JP2712923B2 - SAT phase shift circuit - Google Patents

SAT phase shift circuit

Info

Publication number
JP2712923B2
JP2712923B2 JP23055391A JP23055391A JP2712923B2 JP 2712923 B2 JP2712923 B2 JP 2712923B2 JP 23055391 A JP23055391 A JP 23055391A JP 23055391 A JP23055391 A JP 23055391A JP 2712923 B2 JP2712923 B2 JP 2712923B2
Authority
JP
Japan
Prior art keywords
phase shift
sat
shift circuit
circuit
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23055391A
Other languages
Japanese (ja)
Other versions
JPH0575384A (en
Inventor
奈穂子 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23055391A priority Critical patent/JP2712923B2/en
Publication of JPH0575384A publication Critical patent/JPH0575384A/en
Application granted granted Critical
Publication of JP2712923B2 publication Critical patent/JP2712923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Networks Using Active Elements (AREA)
  • Circuits Of Receivers In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はSAT移相回路に関し、
更に詳しくは移動通信端末において使用されるSAT
(Supervisory Audio Tone) 移相回路に関する。今日、
移動通信システムの普及に伴い、移動通信端末には一層
の小型化、低コスト化が要求されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SAT phase shift circuit.
More specifically, SAT used in mobile communication terminals
(Supervisory Audio Tone) It relates to a phase shift circuit. today,
With the spread of mobile communication systems, mobile communication terminals are required to be further reduced in size and cost.

【0002】[0002]

【従来の技術】図4は従来のSAT移相回路の回路図
で、図において1は0〜180度の進み移相回路、3は
0〜−180度の遅れ移相回路、4はサミングアンプ、
11,31は夫々差動増幅回路(オペアンプ)である。
移動通信端末では、自分の位置を基地局に知らせるため
に、ゾーン毎に基地局から送られる5.97KHZ
6.00KHZ 又は6.03KHZ のSAT信号を受信
してこれを同位相で基地局に送信する必要があり、この
ために従来は図4に示すようなSAT移相回路が設けら
れている。
2. Description of the Related Art FIG. 4 is a circuit diagram of a conventional SAT phase shift circuit. In FIG. 4, 1 is a phase shift circuit of 0 to 180 degrees, 3 is a delay phase shift circuit of 0 to -180 degrees, and 4 is a summing amplifier. ,
Reference numerals 11 and 31 denote differential amplifier circuits (operational amplifiers).
In the mobile communication terminal, 5.97KH Z sent to inform their position in the base station, the base station for each zone,
Must send it receives the SAT signal 6.00KH Z or 6.03KH Z to the base station in phase, prior to this has SAT phase shift circuit is provided as shown in FIG. 4 .

【0003】進み移相回路1において、VP のゲインG
及び位相φは抵抗R1 の値によって変化する。即ち、抵
抗R1 を0に近づけると、VP のゲインGは0、かつ位
相φはπ/2に近づき、また抵抗R1 を∞に近づける
と、VP のゲインGは1、かつ位相φは0に近づく。一
方、VN のゲインG及び位相φは抵抗R1の値によって
は変化しない。そこで、これらの差分(VP −VN )を
オペアンプ11で差動増幅すると、その出力には抵抗R
1 の値に応じて0〜180度の範囲内で位相が進んだ信
号が得られる。
[0003] In the process advances the phase shift circuit 1, the V P gain G
And the phase φ varies by the value of resistor R 1. That is, when the resistance R 1 closer to 0, the gain of V P G is 0, and the phase φ approaches [pi / 2, also brought close to resistor R 1 to ∞, the gain G of V P 1, and the phase φ Approaches zero. On the other hand, the gain G and phase φ of V N do not change depending on the value of the resistor R 1 . Therefore, when these differences to (V P -V N) is differentially amplified by the operational amplifier 11, the output resistor R
A signal whose phase is advanced within the range of 0 to 180 degrees according to the value of 1 is obtained.

