JP2709289B2 - How to make plants completely unicellular - Google Patents

How to make plants completely unicellular

Info

Publication number
JP2709289B2
JP2709289B2 JP25948195A JP25948195A JP2709289B2 JP 2709289 B2 JP2709289 B2 JP 2709289B2 JP 25948195 A JP25948195 A JP 25948195A JP 25948195 A JP25948195 A JP 25948195A JP 2709289 B2 JP2709289 B2 JP 2709289B2
Authority
JP
Japan
Prior art keywords
plant
single cell
cells
enzyme
cell suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25948195A
Other languages
Japanese (ja)
Other versions
JPH0975026A (en
Inventor
慧 ▲高▼橋
Original Assignee
有限会社▲高▼橋慧食品研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社▲高▼橋慧食品研究所 filed Critical 有限会社▲高▼橋慧食品研究所
Priority to JP25948195A priority Critical patent/JP2709289B2/en
Publication of JPH0975026A publication Critical patent/JPH0975026A/en
Application granted granted Critical
Publication of JP2709289B2 publication Critical patent/JP2709289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、野菜、野草、果
実、薬草、樹木葉、熊笹葉等の植物を細胞間物質分解酵
素によって完全に単細胞化する方法に関する。
The present invention relates to a method for completely transforming plants such as vegetables, wild grasses, fruits, medicinal plants, tree leaves, and bamboo grass leaves into single cells using an intercellular substance-decomposing enzyme.

【0002】[0002]

【従来の技術】農産物、その加工残渣、薬草等の有効な
利用法開発のためには、有用部分のみを選択的に回収す
る必要がある。この有用部分を回収する場合、ミキサー
等を用いて機械的に磨砕する方法があるが、この方法に
よると、農産物の細胞壁が破壊されて、細胞内に含まれ
た有用成分が失われたり変化したりし、とくに細胞内の
香気成分、色素成分、栄養成分等が細胞壁の破壊によっ
て失われたり劣化してしまい、有用成分を効率よく回収
することができない。
2. Description of the Related Art In order to develop effective uses of agricultural products, processed residues thereof, herbs and the like, it is necessary to selectively recover only useful parts. In order to recover this useful part, there is a method of mechanically grinding using a mixer or the like, but according to this method, the cell wall of the agricultural product is destroyed, and the useful components contained in the cells are lost or changed. In particular, aroma components, pigment components, nutrient components and the like in the cells are lost or deteriorated due to the destruction of the cell wall, and the useful components cannot be efficiently recovered.

【0003】本発明者は、従来の機械的磨砕方法におけ
る問題点を除去し、有用成分のみを選択的にかつ効率よ
く回収する方法を用いて、単細胞化植物含有食品を容易
に製造する方法として、植物に、植物組織単細胞化酵素
をpH4〜5で作用させて植物の細胞間物質を分解して
植物組織を粥化単細胞化させ、さらに未分解物質を除去
して得られた粥化単細胞懸濁液を食品に添加する、単細
胞化植物含有食品の製造方法を先に提案し、この方法は
特公平6−71413号として特許出願公告された。
[0003] The present inventor has proposed a method for easily producing a single-cellular plant-containing food by using a method for selectively and efficiently recovering only useful components by eliminating the problems in the conventional mechanical grinding method. As a result, a plant cell single cell obtained by treating a plant with a plant tissue single cell enzyme at pH 4 to 5 to decompose the intercellular substance of the plant to convert the plant tissue into a single cell, and further removing undegraded substances A method for producing a single-cellular plant-containing food, in which the suspension is added to the food, was previously proposed, and this method was published as a patent application as Japanese Patent Publication No. 6-71413.

【0004】[0004]

【発明が解決しようとする課題】上記の特公平6−71
413号の方法は、前記したように、従来の機械的磨砕
方法の問題点を除去し、有用成分のみを選択的にかつ効
率よく回収する方法であるが、実際には、特公平6−7
1413号の方法を適用する場合に、食料となり得る植
物原料には、葉菜類、根菜類、いも類、豆類、穀類、野
草、薬草、樹木葉等とあり、その形態、硬さ、組織等種
類が無数にあるので、同一の方法で酵素作用をおこなわ
せても単細胞化が不可能であったり、ごく一部しか単細
胞化ができなかったり、単細胞化がまちまちである。し
たがって、特公平6−71413号の方法では、一部の
野菜、果実が単細胞化することができて食品素材として
利用できる程度であり、植物の単細胞化技術を産業規模
にのせるためには、この方法ではなお不十分である。こ
の特公平6−71413号の方法で用いる植物組織単細
胞化酵素(細胞分離酵素)は、Rhizopus属糸状
菌から分離される酵素で、endo−polygala
cturonaseとpectin−trans−el
iminaseが主体でかつセルラーゼを含まないもの
である。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Publication No. 6-71.
As described above, the method of No. 413 eliminates the problems of the conventional mechanical grinding method and selectively and efficiently recovers only useful components. 7
When the method of No. 1413 is applied, plant materials that can be food include leaf vegetables, root vegetables, potatoes, legumes, cereals, wild grasses, medicinal herbs, tree leaves, and the like. Because of the myriad counts, unicellularization is impossible even if enzymatic action is performed by the same method, or only a small portion can be unicellularized, or unicellularization varies. Therefore, according to the method of Japanese Patent Publication No. Hei 6-71413, some vegetables and fruits can be made into single cells and can be used as food materials. In order to put plant single cell technology on an industrial scale, This method is still insufficient. The plant tissue single cell-forming enzyme (cell separating enzyme) used in the method of Japanese Patent Publication No. 6-71413 is an enzyme isolated from a filamentous fungus of the genus Rhizopus, and is endo-polygala.
cturonase and pectin-trans-el
iminase is the main component and does not contain cellulase.

