JP2710107B2 - DC power supply circuit - Google Patents

DC power supply circuit

Info

Publication number
JP2710107B2
JP2710107B2 JP63310359A JP31035988A JP2710107B2 JP 2710107 B2 JP2710107 B2 JP 2710107B2 JP 63310359 A JP63310359 A JP 63310359A JP 31035988 A JP31035988 A JP 31035988A JP 2710107 B2 JP2710107 B2 JP 2710107B2
Authority
JP
Japan
Prior art keywords
voltage
rectifier
current
secondary battery
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63310359A
Other languages
Japanese (ja)
Other versions
JPH02156099A (en
Inventor
勲 澤本
孝之 島宗
朝照 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP63310359A priority Critical patent/JP2710107B2/en
Publication of JPH02156099A publication Critical patent/JPH02156099A/en
Application granted granted Critical
Publication of JP2710107B2 publication Critical patent/JP2710107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電解オゾン発生装置やメッキ装置等の電解
装置に使用し、停電時等主電源が遮断された場合に電解
槽等の出力側に保護電圧電流を供給して前記電解装置を
保護することのできる直流電源回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention is used for an electrolysis apparatus such as an electrolysis ozone generator or a plating apparatus, and is used for an output side of an electrolysis tank or the like when a main power supply is cut off such as during a power failure. The present invention relates to a DC power supply circuit capable of supplying a protection voltage and current to the electrolysis apparatus to protect the electrolysis apparatus.

(従来技術とその問題点) 電解用直流電源としてセレンやシリコン等の整流素子
を使用した回路が知られている。しかしこれらの回路は
停電時等電源が遮断された状態では起電力を有せず、更
に電源の被供給側のプラス極とマイナス極が電気的に接
続されていて、水電解やメッキ用等の電源回路において
は、電解槽側が電池となって該回路を通して逆電流が流
れて電極の劣化特にその上に被覆された電極活性物質の
失活を招来するとともにその直流電源回路自体にも悪影
響を及ぼしている。更に電解槽の種類によっては常に保
護電流を供給する必要のあるものがありこの場合には別
回路に接続換えすることが必要である。
(Prior art and its problems) A circuit using a rectifying element such as selenium or silicon as a DC power supply for electrolysis is known. However, these circuits have no electromotive force when the power is cut off, such as during a power outage, and the plus and minus poles on the side to which power is supplied are electrically connected, such as for water electrolysis and plating. In the power supply circuit, the electrolytic cell side becomes a battery, and a reverse current flows through the circuit to cause deterioration of the electrodes, in particular, deactivation of the electrode active material coated thereon, and also adversely affect the DC power supply circuit itself. ing. Further, depending on the type of the electrolytic cell, it is necessary to always supply a protection current. In this case, it is necessary to change the connection to another circuit.

例えば前記逆電流防止用としては直流電源の二次側に
停電を関知して生ずる逆電流を遮断するための整流素子
を接続したり、物理的に電源を遮断する機能等を附加し
た附加設備を設置したりしている。又前記逆電流から電
解槽等を保護する保護電流発生のためには二次電池を予
め用意しておき電源遮断を感知した際に該二次電池を回
路に接続する等の作業を必要としている。該作業の電源
遮断を自動的に感知し前記二次電池を接続する装置も開
発されているが、時間的な遅れが生じたり装置が複雑に
なったりするという問題点がある。又使用する二次電池
は常に充電しておく必要があるが、そのためには別の電
源を用意しておく必要があるため装置自体が複雑化する
だけでなく作業性も悪化するという問題点がある。該逆
電流による不都合を解消するために整流器電源を利用す
ることも可能であるが、前記した装置と同様に接続を切
り換えるための手段を必要とするという欠点がある。
For example, for the purpose of preventing the reverse current, a secondary device of the DC power supply may be connected to a rectifying element for blocking a reverse current generated in response to a power failure, or an additional facility having a function of physically shutting off the power supply. We are setting up. In addition, in order to generate a protection current for protecting the electrolytic cell and the like from the reverse current, it is necessary to prepare a secondary battery in advance, and to connect the secondary battery to a circuit when the power shutoff is detected. . Although a device for automatically detecting the power interruption of the work and connecting the secondary battery has been developed, there is a problem that a time delay occurs and the device becomes complicated. The secondary battery used must always be charged, but for that purpose another power supply must be prepared, which not only complicates the device itself but also impairs the workability. is there. Although it is possible to use a rectifier power supply in order to eliminate the inconvenience caused by the reverse current, there is a disadvantage that a means for switching the connection is required similarly to the above-described device.

