel strip 20.

【0033】以上の様なロール冷却設備において0.9〜
1.85mの板幅Wの鋼帯20を通板せしめた(w/Wは32〜6
7% )。この時前面冷却装置3による冷却を行なわなか
った場合と、同装置3による前面冷却を行なって温度勾
配ΔTf/bをΔTf/b=2.5×107(t/w)2+1.1×
104(t/w)(いずれも本発明条件を満たす)とし、且
つ前面冷却長手方向温度差ΔTfを30℃以内(同じく本
発明条件を満たす)と制御した場合につき、それらの実
験によって得られた結果を図9に示す。同図に示される
様に、前面冷却を行なわなかった場合は、前面冷却無し
のカーブの左上側が鋼帯20の絞り等の発生がなく安定通
板が可能な領域となり、W/tで示せばW/t<3000の
領域となる。これに対し、本発明による前面冷却を行な
った場合は、前面冷却有りのカーブの左上側が同じく鋼
帯20の絞り等の発生がなく安定した通板ができる領域で
あり、前面冷却無しの場合に比べて安定通板領域が広が
った。即ち、本発明により略W/t=4000までのサイズ
の鋼帯20の安定通板が可能となった。従って板厚的には
前面冷却のない場合に比べ約0.10〜0.15mm薄い鋼帯20ま
で絞りや蛇行等の発生がなく通板できる領域が広がり、
生産性、操業性の面で顕著な向上が見られた。
In the above-described roll cooling facility, 0.9 to
A steel strip 20 having a width of 1.85 m and a width W was passed through (w / W was 32 to 6
7%). At this time, when the cooling by the front cooling device 3 is not performed, and when the cooling by the front device 3 is performed, the temperature gradient ΔTf / b is reduced by ΔTf / b = 2.5 × 10 7 (t / w) 2 + 1.1 ×
10 4 (t / w) (all satisfy the conditions of the present invention) and the temperature difference ΔTf in the front-side cooling longitudinal direction is controlled to 30 ° C. or less (also satisfying the conditions of the present invention). FIG. 9 shows the results. As shown in the figure, when the front surface cooling is not performed, the upper left side of the curve without the front surface cooling becomes an area where the steel strip 20 can be stably passed without the occurrence of drawing or the like of the steel strip 20. W / t <3000. On the other hand, when the front cooling according to the present invention is performed, the upper left side of the curve with the front cooling is a region where the steel strip 20 can be stably passed without the occurrence of drawing or the like of the steel strip 20. Compared with this, the stable threading area has been expanded. That is, the present invention has made it possible to stably pass the steel strip 20 having a size up to approximately W / t = 4000. Therefore, compared to the case without front cooling, the area where the sheet can be passed without the occurrence of drawing or meandering is expanded to about 0.10 to 0.15 mm thinner steel strip 20 compared to the case without front cooling,
Significant improvements were seen in productivity and operability.

【0034】[0034]

【発明の効果】以上詳述した本発明法によれば、幅広薄
物の金属帯になる程前面冷却によってもなかなかその発
生を防止し得なかった絞りの発生等が確実に抑止し得る
ようになり、安定通板を可能にする領域が広がった。こ
のため、操業度、生産性が大幅に向上すると共に、ユー
ザの広幅薄物CAL指定材への対応が可能となった。
According to the method of the present invention described in detail above, it becomes possible to surely suppress the occurrence of a throttle which could not be prevented even by the front cooling as the width of the metal strip becomes wider and thinner. The area that enables stable threading has expanded. For this reason, the operation rate and productivity have been greatly improved, and it has become possible to cope with the wide and thin CAL designated material of the user.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による前面冷却の冷却範囲を示す斜視図
である。
FIG. 1 is a perspective view showing a cooling range of front cooling according to the present invention.

【図2】W/tをパラメータとした時のw/WとΔTR
の関係を示すグラフである。
FIG. 2 shows w / W and ΔT R when W / t is used as a parameter.
6 is a graph showing the relationship of.

【図3】W/tをパラメータとした時のw/Wと前面座
屈時のΔTf/bの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between w / W when W / t is used as a parameter and ΔTf / b when buckling the front surface.

【図4】前面冷却部の座屈と前面冷却温度勾配ΔTf/
b及びW/tの関係を示すグラフである。
FIG. 4 shows buckling of front cooling section and front cooling temperature gradient ΔTf /
It is a graph which shows the relationship of b and W / t.

【図5】W/tをパラメータとした時のΔTf/bとΔ
Rの関係を示すグラフである。
FIG. 5 shows ΔTf / b and Δ when W / t is used as a parameter.
Is a graph showing the relationship between T R.

【図6】W/tをパラメータとした時の前面冷却長さb
とΔTRの関係を示すグラフである。
FIG. 6: Front cooling length b when W / t is used as a parameter
6 is a graph showing the relationship between and ΔT R.

【図7】本発明法の実施設備におけるロール冷却構成の
一実施例を示す説明図である。
FIG. 7 is an explanatory view showing one embodiment of a roll cooling configuration in equipment for implementing the method of the present invention.

【図8】同じくロール冷却構成の他の実施例を示す説明
図である。
FIG. 8 is an explanatory view showing another embodiment of the roll cooling configuration.