【0005】かかる細胞分離酵素では、前記のように、
一部の植物の単細胞化ができるのみで、無数にある植物
柔組織からなりたっているこれらの植物のすべてを分解
して単細胞化することは、不可能である。具体的にいえ
ば、柔組織を構成する無数の細胞を膠着して一定の硬さ
を保ち植物体を形成しているプロトペクチン分子には、
色々の形態がある。すなわち、一本のペクチン分子が一
個結合したCaを介して他のペクチン分子、ヘミセルロ
ース分子またはセルロース分子と結合した比較的簡単な
プロトペクチンの場合と、一本のペクチン分子に遊離の
−COOH基が2〜3個連結して存在し、それにCaが
2〜3個連結して結合し他のペクチン分子、ヘミセルロ
ース分子またはセルロース分子等と連結して結合してい
るプロトペクチンの場合とがあるが、後者の場合は、細
胞間の膠着が、Ca一個を介して結合している前者の場
合よりも強固となり、したがって酵素作用をうけ難くな
る。上記の特公平6−71413号の方法で用いた酵素
では、このような強固な結合をもつプロトペクチンに対
する分解力は極めて弱い。
[0005] In such a cell separating enzyme, as described above,
Only some plants can be converted into single cells, and it is impossible to decompose all of these plants, which are made up of numerous plant parenchyma, into single cells. To be specific, protopectin molecules that form a plant while maintaining a certain degree of hardness by agglutinating innumerable cells that make up soft tissue include:
There are various forms. That is, a relatively simple protopectin in which one pectin molecule is bound to another pectin molecule, a hemicellulose molecule or a cellulose molecule via Ca to which one pectin molecule is bound, and a free -COOH group is contained in one pectin molecule. There is a case in which protopectin is present in which 2 to 3 are linked and Ca is linked and linked to 2 or 3 other pectin molecules, hemicellulose molecules or cellulose molecules and the like, In the latter case, the agglutination between cells becomes stronger than in the former case in which they are linked via a single Ca, and is therefore less susceptible to enzymatic action. The enzyme used in the method of Japanese Patent Publication No. 6-71413 described above has an extremely weak decomposing ability on protopectin having such a strong bond.

【0006】さらに、従来の単細胞化技術においては、
植物の種類が異なっていても全く同様の前処理その他の
処理をおこなっていた。しかしながら、種類が異なる植
物、例えば硬い組織の植物や軟かい組織の植物、表面が
臘物質で被覆されている植物、変色原因物質を含有する
植物、渋味、えぐ味成分を含有する植物、水分含量の少
ない植物、粘稠な性質を示す成分を含有する植物等に対
して、夫々有効な前記処理や単細胞化方法を適用するこ
とによって植物を完全に単細胞化する方法につき、従来
何等の提案もなされていない。
Further, in the conventional single cell technology,
Exactly the same pretreatment and other treatments were performed even when the plant types were different. However, different types of plants, for example, hard tissue plants or soft tissue plants, plants whose surface is coated with a wax substance, plants containing a discoloration causing substance, plants containing astringency, astringency components, moisture, Conventionally, there are no proposals for a method of completely transforming a plant into a single cell by applying the above-described effective treatment or a method for transforming a single cell to a plant having a low content, a plant containing a component having a viscous property, or the like. Not done.

【0007】本発明は上記の問題点を解決し、すべての
植物柔組織を分解して完全に単細胞化する方法を提供す
ることを目的とする。
[0007] It is an object of the present invention to solve the above problems and to provide a method for decomposing all plant parenchyma to completely convert it into a single cell.

【0008】[0008]

【課題を解決するための手段】本発明の植物の完全単細
胞化方法は、上記の目的を達成するためになされたもの
であって、植物に、Rhizopus属糸状菌から分離
される酵素で、強固なプロトペクチンを解離するプロト
ペクチナーゼを主体とする細胞間物質分解酵素を作用さ
せて、植物柔組織の細胞間物質を分解して植物を完全に
単細胞化することを特徴とする。
Means for Solving the Problems The method for completely transforming a plant into single cells according to the present invention has been made in order to achieve the above-mentioned object. The method comprises the steps of providing a plant with an enzyme isolated from a filamentous fungus of the genus Rhizopus; The present invention is characterized in that an intercellular substance-degrading enzyme mainly composed of protopectinase, which dissociates natural protopectin, is acted on to decompose intercellular substances in plant parenchyma to completely convert a plant into a single cell.

【0009】本発明において使用する細胞間物質分解酵
素は、樹木葉や熊笹葉のような極めて強固な植物組織に
対しても分解作用を示す酵素であって、未熟で硬い摘果
ミカンから水溶性のペクチンを総て完全に除去して得ら
れた不溶性のプロトペクチンにも分解作用を示し、さら
に特公平6−71413号の方法で用いた細胞分離酵素
が殆ど分解作用を示さない熊笹葉にも強い分解作用を示
す。
[0009] The intercellular substance-decomposing enzyme used in the present invention is an enzyme capable of decomposing even extremely strong plant tissues such as tree leaves and bamboo grass leaves. It also has a decomposing effect on insoluble protopectin obtained by completely removing all pectin, and is also strong against Kumasa basal leaves, which the cell-separating enzyme used in the method of Japanese Patent Publication No. 6-71413 shows almost no degrading effect. Shows decomposition action.