(発明の目的) 本発明は、上記問題点を解決するためになされたもの
で、電源遮断時に出力側に保護電流を自動的に供給する
ことができる構造の簡単な直流電源回路を提供すること
を目的とする。
(Object of the Invention) The present invention has been made in order to solve the above problems, and to provide a simple DC power supply circuit having a structure capable of automatically supplying a protection current to an output side when power is cut off. With the goal.

(問題点を解決するための手段) 本発明は、トランス、該トランスからの交流電流を整
流する整流器、及び該整流器で整流された直流電流によ
り動作する出力側電解槽を有する直流電源回路におい
て、前記整流器と並列に該整流器電圧より低い電圧を有
する二次電池を接続し、前記整流器電圧により前記二次
電池を充電するとともに前記電解槽に電流を供給するこ
とを特徴とする直流電源回路であり、該回路には前記整
流器及び二次電池に直列に定電圧ダイオードを接続して
もよい。
(Means for Solving the Problems) The present invention relates to a DC power supply circuit having a transformer, a rectifier for rectifying AC current from the transformer, and an output-side electrolytic cell operated by DC current rectified by the rectifier. A dc power supply circuit, comprising: connecting a secondary battery having a voltage lower than the rectifier voltage in parallel with the rectifier, charging the secondary battery with the rectifier voltage, and supplying current to the electrolytic cell. A constant voltage diode may be connected to the circuit in series with the rectifier and the secondary battery.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

後述する通り、電解反応における電解槽を流れる電流
値は電圧に比例するのではなく、電流変化に伴う電圧変
化はかなり小さく、例えば電圧値を2〜3割減少させる
ことにより電流値は百分の一程度に減少することが多
い。
As described later, the current value flowing through the electrolytic cell in the electrolytic reaction is not proportional to the voltage, and the voltage change accompanying the current change is quite small. For example, by reducing the voltage value by 20 to 30%, the current value becomes 100% Often decreases to about one degree.

本発明は、この現象を利用して停電時等の主電源遮断
時に補助電源である二次電池により前記電解槽に保護電
圧電流を流して特に該電解槽の電極を保護しようとする
ものである。
The present invention intends to protect the electrodes of the electrolytic cell by supplying a protective voltage / current to the electrolytic cell by a secondary battery as an auxiliary power supply when the main power is cut off at the time of a power failure or the like by utilizing this phenomenon. .

通常の電解装置における電圧Vは、 V=V1(分解電圧)+V2(過電圧)+iR(電解抵抗)で
表される。該式中分解電圧は同一電解系では一定であ
り、過電圧は特に陰陽極合わせて100mV/ディケード程度
であり、電流密度を1A/dm2から100A/dm2まで変化させて
も200mV程度の差である。又電解抵抗は直流電流値に正
比例し電流変動に伴う槽電圧変動の大部分は該電解抵抗
による電圧に基づくものである。
The voltage V in a normal electrolyzer is represented by V = V 1 (decomposition voltage) + V 2 (overvoltage) + iR (electrolytic resistance). Formula in decomposition voltage is constant in the same electrolyte system, overvoltages are particularly Yin poles together about 100 mV / decade, the difference of about 200mV be changed current density from 1A / dm 2 to 100A / dm 2 is there. The electrolytic resistance is directly proportional to the DC current value, and most of the cell voltage fluctuation accompanying the current fluctuation is based on the voltage due to the electrolytic resistance.