【0004】同様にして、遅れ移相回路3では抵抗R2
の値に応じて0〜−180度の範囲で位相が遅れた信号
が得られ、こうして従来のSAT移相回路は、トータル
では−180〜180度の広い移相範囲をカバーできる
構成となっていた。ところで、実際にはこれほどの広い
可変範囲は必要なく、そこで、従来は抵抗R2 を適当な
値に固定し、抵抗R1 を調節することで必要な可変範囲
を実現していた。
Similarly, in the delay phase shift circuit 3, the resistance R 2
, A signal whose phase is delayed in the range of 0 to -180 degrees is obtained according to the value of the conventional SAT phase shift circuit. Thus, the conventional SAT phase shift circuit is configured to cover a wide phase shift range of -180 to 180 degrees in total. Was. However, in practice, this much wider variable range is not required, where conventionally a resistor R 2 and fixed to a suitable value, and the resistor R 1 has realized a variable range required by regulation.

【0005】しかし、このようにオペアンプを複数個使
用する回路では、回路が複雑化する上に、スペースファ
クタが悪化し、電力の消費も増大する。また、上記従来
のSAT移相回路では、オペアンプ自体の帯域特性以外
には通過帯域を制限するものがない。即ち、例えば、遅
れ移相回路3のVP については高域がカットされている
が、VN については高域がカットされないので、これら
の差分(VP −VN )を増幅するオペアンプ31の出力
には高周波成分が出力されてしまう。このために、従来
のSAT移相回路では、入力のSAT信号に高周波雑音
がのっていた場合にはこれがカットオフされずに出力さ
れてしまうという欠点があった。
However, in such a circuit using a plurality of operational amplifiers, the circuit becomes complicated, the space factor is deteriorated, and the power consumption is increased. Further, in the above-mentioned conventional SAT phase shift circuit, there is nothing that limits the pass band other than the band characteristics of the operational amplifier itself. That is, for example, for V P of the delayed phase shift circuit 3 is the high band is cut, the high-frequency is not cut for V N, the operational amplifier 31 for amplifying these differences (V P -V N) High-frequency components are output. For this reason, the conventional SAT phase shift circuit has a disadvantage that when high frequency noise is present in the input SAT signal, this is output without being cut off.

【0006】[0006]

【発明が解決しようとする課題】上記のように従来のS
AT移相回路では、オペアンプを複数個使用する構成で
あるために回路が複雑化し、移動通信端末の小型化、低
コスト化の障害になっていた。また従来のSAT移相回
路では、オペアンプ自体の帯域特性以外には通過帯域を
制限するものがないので、入力のSAT信号に高周波雑
音がのっていた場合にはこれがカットオフされずに出力
されてしまうという欠点があった。
As described above, the conventional S
Since the AT phase shift circuit uses a plurality of operational amplifiers, the circuit becomes complicated, which has been an obstacle to miniaturization and cost reduction of the mobile communication terminal. Further, in the conventional SAT phase shift circuit, there is nothing that restricts the pass band other than the band characteristics of the operational amplifier itself. Therefore, when the input SAT signal contains high-frequency noise, it is output without being cut off. There was a disadvantage that it would.

【0007】本発明の目的は、実用上十分な移相範囲を
有すると共に、部品点数が少なく、ローコストで高周波
ノイズに強いSAT移相回路を提供することにある。
An object of the present invention is to provide a SAT phase shift circuit which has a practically sufficient phase shift range, has a small number of components, is low-cost, and is resistant to high-frequency noise.

【0008】[0008]

【課題を解決するための手段】上記の課題は図1の構成
により解決される。即ち、本発明のSAT移相回路は、
入力信号を略0〜180度の範囲内で位相を変えて出力
可能な進み移相回路1と、SAT信号の周波数付近にカ
ットオフ周波数を設定したパッシブのローパスフィルタ
回路2とを直列に接続したものである。
The above-mentioned problem is solved by the structure shown in FIG. That is, the SAT phase shift circuit of the present invention
An advanced phase shift circuit 1 capable of changing the phase of an input signal within a range of approximately 0 to 180 degrees and an passive low-pass filter circuit 2 having a cutoff frequency set near the frequency of the SAT signal are connected in series. Things.