【0010】本発明においては、植物柔組織を酵素によ
って単細胞状態に解離する場合に、植物組織を構成して
いる無数の細胞同士を膠着して一定の硬さを保持してい
る、プロトペクチンおよび少量のヘミセルロースその他
の化合物からなる膠着物質を分解する必要がある。これ
らの細胞間膠着物質のうち、その主体はプロトペクチン
である事実から、プロトペクチンを主として分解する酵
素があれば、植物柔組織を崩壊して、単細胞を遊離する
ことが可能であることが考えられるが、その他のヘミセ
ルロース系物質、セルロースまたはペクチン質分解酵素
活性が単細胞解離の強弱や速度にどの様な関係を示すも
のかを検討した結果、本発明者は、野菜、野草、果実、
薬草、樹木葉、熊笹葉等の各種植物柔組織を完全に単細
胞に解離する細胞間物質分解酵素、すなわち、Rhiz
opus属糸状菌から分離される酵素で、強固なプロト
ペクチンを解離するプロトペクチナーゼを主体とする本
発明における細胞間物質分解酵素を見出だし、この酵素
が前記特公平6−71413号の方法で用いた細胞分離
酵素と異なる作用機作を奏することを確認した。
In the present invention, when a plant parenchyma is dissociated into a single cell state by an enzyme, the protopectin and the protopectin, in which a myriad of cells constituting the plant tissue are stuck to each other to maintain a certain hardness. It is necessary to decompose agglutinates consisting of small amounts of hemicellulose and other compounds. Among these intercellular agglutinants, the fact that the main component is protopectin suggests that if there is an enzyme that mainly degrades protopectin, it is possible to break down the plant parenchyma and release single cells. Although, other hemicellulosic substances, as a result of examining what relationship the activity of cellulose or pectinolytic enzyme to the strength and rate of single cell dissociation, the present inventors have found that vegetables, wildflowers, fruits,
Rhiz, an intercellular substance-degrading enzyme that completely dissociates various plant parenchyma tissues such as herbs, tree leaves and kuma bamboo leaves into single cells.
An enzyme isolated from filamentous fungi of the genus opus, which is a proteopectinase that dissociates strong protopectin, has been found to be an intercellular substance-degrading enzyme of the present invention, and this enzyme is used in the method of Japanese Patent Publication No. 6-71413. It was confirmed that the action mechanism was different from that of the cell separating enzyme.

【0011】植物性生鮮素材は、すべて多細胞体で、単
一の細胞の集合体でなく、夫々独自の機能をもった細胞
の集団である組織と器官より成り立っている。このよう
な組織や器官は二重の細胞壁と細胞膜で囲まれた無数の
細胞が、プロトペクチンを主体とし、少量のヘミセルロ
ース、ペクチン、リグニンを含有する細胞間接着物質
(ミドルラメラ、中葉)により互いに膠着されて構成さ
れている。この場合、細胞壁は、セルロースを主体と
し、ヘミセルロース、ペクチン質蛋白質等から形成さ
れ、細胞内容物を保護するため強固にできている。ま
た、無数の細胞を膠着して器官や組織を形作っている細
胞間接着物質の主要成分であるプロトペクチンは、多く
のガラクツロン酸が直鎖状に結合し、そのガラクツロン
酸のCOOH基の12〜17%はメチルエステル(CO
OCH3 )となっているが、遊離のCOOH基にはCa
が結合し、不溶化したり、Caを介して他のペクチン分
子やセルロース分子、ヘミセルロース分子と結合し、不
溶性の強固な高分子複合体として硬化した組織や器官を
なしており、生長してくるとこの細胞間にもリグニンが
沈着してくる。植物によっては、細胞間接着物質の主体
がアラバン、キシラン等のヘミセルロースからなるもの
も2〜3ある。
The fresh plant material is a multicellular body, not a single cell aggregate, but a tissue and an organ, each of which is a group of cells having a unique function. In such tissues and organs, countless cells surrounded by a double cell wall and cell membrane adhere to each other with intercellular adhesive substances (middle lamella, middle lobe) mainly composed of protopectin and containing a small amount of hemicellulose, pectin and lignin. It is configured. In this case, the cell wall is mainly composed of cellulose, is formed of hemicellulose, pectin protein, and the like, and is made strong to protect cell contents. In addition, protopectin, which is a main component of the intercellular adhesive substance that forms an organ or tissue by gluing innumerable cells, is composed of a large number of galacturonic acids bound linearly, and 12 to 12 of the COOH group of the galacturonic acid. 17% is methyl ester (CO
OCH 3 ), but free COOH groups include Ca
Binds and insolubilizes, or binds to other pectin molecules, cellulose molecules, and hemicellulose molecules via Ca to form a hardened tissue or organ as an insoluble strong polymer complex. Lignin also deposits between these cells. Depending on the plant, there are a few cell-cell adhesives mainly composed of hemicellulose such as araban and xylan.

【0012】またプロトペクチンの遊離のCOOH基が
何個か連結して存在し、さらにCaが夫々のCOOHに
結合し、そのCaを介して他のペクチン分子、セルロー
ス分子、ヘミセルロース分子と結合して一段と強固な組
織を形成している。樹木葉、熊笹葉のような硬い組織の
細胞間接着は、このような複雑なプロトペクチンで膠着
されているものと推定される。
In addition, several free COOH groups of protopectin are present in linkage, and Ca binds to each COOH, and binds to other pectin molecules, cellulose molecules, and hemicellulose molecules via the Ca. It forms a stronger organization. It is presumed that the intercellular adhesion of hard tissues such as tree leaves and bamboo grass leaves is stuck with such complex protopectin.