例えば前記SPE型水電解装置の場合、SPE材の種類にも
よるが、スルホン酸系陽イオン交換膜である商品名ナフ
ィオンでは前記電解抵抗に基づく電圧値は0.5〜1V程度
であり、0A/dm2から100A/dm2まで電流を変動させた際の
電圧変化は約1Vである。つまり電解装置では電流値は電
圧値に正比例するのではなく電流値が大幅に変動しても
それに対応する電圧値変化は小さい。例えば二酸化鉛電
極を陽極とし白金を陰極とした水電解装置では前記分解
電圧は約1.24V、過電圧が約0.8Vであり、100A/dm2での
電解では更に電解抵抗約1Vが加わって槽電圧は全体で約
3Vとなる。この槽電圧を3Vから1V落として約2Vとすると
その電流値は百分の一以下となるが正負の方向は変化し
ない。
For example, in the case of the SPE-type water electrolysis device, although depending on the type of the SPE material, the voltage value based on the electrolytic resistance is about 0.5 to 1 V in the trade name Nafion, which is a sulfonic acid-based cation exchange membrane, and is about 0 A / dm. The voltage change when changing the current from 2 to 100 A / dm 2 is about 1V. That is, in the electrolysis apparatus, the current value is not directly proportional to the voltage value, and even if the current value fluctuates greatly, the corresponding voltage value change is small. For example, the decomposition voltage than water electrolysis apparatus as the cathode platinum was lead dioxide electrode as the anode is approximately 1.24V, the overvoltage is about 0.8 V, 100A / dm further electrolytic resistance of about 1V is applied to cell voltage in the electrolysis of 2 Is about
3V. If the cell voltage is reduced by 1V from 3V to about 2V, the current value becomes 1/100 or less, but the positive / negative direction does not change.

これを前記構成を有する本発明に適用すると、主電源
が遮断されて前記整流器に印加されるトランスからの電
圧が零になった場合に、該整流器電圧より約1V小さい電
圧を前記電解槽に印加することができると、該電解槽に
は通常の電解反応を生じさせるための電流の約百分の一
の同一方向の電流が流れ、前記電解反応は停止するが保
護電圧電流が流れて逆方向電流の発生による電極特に該
電極に被覆された電極活性物質の劣化が効果的に防止さ
れる。
When this is applied to the present invention having the above configuration, when the main power supply is cut off and the voltage from the transformer applied to the rectifier becomes zero, a voltage about 1 V smaller than the rectifier voltage is applied to the electrolytic cell. When this is possible, a current in the same direction as about one-hundredth of the current for causing a normal electrolytic reaction flows in the electrolytic cell, and the electrolytic reaction stops, but the protection voltage current flows and the reverse direction occurs. The deterioration of the electrode, particularly the electrode active material coated on the electrode, due to the generation of electric current is effectively prevented.

このような回路を構成するために本発明では、前記整
流器と前記二次電池を並列に接続するとともに、該二次
電池電圧を前記整流器電圧より小さく例えば約1V小さく
するようにしている。このように接続された直流電源回
路に通電すると、トランスからの交流電圧が前記整流器
により直流電圧に変換され、該直流電圧が前記電解槽に
電流を流して所定の電解反応を行わせるとともに、該整
流器に並列に接続された前記二次電池の充電を行う。な
お通常約1V程度の電圧差では前記二次電池に過充電の可
能性は少ないが、該過充電防止のための回路を形成して
おいてもよい。
In order to configure such a circuit, in the present invention, the rectifier and the secondary battery are connected in parallel, and the voltage of the secondary battery is made smaller than the rectifier voltage, for example, about 1V. When the DC power supply circuit connected in this way is energized, an AC voltage from a transformer is converted into a DC voltage by the rectifier, and the DC voltage causes a current to flow through the electrolytic cell to cause a predetermined electrolytic reaction. The secondary battery connected in parallel to the rectifier is charged. In general, a voltage difference of about 1 V has a low possibility of overcharging the secondary battery, but a circuit for preventing the overcharge may be formed.

これによりトランスからの電通が停電等により遮断さ
れた場合には前述の通り充電された前記二次電池から通
常より約1V程度低い電圧を前記電解槽に印加することに
より該電解槽に逆電流が流れることを防止するとともに
極めて微小な保護電流を流すことが可能になる。
As a result, when the current from the transformer is interrupted due to a power failure or the like, a reverse current is applied to the electrolytic cell by applying a voltage about 1 V lower than normal to the electrolytic cell from the charged secondary battery as described above. It is possible to prevent the current from flowing and to allow an extremely small protection current to flow.