【図9】本実施例の実験結果を示すグラフである。FIG. 9 is a graph showing experimental results of the present example.

【図10】代表的なロール冷却構成を示す説明図であ
る。
FIG. 10 is an explanatory diagram showing a typical roll cooling configuration.

【図11】代表的なロール冷却構成における温度勾配の
状態を示す説明図である。
FIG. 11 is an explanatory diagram showing a state of a temperature gradient in a typical roll cooling configuration.

【図12】改良されたロール冷却構成における温度勾配
の状態を示す説明図である。
FIG. 12 is an explanatory diagram showing a state of a temperature gradient in the improved roll cooling configuration.

【図13】従来のロール冷却構成を示す斜視図である。FIG. 13 is a perspective view showing a conventional roll cooling configuration.

【符号の説明】[Explanation of symbols]

1、10 冷却ロール 2 金属帯 3 前面冷却装置 20 鋼帯 30 冷却ヘッダ 1, 10 Cooling roll 2 Metal strip 3 Front cooling unit 20 Steel strip 30 Cooling header

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 秀峰 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 橋本 和範 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特公 昭63−1381(JP,B2) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hidemine Kobayashi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Kazunori Hashimoto 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Incorporated company (56) References JP-B-63-1381 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷却ロールと接触させて金属帯の冷却を
行なう際に、ロール入側直前の金属帯中央部をその幅方
向に該板幅の15〜85%の範囲で、且つ入側直前から
長手方向上流側に0.3〜10mの範囲で冷却を行な
い、その前面冷却による温度勾配ΔTf/bを次式数1
に示す範囲内に、且つこの前面冷却による金属帯長手方
向の温度差ΔTfを次式数2に示す範囲内に制御するこ
とを特徴とする金属帯のロール冷却方法。 【数1】 但しΔTf:前面冷却による金属帯長手方向の温度差
(℃) b:金属帯の前面冷却長さ(m) W:金属帯の板幅(m) t:金属帯の板厚(m) 【数2】ΔTf≦50℃
When cooling a metal strip by contacting it with a cooling roll, a central portion of the metal strip immediately before the roll entry side is in the width direction within a range of 15 to 85% of the sheet width and immediately before the entry side. Is cooled in the range of 0.3 to 10 m in the upstream side in the longitudinal direction, and the temperature gradient ΔTf / b due to the front surface cooling is calculated by the following equation (1).
Wherein the temperature difference ΔTf in the longitudinal direction of the metal band due to the front surface cooling is controlled within the range represented by the following equation (2). (Equation 1) Where ΔTf: temperature difference in the longitudinal direction of the metal band due to front cooling
(° C) b: Front cooling length of metal band (m) W: Plate width of metal band (m) t: Plate thickness of metal band (m) ΔTf ≦ 50 ° C.
JP4098536A 1992-03-26 1992-03-26 Roll cooling method for metal strip Expired - Fee Related JP2713012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4098536A JP2713012B2 (en) 1992-03-26 1992-03-26 Roll cooling method for metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4098536A JP2713012B2 (en) 1992-03-26 1992-03-26 Roll cooling method for metal strip

Publications (2)

Publication Number Publication Date
JPH05271791A JPH05271791A (en) 1993-10-19
JP2713012B2 true JP2713012B2 (en) 1998-02-16

Family

ID=14222410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4098536A Expired - Fee Related JP2713012B2 (en) 1992-03-26 1992-03-26 Roll cooling method for metal strip

Country Status (1)

Country Link
JP (1) JP2713012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072285A1 (en) * 2014-11-05 2016-05-12 新日鐵住金株式会社 Steel sheet manufacturing method and steel sheet manufacturing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631381A (en) * 1986-06-18 1988-01-06 Matsushita Electric Ind Co Ltd Ultrasonic motor

Also Published As

Publication number Publication date
JPH05271791A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP2008534289A (en) Processes and systems for producing metal strips and sheets without disrupting continuity during continuous casting and rolling
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
US5227251A (en) Thin continuous cast plate and process for manufacturing the same
JP2917524B2 (en) Continuous casting of thin slabs
JP2713012B2 (en) Roll cooling method for metal strip
EP0127319B1 (en) Continuous casting apparatus for the production of cast sheets
JP2001191158A (en) Continuous casting method of steel
JPH0763827B2 (en) Continuous casting method for steel
JPS61150760A (en) Continuous casting machine for molten metal
JP2003277833A (en) Method and device for manufacturing metal plate
JP3687547B2 (en) Secondary cooling method in continuous casting
JP2698305B2 (en) Cooling method of steel plate
JP7356016B2 (en) Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment
JPH0414173B2 (en)
TWI753487B (en) Secondary cooling method and device for continuous casting slab
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP7332870B2 (en) Extraction method of slab
JP3380354B2 (en) Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace
JP2776033B2 (en) Method of preventing meandering of steel strip in continuous annealing furnace
JPS6343450B2 (en)
JPH075995B2 (en) Tension control method for metal strip in continuous annealing furnace
JP2789819B2 (en) Method of preventing drawing of steel strip in continuous annealing furnace
KR850001154B1 (en) Process for bow type continuous casting
JP2715683B2 (en) Roll cooling method and apparatus for continuous annealing furnace
JP3325496B2 (en) Steel strip winding method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930

LAPS Cancellation because of no payment of annual fees