【0013】従来から植物柔組織を単細胞に解離する酵
素について研究され特許公報や研究報告において発表さ
れている。しかしながら、これらの酵素について、それ
らに関与する酵素の力価としては表示されていても、実
際に植物体を何%単細胞に解離するかについては明白に
されていない。そして、現在までに、いかに強固な植物
組織でも完全に単細胞に解離する能力を持った酵素につ
いては未だ発表されていない。
[0013] Enzymes that dissociate plant parenchyma into single cells have been studied and published in patent publications and research reports. However, although these enzymes are indicated as the titers of the enzymes involved in them, it is not clear what percentage of plants actually dissociate into single cells. And, to date, no enzyme has been published yet that has the ability to completely dissociate single cells even in any robust plant tissue.

【0014】本発明者は現在までに発表された酵素によ
る植物柔組織の単細胞化作用と異なり、野菜、野草、果
実、薬草等は勿論、樹木葉、熊笹葉のような硬い植物柔
組織でも、構成されている葉脈せんい、茎等の植物繊維
とこれに膠着されている細胞のすべてを完全に単細胞化
して解離し産業的に採算のとれる状態で単細胞懸濁液や
粉末を作成するために、細胞を全く破壊することなく、
いかに強固な植物組織でも完全に単細胞に解離する作用
を有する細胞間物質分解酵素(この酵素を以下本細胞間
物質分解酵素と記す)を開発した。
The inventor of the present invention differs from the single cell-forming action of plant parenchyma by enzymes disclosed so far, in addition to vegetables, wild grasses, fruits, herbs, etc., as well as hard plant parenchyma such as tree leaves and kuma bamboo leaves. In order to create a single-cell suspension or powder in a state that is completely industrialized and profitable, it completely dissociates and dissociates all of the composed plant fibers such as leaf veins, stems and the like and cells stuck to it. Without destroying the cells at all
We have developed an intercellular substance-degrading enzyme (hereinafter, referred to as the present intercellular substance-degrading enzyme) that has the action of completely dissociating even strong plant tissues into single cells.

【0015】[0015]

【発明の実施の形態】本細胞間物質分解酵素は、Rhi
zopus属糸状菌から分離される酵素で、強固なプロ
トペクチンを解離するプロトペクチナーゼを主体とする
酵素であって、Rhizopus属に属する糸状菌のふ
すま、ミカン果皮等の混合固体培養で生成され、生成物
を水で抽出した透明液をアルコール25〜75%飽和添
加により沈降させると粉末状で得られる。本細胞間物質
分解酵素についてのセルロース系物質、ペクチン系物
質、ヘミセルロース系物質、プロトペクチン系物質、植
物組織等に対する崩壊単細胞化程度(組織崩壊系酵素活
性)を測定し、その結果を下記の表1、表2及び表3に
示す。なお比較のために、特公平6−71413号の方
法で用いた細胞分離酵素、セルラーゼ(cellula
se)およびエンドポリガラクツロナゼ(endo−p
olygalacturonase)の両酵素にについ
ても同様に測定し、その結果を下記の表1、表2及び表
3に示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present intercellular substance degrading enzyme is Rhi.
An enzyme isolated from a filamentous fungus of the genus zoopus, which is an enzyme mainly composed of protopectinase that dissociates strong protopectin, and is produced by a mixed solid culture of a bran of a filamentous fungus belonging to the genus Rhizopus, a peel of orange, and the like. A clear liquid obtained by extracting the substance with water is precipitated by adding 25 to 75% of saturated alcohol to obtain a powder. Cellulose-based substances, pectin-based substances, hemicellulose-based substances, protopectin-based substances, and the degree of disintegration single cells (plant-tissue-degrading enzyme activities) of plant tissues, etc. were measured for the present intercellular substance-degrading enzyme, and the results are shown in the following table. 1, Table 2 and Table 3. For comparison, the cell-separating enzyme, cellulase (cellula) used in the method of JP-B-6-71413 was used.
se) and endopolygalacturonase (endo-p
Polygalacturonase) was measured in the same manner, and the results are shown in Tables 1, 2 and 3 below.

【0016】細胞間膠着物質であるプロトペクチンを分
解して植物柔組織を解離し、単細胞を遊離する本細胞間
物質分解酵素や上記の細胞分離酵素は、他のセルラーゼ
やエンドポリガラクツロナーゼと異なり、セルラーゼ系
の酵素活性は殆どないが、中でも本細胞間物質分解酵素
は上記の細胞分離酵素に比べてβ−セロビオース分解活
性以外はすべて活性が低く、殆どセルラーゼ系酵素活性
は含有しない。このことは、生成した単細胞の細胞壁を
分解して細胞数を減少させないことを意味する。下記の
表4に、人参の単細胞懸濁液についての表1〜表3に示
す四酵素による細胞壁の分解についての結果を示す。人
参単細胞懸濁液に、本細胞間物質分解酵素を高濃度に加
えた下記の表4の結果をみても、細胞数に何らの差異も
認められない。
The present intercellular substance-degrading enzyme, which decomposes protopectin, which is an intercellular agglutinating substance, dissociates plant parenchyma and releases single cells, and the above-mentioned cell-separating enzymes are different from other cellulases and endopolygalacturonase. In contrast, the cellulase-based enzyme activity is almost non-existent. Among them, the present intercellular substance-decomposing enzyme has a lower activity than the above-mentioned cell-separating enzyme except for the β-cellobiose-degrading activity, and contains almost no cellulase-based enzyme activity. This means that the cell wall of the generated single cell is not degraded to reduce the cell number. Table 4 below shows the results of the decomposition of the cell wall by the four enzymes shown in Tables 1 to 3 for a single cell suspension of ginseng. Even if the results of Table 4 below in which the present intercellular substance-decomposing enzyme was added to the ginseng single cell suspension at a high concentration were not found, there was no difference in the number of cells.