一般に前記整流器電源及び二次電池からの電圧を前記
電解装置に供給する場合、該供給電圧と該電解装置の電
解電圧とが完全に一致することは極めて稀であり、又完
全に一致する場合でも前記電圧装置側の状況によっては
余剰電圧を取っておくことが必要であることが多い。つ
まり前記いずれかの電源からの電圧と前記電解電圧の差
を何等かの方法で消去しておくことが好ましく、この目
的のために本発明ではシリコンドロッパー等の定電圧ダ
イオードや抵抗等を使用することができる。該シリコン
ドロッパーは1個で電流値に殆ど依存せずに約0.6Vの電
圧降下を生じさせるという特徴を有し、電流比例による
電圧変化を最小にするため使用することが望ましく、該
定電圧ダイオードの個数を増減させることにより電解用
電流の量を調節することができる。なお微小な電流調節
用としてこれに直列に可変抵抗を接続してもよい。
In general, when the voltage from the rectifier power supply and the secondary battery is supplied to the electrolyzer, it is extremely rare that the supply voltage completely matches the electrolysis voltage of the electrolyzer. Depending on the situation on the voltage device side, it is often necessary to reserve an excess voltage. In other words, it is preferable to erase the difference between the voltage from any one of the power supplies and the electrolytic voltage by some method. For this purpose, the present invention uses a constant voltage diode such as a silicon dropper, a resistor, or the like. be able to. The silicon dropper has a feature of generating a voltage drop of about 0.6 V independently of a current value, and is preferably used to minimize a voltage change due to current proportionality. The amount of electrolysis current can be adjusted by increasing or decreasing the number of. Note that a variable resistor may be connected in series for minute current adjustment.

添付図面は、本発明の直流電源回路の一例を示す回路
図である。
The accompanying drawings are circuit diagrams showing an example of the DC power supply circuit of the present invention.

図中TRはトランス、1は該トランスTRからの交流電流
を直流に変換するための整流器、R1は前記整流器1に接
続された抵抗であり、R2は該抵抗R1に接続された可変抵
抗、又R3は該抵抗R2に接続された可変抵抗であり、該可
変抵抗R2及びR3はスィッチにより接続及び切断自在とさ
れ、後述する電解装置を流れる電流量を変化させること
ができるようになっている。CDは前記可変抵抗R3に接続
されたシリコンドロッパーであり、Zは該シリコンドロ
ッパーCDに接続された電解装置であり、該電解装置2は
前記整流器TRに接続されている。BTは、前記可変抵抗R2
及びR3間の結線間と前記電解装置2及び前記整流器1間
の結線間を連結する結線に接続された二次電池である。
Figure TR is transformer, 1 rectifier for converting alternating current from the transformer TR to a DC, R 1 is a resistance connected to the rectifier 1, the variable R 2 is connected to the resistor R 1 The resistor R 3 is a variable resistor connected to the resistor R 2 , and the variable resistors R 2 and R 3 can be connected and disconnected by a switch, and can change the amount of current flowing through an electrolytic device described later. I can do it. CD is a silicon dropper connected to said variable resistance R 3, Z is an electrolytic device connected to the silicon dropper CD, electrolytic apparatus 2 is connected to the rectifier TR. BT is the variable resistor R 2
And a secondary battery connected to a connection for connecting the connection between the electrolyzer and between connections 2 and the rectifier 1 between R 3.