【0009】[0009]

【作用】本発明のSAT移相回路においては、パッシブ
のローパスフィルタ回路2を備えるので、従来のものに
比べてオペアンプやその周辺回路の部品点数を大幅に削
減し、かつ電力消費を低くできる。また、ローパスフィ
ルタ回路2はSAT信号の周波数(例えば、6KHZ
付近にカットオフ周波数が設定されているので、例えば
1次のローパスフィルタ回路を使用した場合は、入力の
6KHZ のSAT信号に対しては略−45度の遅れ移相
を施すことになる。一方、進み移相回路1は入力信号を
略0〜180度の範囲内で位相を変えて出力可能である
ので、トータルの位相可変範囲は略−45〜135度と
なり、これは実用上十分な可変範囲である。
In the SAT phase shift circuit of the present invention, since the passive low-pass filter circuit 2 is provided, the number of components of the operational amplifier and its peripheral circuits can be significantly reduced and the power consumption can be reduced as compared with the conventional one. Further, the low-pass filter circuit 2 of the SAT signal frequency (e.g., 6KH Z)
Since the cut-off frequency around is set, when using a low-pass filter circuit of the primary example, will be subjected to delay phase shift of approximately -45 degrees with respect to SAT signal 6KH Z input. On the other hand, since the advanced phase shift circuit 1 can change the phase of the input signal within the range of approximately 0 to 180 degrees and output it, the total phase variable range is approximately -45 to 135 degrees, which is sufficient for practical use. Variable range.

【0010】また、ローパスフィルタ回路2はSAT信
号の周波数(例えば、6KHZ )付近にカットオフ周波
数が設定されているので、入力のSAT信号にのった高
周波雑音成分は効果的にカットされる。
Further, the low-pass filter circuit 2 is frequency of the SAT signal (e.g., 6KH Z) Since the cut-off frequency around is set, the high-frequency noise component riding on the input of the SAT signal is effectively cut .

【0011】[0011]

【実施例】以下、添付図面に従って本発明による実施例
を詳細に説明する。なお、全図を通して同一符号は同一
又は相当部分を示すものとする。図2は実施例のSAT
移相回路の回路図で、図において1は0〜180度の進
み移相回路、2はパッシブの1次ローパスフィルタ回
路、4はサミングアンプ、11は差動増幅回路(オペア
ンプ)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the same reference numerals indicate the same or corresponding parts throughout the drawings. FIG. 2 shows the SAT of the embodiment.
FIG. 1 is a circuit diagram of a phase shift circuit. In the figure, reference numeral 1 denotes an advanced phase shift circuit of 0 to 180 degrees, 2 denotes a passive primary low-pass filter circuit, 4 denotes a summing amplifier, and 11 denotes a differential amplifier circuit (op-amp).

【0012】進み移相回路1の動作については図4のも
のと同様である。1次ローパスフィルタ回路2のC3
3 の各値は、例えば6KHZ =1/2πC3 ,R3
条件で設定されている。この場合に、SAT信号のゲイ
ンは6KHZ において3dBのロスになるが、この分は
例えばサミングアンプ4でカバーすることが可能であ
る。こうして、1次ローパスフィルタ回路2は入力の6
KHZ のSAT信号に対しては略−45度の遅れ移相を
施すことになる。一方、進み移相回路1は入力信号を略
0〜180度の範囲内で位相を変えて出力可能であるの
で、トータルの位相可変範囲は略−45〜135度とな
り、これは実用上十分な可変範囲である。しかも、この
状態で入力のSAT信号にのった高周波の雑音成分は効
果的にカットオフされる。
The operation of the advance phase shift circuit 1 is the same as that of FIG. C 3 of the primary low-pass filter circuit 2,
Each value of R 3 is set, for example, under the condition of 6 KH Z = 1 / πC 3 , R 3 . In this case, the gain of the SAT signal increases 3dB loss in 6KH Z, this amount is capable of covering at summing amplifier 4, for example. Thus, the primary low-pass filter circuit 2 receives the input 6
It will be subjected to delay phase shift of approximately -45 degrees with respect to SAT signal KH Z. On the other hand, since the advanced phase shift circuit 1 can change the phase of the input signal within the range of approximately 0 to 180 degrees and output it, the total phase variable range is approximately -45 to 135 degrees, which is sufficient for practical use. Variable range. Moreover, in this state, high-frequency noise components on the input SAT signal are effectively cut off.