【0017】下記の表1、表2及び表3に示すように、
本細胞間物質分解酵素についてのヘミセルラーゼ系活性
は、キシラナーゼ活性が僅かに認められるが、植物柔組
織の細胞間膠着物質の中には、プロトペクチンと結合し
たり、または共存して、ヘミセルロースが若干認められ
るがキシランの場合が多く、アラバンは甜菜等限られた
植物にしか含有されない。本細胞間物質分解酵素にキシ
ラナーゼ活性のみ若干含有されるのは、細胞間膠着物質
の分解に若干有利に作用すると思われる。
As shown in Tables 1, 2 and 3 below,
Regarding the hemicellulase activity of the present intercellular substance-degrading enzyme, although xylanase activity is slightly observed, hemicellulose binds to or coexists with protopectin in intercellular agglutinants of plant parenchyma. Although slightly observed, xylan is often present, and araban is contained only in limited plants such as sugar beet. The fact that the present intercellular substance degrading enzyme contains only a small amount of xylanase activity seems to have a slightly advantageous effect on the decomposition of intercellular agglutinants.

【0018】さらにペクチン質分解活性は、本細胞間物
質分解酵素にはペクチン酸液化活性(エンド−ポリガラ
クツロナーゼ)は全く含まれず、また、ペクチンエステ
ラーゼ(pectinesterase)活性は若干含
有される。さらに、ペクチン−トランス−エリミナーゼ
(pectin−trans−eliminase)活
性も全く含有されず、結局、本細胞間物質分解酵素は、
上記の特公平6−71413号の方法における細胞分離
酵素と異なり、エンド−ポリガラクツロナーゼ、ペクチ
ン−トランス−エリミナーゼによる単細胞化作用は全く
行われないことになる。
Further, the pectic substance-degrading activity does not include any pectic acid liquefaction activity (endo-polygalacturonase), and the pectin esterase activity is slightly contained in the present intercellular substance degrading enzyme. Furthermore, it does not contain any pectin-trans-eliminase activity at all.
Unlike the cell-separating enzyme in the method described in Japanese Patent Publication No. 6-71413, no unicellular action by endo-polygalacturonase or pectin-trans-eliminase is performed at all.

【0019】つぎに、ペクチンやペクチン酸等の水溶性
のペクチン質でなく、60℃の温水にも全く溶解しない
強固な植物組織を構成するプロトペクチンを分解して、
水溶性ペクチンを遊離するプロトペクチン分解活性(プ
ロトペクチナーゼ活性)は、本細胞間物質分解酵素が最
も強力で、上記の細胞分離酵素は本細胞間物質分解酵素
より活性が劣り、セルラーゼはさらに一段と活性が低
く、エンド−ポリガラクツロナーゼは僅かな活性しか有
しない。1cm角の人参組織を下記の表1〜表3に示す
四酵素によって単細胞に解離した結果を、下記の表1〜
表3とともに下記の表5に示す。人参崩壊率は、プロト
ペクチナーゼ活性の指標に示す如く、本細胞間物質分解
酵素が最も崩壊率が高く、しかも得られた単細胞懸濁液
1ml中の単細胞数は、5.9×106 と多い。一方、
上記の細胞分離酵素ではプロトペクチナーゼ活性が、本
細胞間物質分解酵素活性よりかなり低いため、人参組織
の単細胞化率も本細胞間物質分解酵素よりも約15%低
く、また、得られた単細胞懸濁液1ml中の単細胞数
は、3.2×106 と本細胞間物質分解酵素の場合の約
半分程度である。特に熊笹葉のような強固な組織をもつ
植物ではプロトペクチンの構造が野菜、野草、樹木葉と
異なると考えられるが、本細胞間物質分解酵素では50
%も分解し、セルラーゼ及びエンド−ポリガラクツロナ
ーゼでは殆ど作用しない。このように、本細胞間物質分
解酵素は、プロトペクチンのペクチン分子を構成する遊
離のCOOH基を有するガラクツロン酸が2〜3個連結
して存在し、さらにその連結して存在するCOOH基に
連続して結合しているCaを介して他のセルロース、ペ
クチン、ヘミセルロース分子が存在するために強固な構
造となっている場合においても、この不溶性で結合型の
強固なペクチン分子を分解する能力を有するので、あら
ゆる植物柔組織の細胞間膠着物質を無作為に分解して単
細胞に解離することことが判明した。したがって、本酵
素を使用し、野菜、野草、果実、薬草、樹木葉、熊笹葉
等、あらゆる植物柔組織を構成する細胞を、完全に単細
胞に解離して葉脈、茎等の長い繊維を分別して単細胞懸
濁液を高収率に分取して食品化することが可能である。
Next, not only water-soluble pectic substances such as pectin and pectic acid but also protopectin which constitutes a strong plant tissue which is completely insoluble in hot water at 60 ° C.
The protopectin-degrading activity (protopectinase activity) that releases water-soluble pectin is the most potent of this intercellular substance-degrading enzyme, and the above-mentioned cell-separating enzyme is less active than the present intercellular substance-degrading enzyme, and cellulase is more active And endo-polygalacturonase has little activity. The results of dissociating a 1 cm square ginseng tissue into single cells by the four enzymes shown in Tables 1 to 3 below are shown in Tables 1 to 3 below.
The results are shown in Table 5 below together with Table 3. As shown in the index of protopectinase activity, the ginseng disintegration rate of this intercellular substance-decomposing enzyme is the highest, and the number of single cells in 1 ml of the obtained single cell suspension is as large as 5.9 × 10 6. . on the other hand,
Since the protopectinase activity of the above-mentioned cell-separating enzyme is considerably lower than that of the present intercellular substance-degrading enzyme, the rate of unicellularization of ginseng tissue is about 15% lower than that of the present intercellular substance-degrading enzyme. The number of single cells in 1 ml of the suspension is 3.2 × 10 6 , which is about half that of the present intercellular substance-decomposing enzyme. In particular, in plants having strong tissues such as kuma bamboo leaves, the structure of protopectin is considered to be different from vegetables, wildflowers, and tree leaves.
%, And has little effect on cellulase and endo-polygalacturonase. As described above, the present intercellular substance-degrading enzyme has two or three galacturonic acids having a free COOH group constituting a pectin molecule of protopectin linked to each other, and further connected to the linked COOH group. Even if it has a strong structure due to the presence of other cellulose, pectin and hemicellulose molecules via Ca bound thereto, it has the ability to decompose this insoluble and bound strong pectin molecule Therefore, it was found that intercellular agglutinants in any plant parenchyma were randomly decomposed and dissociated into single cells. Therefore, this enzyme is used to completely dissociate the cells that make up any plant parenchyma, such as vegetables, wildflowers, fruits, medicinal plants, tree leaves, and bamboo grass leaves, into single cells and separate long fibers such as leaf veins and stems. The single-cell suspension can be fractionated at a high yield to produce food.