該構成からなる回路に通常のコンセント等から電圧を
掛けると、印加される交流電圧が前記整流器1により前
記二次電池BTで発生する電圧より好ましくは約1V高い直
流電圧に変換されて抵抗R1(場合によっては可変抵抗R2
及びR3)を通り、前記シリコンドロッパーCDにより電圧
降下を起こして所望の電解電圧とほぼ等しくされた電圧
が前記電解装置2に印加され〔電流の経路は1→R1(→
R2→R3)→CD→2→1〕、所定の電解反応により電解生
成物を得ることができる。該電解装置2に電圧を印加す
ると同時に、前記整流器1の電圧は該整流器1電圧より
電圧の低い並列接続された前記二次式電池の充電を行
う。これにより例えば停電により前記トランスTRからの
電圧の印加が停止された場合には、前記充電された二次
電池BTの起電力による前記整流器1電圧より1V程度低い
電圧が前記電解装置2に印加され〔電流の経路はBT→
(R3→)CD→2→BT〕、前記電解装置2内に通常の場合
と同一方向で百分の一程度の微小な保護電流を流し、停
電時における前記電解装置2特に該装置の電極活性物質
の劣化を効果的に抑制する。
When a voltage is applied to the circuit having the above configuration from a normal outlet or the like, the applied AC voltage is converted by the rectifier 1 into a DC voltage that is preferably about 1 V higher than the voltage generated in the secondary battery BT, and the resistance R 1 (In some cases, variable resistor R 2
And R 3 ), a voltage drop is generated by the silicon dropper CD, and a voltage substantially equal to a desired electrolysis voltage is applied to the electrolysis apparatus 2 [current path is 1 → R 1 (→
R 2 → R 3 ) → CD → 2 → 1], and an electrolytic product can be obtained by a predetermined electrolytic reaction. At the same time as applying a voltage to the electrolysis device 2, the voltage of the rectifier 1 charges the parallel-connected secondary batteries having a lower voltage than the rectifier 1 voltage. Thereby, for example, when the application of the voltage from the transformer TR is stopped due to a power failure, a voltage lower by about 1 V than the voltage of the rectifier 1 due to the electromotive force of the charged secondary battery BT is applied to the electrolysis device 2. [Current path is BT →
(R 3 →) CD → 2 → BT], a small protection current of about 1/100 is passed through the electrolyzer 2 in the same direction as in the normal case, and the electrolyzer 2 and especially the electrodes of the electrolyzer 2 are used during a power failure. Effectively suppresses the degradation of the active substance.

(実施例) 以下本発明の実施例を記載するが、該実施例は本発明
を限定するものではない。
(Example) Hereinafter, an example of the present invention will be described, but the example does not limit the present invention.

実施例 整流器(シリコン接合型ダイオード)、3Ωの抵抗
R1、0〜5Ωの範囲で変動可能な可変抵抗R2及び0〜50
Ωの範囲で変動可能な可変抵抗R3及びシリコンドロッパ
ー、及び後述する電解槽、及び未充電で充電時の起電力
が13.5Vである硫酸鉛型二次電池を使用して添付図面に
示す直流電源回路を構成した。前記電解槽は、その両面
にそれぞれ面積が3cm2であるβ−二酸化鉛(陽極側)
及び白金(陰極側)層を形成したイオン交換膜(ナフィ
オン#117)を装着しイオン交換水を満たした容量300ml
の電解槽とした。
Example Rectifier (silicon junction type diode), 3Ω resistor
R 1 , variable resistance R 2 and 0 to 50 which can be varied in the range of 0 to 5Ω
Range can vary a variable resistor R 3 and the silicon dropper Omega, and later to the electrolytic cell, and DC shown in the accompanying drawings electromotive force at the time of charging in a non-charging using lead sulfate type secondary battery which is 13.5V A power supply circuit was configured. The electrolytic cell has β-lead dioxide having an area of 3 cm 2 on both sides thereof (anode side).
And an ion exchange membrane (Nafion # 117) on which a platinum (cathode side) layer is formed, and a volume of 300 ml filled with ion exchange water
Electrolytic cell.

該回路に、実験室のコンセントからプラグにより交流
電圧を印加し、整流器電圧が約14.5Vとなるようにし、
該電圧を前記電解槽に印加してイオン交換水の電解によ
るオゾン製造を行った。
An AC voltage is applied to the circuit by a plug from a laboratory outlet so that the rectifier voltage becomes about 14.5 V,
The voltage was applied to the electrolytic cell to produce ozone by electrolysis of ion-exchanged water.

電解時の電解電圧は10.3〜10.7V、電流密度は90〜110
A/dm2であり、陽極室で10%のオゾンを含有する酸素ガ
スが0.6l/時の割合で得られた。
Electrolysis voltage during electrolysis is 10.3 to 10.7 V, current density is 90 to 110
A / dm 2 and oxygen gas containing 10% ozone in the anode compartment was obtained at a rate of 0.6 l / h.

24時間経過後、前記プラグをコンセントから引き抜い
たところ、酸素ガスの発生は停止し電流密度は1.5〜2.5
A/dm2に減少したが、電流の方向は電解時と同一であっ
た。
After 24 hours, when the plug was pulled out from the outlet, the generation of oxygen gas was stopped and the current density was 1.5 to 2.5.
Although it decreased to A / dm 2 , the direction of the current was the same as in the electrolysis.