【0013】図3は他の実施例のローパスフィルタ回路
の回路図で、図3の(A)はインダクタンス素子Lを含
む2次ローパスフィルタ回路、図3の(B)は1次ロー
パスフィルタ回路を2段に接続した2次ローパスフィル
タ回路を夫々示している。これらの2次ローパスフィル
タ回路2はSAT信号の周波数(例えば、6KH Z )付
近にカットオフ周波数が設定されているので、入力の6
KHZ のSAT信号に対しては略−90度の遅れ移相を
施すことも可能である。従って、トータルの位相可変範
囲は略−90〜90度となる。
FIG. 3 shows a low-pass filter circuit according to another embodiment.
FIG. 3A includes an inductance element L.
(B) of FIG. 3 shows a primary low-pass filter circuit.
Second-order low-pass filter with two stages of pass filter circuits connected
Each of these data circuits is shown. These secondary low-pass fills
The circuit 2 has a frequency of the SAT signal (for example, 6KH Z) Attached
Since the cutoff frequency is set nearby, the input 6
KHZFor the SAT signal of about -90 degrees delayed phase shift
It is also possible to apply. Therefore, the total phase variable range
The circumference is approximately -90 to 90 degrees.

【0014】また、図3の(A)の2次ローパスフィル
タ回路2を使用した場合は、遮断周波数付近でゲインに
ピーク特性を持たせることもでき、サミングアンプ4で
ゲインをカバーする必要がない。なお、上記実施例では
パッシブの1次、2次のローパスフィルタ回路を使用す
る場合を示したが、部品点数が増さない範囲で他のパッ
シブのローパスフィルタ回路を使用しても良い。
When the secondary low-pass filter circuit 2 shown in FIG. 3A is used, the gain can have a peak characteristic near the cutoff frequency, and it is not necessary for the summing amplifier 4 to cover the gain. . In the above embodiment, a case where a passive primary or secondary low-pass filter circuit is used has been described. However, another passive low-pass filter circuit may be used as long as the number of components is not increased.

【0015】また、上記実施例では1次ローパスフィル
タ回路2を抵抗R3とコンデンサC 3 とにより構成した
が、インダクタンスLと抵抗Rとで構成してもよい。ま
た、上記実施例では進み移相回路1にローパスフィルタ
回路2を接続する構成としたが、ローパスフィルタ回路
2に進み移相回路1を接続する構成としても良い。
In the above embodiment, the first-order low-pass filter is used.
Circuit 2 with a resistor RThreeAnd capacitor C ThreeComposed by
May be composed of an inductance L and a resistance R. Ma
In the above embodiment, a low-pass filter is added to the advanced phase shift circuit 1.
Circuit 2 is connected, but a low-pass filter circuit
2, the phase shift circuit 1 may be connected.

【0016】[0016]

【発明の効果】以上述べた如く本発明によれば、入力信
号を略0〜180度の範囲内で位相を変えて出力可能な
進み移相回路1と、SAT信号の周波数付近にカットオ
フ周波数を設定したパッシブのローパスフィルタ回路2
とを直列に接続したことにより、従来のものに比べてオ
ペアンプやその周辺回路の部品点数を大幅に削減し、か
つ電力消費を低くできると共に、SAT信号にのった高
周波の雑音成分を有効に除去できる。
As described above, according to the present invention, an advanced phase shift circuit 1 capable of changing the phase of an input signal within a range of approximately 0 to 180 degrees and outputting a cutoff frequency near the frequency of the SAT signal. Low-pass filter circuit 2 that sets
Are connected in series to greatly reduce the number of components of the operational amplifier and its peripheral circuits, reduce power consumption, and effectively reduce high-frequency noise components on the SAT signal. Can be removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の原理的構成図である。FIG. 1 is a diagram showing the basic configuration of the present invention.