【0020】つぎに、葉面が臘物質で被覆されている樹
木葉等を単細胞化する場合について記述する。
Next, a case where a tree leaf or the like whose leaf surface is covered with a wax substance is made into a single cell will be described.

【0021】茶葉を本細胞間物質分解酵素で単細胞化す
るにあたり、5月〜8月頃までの若葉の場合は無処理で
もよいが、9月〜4月頃の老葉では葉面が臘物質で保護
されているので、そのままでは、酵素液のの浸透がな
く、単細胞解離作用がおこらない。そこで、温度40〜
50℃の0.01〜1%前後のNaOH液中に茶葉を浸
漬して30秒〜3分程度撹拌して表面の臘物質を溶解除
去して光沢を失わせ、水洗してアルカリを除き、90〜
95℃の温度の熱湯中に1〜2分浸漬してブランチング
処理を行い、熱湯中から茶葉を引き上げて水冷後、これ
を1cm幅に切断し、撹拌槽へ投入し、175〜200
%量の水を加え、本細胞間物質分解酵素を約0.3〜
0.5%量添加し、30〜40℃で90〜120分撹拌
すると、葉脈や葉柄に膠着している無数の細胞はすべて
単細胞に解離されて、葉脈や葉柄等の長短の繊維質と緑
色の単細胞懸濁液に分れる。これを、20メッシュ前後
の篩で繊維質を除去して緑色の単細胞懸濁液が得られ
る。下記の表6に茶葉単細胞懸濁液の収率、1ml中の
単細胞数その他の測定結果を示したが、単細胞懸濁液の
全原料に対する収率は、85〜90%前後で、単細胞懸
濁液1ml中の単細胞数は、概ね1.0×107 前後で
ある。
When tea leaves are converted into single cells using the present intercellular substance-decomposing enzyme, the leaves may be untreated in the case of young leaves from May to August, but the leaves are protected by wax in the old leaves from September to April. As it is, there is no permeation of the enzyme solution as it is, and no single-cell dissociation action occurs. Then, the temperature 40 ~
Tea leaves are immersed in a NaOH solution of about 0.01 to 1% at 50 ° C. and stirred for about 30 seconds to about 3 minutes to dissolve and remove the wax material on the surface to lose luster, and wash with water to remove alkali. 90 ~
The tea leaves are immersed in hot water at a temperature of 95 ° C. for 1 to 2 minutes to perform a blanching process. The tea leaves are pulled out of the hot water, cooled with water, cut into 1 cm widths, put into a stirring tank, and placed in a stirring tank.
% Of water to reduce the intercellular substance-degrading enzyme to about 0.3 to
When 0.5% is added and stirred at 30-40 ° C for 90-120 minutes, countless cells stuck to veins and petiole are all dissociated into single cells, and long and short fibers such as veins and petiole and green Of a single cell suspension. This is removed with a sieve of about 20 mesh to obtain a green single-cell suspension. Table 6 below shows the yield of the tea cell single cell suspension, the number of single cells in 1 ml, and other measurement results. The yield of the single cell suspension with respect to all the raw materials was about 85 to 90%. The number of single cells in 1 ml of the solution is about 1.0 × 10 7 .