(発明の効果) 本発明は、電解反応に使用する直流電源回路に整流器
と二次電池を並列に接続しかつ前記整流器の電圧より前
記二次電池の電圧が小さくなるようにしてある。
(Effect of the Invention) In the present invention, a rectifier and a secondary battery are connected in parallel to a DC power supply circuit used for an electrolytic reaction, and the voltage of the secondary battery is lower than the voltage of the rectifier.

従って通常の電解反応時は、前記整流器電圧が電解反
応を行う電解装置に印加されて所望の電解生成物が得ら
れるとともに、前記二次電池が充電不十分の場合には該
二次電池の充電を行う。
Therefore, during a normal electrolytic reaction, the rectifier voltage is applied to an electrolytic device that performs the electrolytic reaction to obtain a desired electrolysis product, and when the secondary battery is insufficiently charged, the secondary battery is charged. I do.

停電等により前記整流器からの前記電解装置への電圧
印加が生じなくなった場合は、充電された前記二次電池
が動作して前記電解装置へ前記整流器電圧より低い電圧
好ましくは1V程度低い電圧を印加する。これにより該電
解装置内を流れる電流量は極度に減少し、電解反応を継
続させるには不十分であるが逆電流が流れることによる
電極等の劣化を防止するには十分な量の保護電圧電流が
流れ、停電時等の整流器電圧が印加されない場合におけ
る前記電解装置に生じ易い不都合を解消する。
When the voltage application from the rectifier to the electrolytic device stops due to a power failure or the like, the charged secondary battery operates to apply a voltage lower than the rectifier voltage to the electrolytic device, preferably approximately 1 V, to the electrolytic device. I do. As a result, the amount of current flowing in the electrolysis device is extremely reduced, and the protection voltage current is insufficient to continue the electrolytic reaction but sufficient to prevent the deterioration of the electrodes and the like due to the reverse current flowing. And the inconvenience that tends to occur in the electrolysis apparatus when a rectifier voltage is not applied at the time of a power failure or the like is eliminated.

又前記整流器及び二次電池と直列に定電圧ダイオード
や抵抗を接続することにより電解電圧や電流調節をより
容易に行うことが可能になる。
Further, by connecting a constant voltage diode or a resistor in series with the rectifier and the secondary battery, it is possible to more easily adjust the electrolytic voltage and the current.

更に前記二次電池の充電用として附加的な回路を設置
することが必須ではなく、該回路を省略することにより
全体の回路の小型化及び回路素子の数の減少を達成する
ことができる。
Further, it is not essential to provide an additional circuit for charging the secondary battery, and by omitting the circuit, it is possible to reduce the size of the entire circuit and the number of circuit elements.

【図面の簡単な説明】[Brief description of the drawings]

添付図面は、本発明に係わる直流電源回路の一例を示す
回路図である。 1……整流器、2……電解槽 TR……トランス、R1……抵抗 R2、R3……可変抵抗 CD……シリコンドロッパー BT……二次電池
The accompanying drawings are circuit diagrams illustrating an example of a DC power supply circuit according to the present invention. 1 Rectifier 2 Electrolyzer TR Transformer R 1 Resistance R 2 R 3 Variable resistance CD Silicon dropper BT Secondary battery

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−28234(JP,A) 実開 昭63−88047(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-28234 (JP, A) JP-A-63-88047 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】トランス、該トランスからの交流電流を整
流する整流器、及び該整流器で整流された直流電流によ
り動作する出力側電解槽を有する直流電源回路におい
て、前記整流器と並列に該整流器電圧より低い電圧を有
する二次電池を接続し、前記整流器電圧により前記二次
電池を充電するとともに前記電解槽に電流を供給するこ
とを特徴とする直流電源回路。
1. A DC power supply circuit comprising a transformer, a rectifier for rectifying an AC current from the transformer, and an output electrolytic cell operated by the DC current rectified by the rectifier, wherein a rectifier voltage is controlled in parallel with the rectifier. A DC power supply circuit, comprising connecting a secondary battery having a low voltage, charging the secondary battery with the rectifier voltage, and supplying current to the electrolytic cell.
【請求項2】トランス、該トランスからの交流電流を整
流する整流器、及び該整流器で整流された直流電流によ
り動作する出力側電解槽を有する直流電源回路におい
て、前記整流器と並列に該整流器電圧より低い電圧を有
する二次電池を接続しかつ前記整流器及び該二次電池と
直列に定電圧ダイオードを接続し、前記整流器電圧によ
り前記二次電池を充電するとともに前記電解槽に電流を
供給することを特徴とする直流電源回路。
2. A DC power supply circuit comprising a transformer, a rectifier for rectifying an AC current from the transformer, and an output-side electrolytic cell operated by the DC current rectified by the rectifier. Connecting a secondary battery having a low voltage and connecting a constant voltage diode in series with the rectifier and the secondary battery, charging the secondary battery with the rectifier voltage and supplying current to the electrolytic cell. Characteristic DC power supply circuit.
JP63310359A 1988-12-08 1988-12-08 DC power supply circuit Expired - Lifetime JP2710107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310359A JP2710107B2 (en) 1988-12-08 1988-12-08 DC power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310359A JP2710107B2 (en) 1988-12-08 1988-12-08 DC power supply circuit