【図2】図2は実施例のSAT移相回路の回路図であ
る。
FIG. 2 is a circuit diagram of a SAT phase shift circuit according to the embodiment.

【図3】図3は他の実施例のローパスフィルタ回路の回
路図である。
FIG. 3 is a circuit diagram of a low-pass filter circuit according to another embodiment.

【図4】図4は従来のSAT移相回路の回路図である。FIG. 4 is a circuit diagram of a conventional SAT phase shift circuit.

【符号の説明】[Explanation of symbols]

1 進み移相回路 2 ローパスフィルタ回路 1 Lead phase shift circuit 2 Low pass filter circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入力信号を略0〜180度の範囲内で位
相を変えて出力可能な進み移相回路(1)と、SAT信
号の周波数付近にカットオフ周波数を設定したパッシブ
のローパスフィルタ回路(2)とを直列に接続したこと
を特徴とするSAT移相回路。
An advanced phase shift circuit (1) capable of changing an output phase of an input signal within a range of approximately 0 to 180 degrees, and a passive low-pass filter circuit having a cutoff frequency set near the frequency of an SAT signal. (2) a SAT phase shift circuit, wherein
JP23055391A 1991-09-10 1991-09-10 SAT phase shift circuit Expired - Lifetime JP2712923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23055391A JP2712923B2 (en) 1991-09-10 1991-09-10 SAT phase shift circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23055391A JP2712923B2 (en) 1991-09-10 1991-09-10 SAT phase shift circuit

Publications (2)

Publication Number Publication Date
JPH0575384A JPH0575384A (en) 1993-03-26
JP2712923B2 true JP2712923B2 (en) 1998-02-16

Family

ID=16909567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23055391A Expired - Lifetime JP2712923B2 (en) 1991-09-10 1991-09-10 SAT phase shift circuit

Country Status (1)

Country Link
JP (1) JP2712923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303147B6 (en) * 2010-10-04 2012-05-02 Ceské vysoké ucení technické v Praze Fakulta elektrotechnická Phase shifting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004712A1 (en) * 1994-08-05 1996-02-15 Takeshi Ikeda Tuning amplifier
WO1996021970A1 (en) * 1995-01-12 1996-07-18 Takeshi Ikeda Tuning circuit
AU4889196A (en) * 1995-11-07 1997-05-29 Ikeda, Takeshi Tuning amplifier
CN102611469B (en) * 2012-02-21 2016-06-08 中兴通讯股份有限公司 A kind of phase-shift filtering method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303147B6 (en) * 2010-10-04 2012-05-02 Ceské vysoké ucení technické v Praze Fakulta elektrotechnická Phase shifting device

Also Published As

Publication number Publication date
JPH0575384A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
Chaturvedi et al. A new versatile universal biquad configuration for emerging signal processing applications
JP2712923B2 (en) SAT phase shift circuit
JPH0683113B2 (en) Line equalization circuit
US4275357A (en) Active filter
US4403201A (en) Bandpass filter circuit
GB2209642A (en) Active filter / equaliser
GB2049331A (en) Filter using a state-variable biquadratic transfer function circuit
JP3978744B2 (en) Digital to analog converter
US5276403A (en) Nonlinear preemphasis-deemphasis system
US3955150A (en) Active-R filter
JP2962694B2 (en) Output circuit for D / A converter
JPH10233653A (en) Sc filter having specific aliasing prevention function and voice signal processor provided with the filter
US5760728A (en) Input stage for an analog-to-digital converter and method of operation thereof
JP3171247B2 (en) Multi-function arithmetic circuit
EP0729228B1 (en) Basic cell for programmable analog time continuous filter
US20020079961A1 (en) Amplification device with optimized linearity
JPH0936702A (en) Active low pass filter
JP3300301B2 (en) Low pass filter
JPH0685518U (en) Balance adjustment circuit
JPS60247314A (en) Fdnr type low pass filter
US20030090315A1 (en) All pass filter
JPH07235834A (en) Fm demodulation circuit
JPH054336Y2 (en)
SU1164863A1 (en) Low-frequency amplifier
JPS6347284B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930