【0022】熊笹葉は、5℃以下でも1週間放置すると
黒変し乾燥して全く酵素作用は受けない。また、アルカ
リ処理しても酵素作用は受けず全く単細胞化は起こらな
い。そこで長期貯蔵と組織の膨化のため、15℃以下の
流水に浸漬貯蔵すると1か月以上容易に鮮度を保持しな
がら貯蔵することができる。しかも適度な吸水のため、
熊笹葉が軟化し、本細胞間物質分解酵素の作用を受け易
くなり、約50〜60%の回収率で単細胞化が可能とな
る。さらに越冬し老朽化した熊笹葉では、40℃の0.
1%HCl液に30分浸漬し、組織を膨化させ、ついで
0.1〜1%NaOH液に40℃で2〜3分浸漬後十分
水洗して切断し、原料の100〜200%程度の加水を
して、本細胞間物質分解酵素を1〜3%添加し、30〜
40℃で撹拌下に作用させる。下記の表7に熊笹葉を本
細胞間物質分解酵素により単細胞化した結果を示す。前
処理法により、熊笹葉の分解率は異なるが、流水浸漬法
(水晒し)が最も良い分解率を示し、約50%分解する
ことが可能となる。勿論、得られる単細胞は濃緑色の鮮
やかな色調を示す。銀杏葉に関してては、0.01%の
NaOH水溶液に一夜浸漬して葉面臘物質を除去する
か、または流水浸漬処理(流水晒し)により原料の50
%の加水量で30℃の温度において本細胞間物質分解酵
素を2時間撹拌下に作用させれば、60〜65%程度の
回収率(歩留)で単細胞懸濁液を得ることができる。
0.05%のNaOH水溶液により90℃で1分脱臘と
同時にブランチングするか、または全く無処理で酵素を
作用させると、単細胞懸濁液の回収率(歩留)は70%
以上を示すが、単細胞の色調が悪くなり、商品価値が減
少または消失する。以上の銀杏葉についての単細胞化に
ついての結果を下記の表8に示す。
Even if the temperature is below 5 ° C., the leaves of the bamboo grass turn black and dry and do not receive any enzymatic action. In addition, even when treated with alkali, no enzymatic action is received and no single cells are formed. Therefore, when stored in running water of 15 ° C. or less for long-term storage and swelling of the tissue, storage can be easily performed while maintaining freshness for one month or more. Besides, for moderate water absorption,
The bamboo grass leaves soften and become susceptible to the action of the present intercellular substance-decomposing enzyme, so that a single cell can be obtained with a recovery rate of about 50 to 60%. In addition, overwintering and dilapidated Kumasa bamboo leaves have a temperature of 40.degree.
It is immersed in 1% HCl solution for 30 minutes to swell the tissue, then immersed in 0.1-1% NaOH solution at 40 ° C. for 2-3 minutes, washed well with water and cut, and hydrated to about 100-200% of the raw material. And add 1 to 3% of the present intercellular substance degrading enzyme,
Work at 40 ° C. with stirring. Table 7 below shows the results obtained by converting Kuma-sasa leaves into single cells using the present intercellular substance-decomposing enzyme. Depending on the pretreatment method, the decomposition rate of Kuma-basa bamboo leaves differs, but the running water immersion method (water exposure) shows the best decomposition rate, and it can be decomposed by about 50%. Of course, the obtained single cells show a vivid color tone of dark green. The ginkgo leaves are immersed overnight in a 0.01% NaOH aqueous solution to remove the waxy substances on the leaves, or the raw material is immersed in running water (exposed to running water).
If the present intercellular substance-decomposing enzyme is allowed to act under stirring for 2 hours at a temperature of 30 ° C. with a% of water, a single cell suspension can be obtained with a recovery rate (yield) of about 60 to 65%.
When blanching is performed simultaneously with dewaxing at 90 ° C. for 1 minute with an aqueous solution of 0.05% NaOH or the enzyme is allowed to act without any treatment, the recovery (yield) of the single cell suspension is 70%.
As described above, the color tone of a single cell deteriorates, and the commercial value decreases or disappears. Table 8 below shows the results of the above-mentioned single cell formation of Ginkgo biloba.

【0023】なお、緑茶、煎茶、碾茶等のように、蒸き
よう、焙煎、柔稔のごとく加熱、圧延、乾燥処理を施し
て細胞を死滅させ、変形、乾燥させたものの細胞間膠着
物質を分解し、変形、死滅細胞を解離させ単細胞粒子に
分解した例を碾茶について下記の表9に示す。碾茶の場
合一回の酵素処理だけでは約75%の歩留で単細胞懸濁
液を得ることができるが、その残渣をもう一度酵素処理
すれば、結局、最初の原料に対して85%の歩留で単細
胞懸濁液として回収することができ、約10%の繊維残
渣が残る。
In addition, cells such as green tea, sencha, and tencha are subjected to heating, rolling, and drying treatments such as steaming, roasting, and mild fermentation to kill cells, and are transformed and dried to form intercellular agglutinants. Table 9 below shows an example in which Tencha was decomposed, deformed and dissociated to separate dead cells and decomposed into single cell particles. In the case of Tencha, a single cell suspension can be obtained at a yield of about 75% with only one enzymatic treatment, but once the residue is enzymatically treated, a yield of 85% with respect to the first raw material is eventually achieved. To recover a single cell suspension, leaving about 10% of fiber residue.

【0024】このように、樹木葉、熊笹葉等のように、
極めて強力な細胞間膠着物質によって硬く膠着整形さ
れ、また、表面を硬く臘物質で被覆され、保護された葉
でも、細胞内の葉緑素その他の分解することのない適切
な前処理を施せば、葉脈、茎、葉柄に膠着されている無
数の細胞を単細胞に解離させ、すべて回収することが可
能となる。
Thus, like tree leaves, bear bamboo leaves, etc.
The leaves are hard-glued and shaped by an extremely strong intercellular agglutinant, and the leaves are hard-coated with a waxy material and protected, even if the leaves are protected by appropriate pretreatment without intracellular chlorophyll or other degradation. , The countless cells stuck to the stem and petiole can be dissociated into single cells, and all can be recovered.

【0025】つぎに、野菜、野草、果実中の酸化酵素の
失活と含有ポリフェノールによる変色に対する防止方法
について記述する。
Next, a method for inactivating oxidative enzymes in vegetables, wild plants and fruits and preventing discoloration due to polyphenols contained therein will be described.