Publications (2)

Publication Number Publication Date
JPH02156099A JPH02156099A (en) 1990-06-15
JP2710107B2 true JP2710107B2 (en) 1998-02-10

Family

ID=18004287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310359A Expired - Lifetime JP2710107B2 (en) 1988-12-08 1988-12-08 DC power supply circuit

Country Status (1)

Country Link
JP (1) JP2710107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347317B1 (en) * 2012-04-03 2014-01-02 태극아이비에이(주) Apparatus For Producting Hydrogen From The Electrolysis Of Water By Electrical Superposition Circuit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242402A (en) * 1994-03-02 1995-09-19 Sasakura Eng Co Ltd Water-electrolysis ozonizer
JP3408462B2 (en) * 1999-07-14 2003-05-19 東亞合成株式会社 Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell
JP4704590B2 (en) * 2001-03-23 2011-06-15 株式会社三社電機製作所 Plating current supply power supply
JP2002027680A (en) * 2001-05-18 2002-01-25 Century Corp Temporary power supply for cellular phone
JP5366475B2 (en) * 2008-08-20 2013-12-11 株式会社中央製作所 Plating equipment with power failure compensation function
JP5837081B2 (en) * 2011-09-30 2015-12-24 株式会社日立製作所 Hydrogen production system
JP6819651B2 (en) * 2017-11-30 2021-01-27 株式会社豊田中央研究所 Electrolytic system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428234A (en) * 1977-08-04 1979-03-02 Sansha Electric Mfg Co Ltd Apparatus for controlling plating treatment
JPS6388047U (en) * 1986-11-28 1988-06-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347317B1 (en) * 2012-04-03 2014-01-02 태극아이비에이(주) Apparatus For Producting Hydrogen From The Electrolysis Of Water By Electrical Superposition Circuit

Also Published As

Publication number Publication date
JPH02156099A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
US4079303A (en) Charging system and method for multicell storage batteries
EP3451478A1 (en) Solar charging system and control method thereof
JPS62200668A (en) Battery device
JP2710107B2 (en) DC power supply circuit
JPH0963652A (en) Battery pack
US20200195159A1 (en) Bidirectional DC DC Converter for Renewable Energy Storage
CN108370172B (en) Charging unit
CA1321162C (en) Method and apparatus for improving electrochemical processes
JPS59144327A (en) Power supply device
US3932799A (en) Peak load levelling system
JP2003289629A (en) Voltage equalizer in capacitor and power storage system equipped with the device
CN108649685A (en) A kind of battery sharing ups system and method for supplying power to
JP2011249598A (en) Photovoltaic power generator
JPS61193375A (en) Secondary cell device
US20030090156A1 (en) Current adjusting apparatus and current adjusting method
US5831416A (en) Apparatus and method for charging batteries
USRE29560E (en) Peak load levelling system
KR101963930B1 (en) Energy storage system with lead acid battery and method for charging and discharging lead acid battery
CN216794695U (en) Charging circuit, charger and charging system
SU720622A1 (en) Stand-by system for supplying load with direct current
JP2767947B2 (en) Battery charging circuit
RU2680245C1 (en) Spacecraft power supply system
JPS6362984B2 (en)
SU537420A1 (en) Device for supplying load with direct current
SU383034A1 (en) FSC SHShSh.,! M Cl. G 05! 1 / 64l'DK 621.316.722.1 (088.8)