【0026】野菜、果実、野草類の柔組織中には、クロ
ロゲン酸、コーヒー酸、カテコールカテキンその他多く
のポリフェノール、さらにこれらを酸化して変色させる
ポリフェノールオキシダーゼやパーオキシダーゼ、チロ
シンのようなアミノ酸を酸化変色させるカテコラーゼ、
ならびにビタミンCを酸化して変色させるアスコルビン
酸オキシダーゼ等の酸化酵素を含有するものがある。野
菜類では、春菊、高菜、大根葉、ホウレン草、ゴボウ、
フキ、ナス、馬鈴薯、ヤマイモ、レンコン等に、果実で
はリンゴ、桃、梨等に多く含まれる。したがって、撹拌
等の単細胞化操作中は勿論、前処理操作中または保存中
に酸化変色がおこり品質が劣化する。さらに、葉緑素の
主体をなすクロロフィールAを分解するクロロフィラー
ゼAを含む。このことから、生葉または生果実をそのま
ま本細胞間物質分解酵素で撹拌操作のごとき酸化を促進
させる条件下で単細胞化すると、その操作中に酸化酵素
またはクロロフィラーゼAが働いて、例えば、ポリフェ
ノール類が酸化されて黄色から褐色へ、さらに褐色から
黒色へと変色し、クロロフィールは分解されて褐色色素
になり品質は劣化して商品価値を消失する。したがっ
て、予め、例えば80℃以上の温度の熱湯中で1〜5分
間細胞壁を破壊しない程度のブランチングを行い、これ
らの酵素を失活させてから本細胞間物質分解酵素による
単細胞化を行う。
The parenchyma of vegetables, fruits, and wild plants oxidizes chlorogenic acid, caffeic acid, catechol catechin, and many other polyphenols, as well as amino acids such as polyphenol oxidase, peroxidase, and tyrosine, which oxidize and discolor them. Catecholase to discolor,
Some include oxidases such as ascorbate oxidase that oxidize and discolor vitamin C. As for vegetables, spring chrysanthemum, Takana, radish leaf, spinach, burdock,
Butterflies, eggplants, potatoes, yams, lotus roots, and the like, and fruits include apples, peaches, and pears. Therefore, the discoloration due to oxidation occurs during the pretreatment operation or during the storage, as well as during the operation of forming a single cell such as stirring, and the quality deteriorates. Furthermore, it contains chlorophyllase A, which degrades chlorophyll A, which is the main component of chlorophyll. From this fact, if raw leaves or fruits are converted into single cells as they are under the condition of promoting oxidation as in the stirring operation with the present intercellular substance-decomposing enzyme, the oxidase or chlorophyllase A works during the operation, for example, polyphenols Is oxidized and changes its color from yellow to brown, and then from brown to black, and chlorophyll is decomposed to a brown pigment, deteriorating the quality and losing commercial value. Therefore, blanching is performed in advance in hot water at a temperature of, for example, 80 ° C. or more to such an extent that the cell wall is not destroyed for 1 to 5 minutes to inactivate these enzymes, and then the cells are decomposed into single cells by the present intercellular substance-decomposing enzyme.

【0027】果実等のごとく淡色のものは剥皮、切断等
で細胞を切断すると、直ちに酸化酵素が、含有されるポ
リフェノールを酸化して黄色、さらには褐色へと変色す
る。このような果実では、剥皮、切断直後に酸化酵素の
働きを止めるとともに、ポリフェノール自体の自動酸化
を防ぐために、L−アスコルビン酸、L−アスコルビン
酸ナトリウム、エリソルビン酸、グルタチオン等の酸化
防止剤と必要によりクエン酸等のpH低下剤とを溶解し
た液中に浸漬して、本細胞間物質分解酵素による処理前
に原料果実が酸化変色するのを防ぐ必要がある。さら
に、本細胞間物質分解酵素で、撹拌下に果実等を単細胞
化するにあたり、酸化酵素の作用とポリフェノール自体
の自動酸化を防ぐために、同様に酸化防止剤をやや過剰
に添加する。もし、酸化防止剤が不足する場合、酵素作
用中にポリフェノールの酸化が進行し褐変化する。な
お、原料植物の種類によって、上記のブランチングおよ
び酸化防止剤添加の何れかの方法のみによって行うこと
もできる。下記の表10及び表11にキュウイの場合、
下記の表12にリンゴ(王林)の場合、および下記の表
13にれんこん、甘藷、長薯の場合について、本細胞間
物質分解酵素を用いて上記の方法により、これらの原料
を解離して単細胞化した結果を示す。なお、表12に示
すごとく、リンゴのようにクロロフィール含量の少ない
場合には、酸化酵素を失活させるために、熱水または蒸
気加熱によりブランチングすると、クロロフィールが分
解してしまって変色してしまう。勿論、酸化防止剤のL
−アスコルビン酸を添加しないと、強く酸化して褐変色
する。
When a light-colored product such as a fruit is cut off by peeling, cutting, or the like, the oxidase immediately oxidizes the polyphenol contained therein and changes its color to yellow or brown. In such fruits, antioxidants such as L-ascorbic acid, sodium L-ascorbate, erythorbic acid, and glutathione are required to stop the action of oxidase immediately after peeling and cutting, and to prevent autoxidation of polyphenol itself. Therefore, it is necessary to prevent the raw fruit from being oxidized and discolored before the treatment with the present intercellular substance-decomposing enzyme by immersion in a solution in which a pH-lowering agent such as citric acid is dissolved. Further, when the fruit and the like are converted into single cells under stirring with the present intercellular substance-decomposing enzyme, an antioxidant is similarly added in a slightly excessive amount in order to prevent the action of the oxidase and the autoxidation of the polyphenol itself. If the amount of the antioxidant is insufficient, the oxidation of the polyphenol proceeds during the action of the enzyme and browns. In addition, depending on the type of the raw material plant, it can be carried out only by any of the above-mentioned methods of blanching and adding an antioxidant. In the case of cucumber in Tables 10 and 11 below,
In the case of apple (Wang Lin) in Table 12 below and in the case of lotus root, sweet potato and potato in Table 13 below, these raw materials were dissociated by the above method using the present intercellular substance-decomposing enzyme. The result of single cell formation is shown. As shown in Table 12, when the chlorophyll content is low, such as apple, when blanching is performed by heating with hot water or steam to deactivate the oxidase, the chlorophyll is decomposed and discolored. Would. Of course, the antioxidant L
-Without ascorbic acid, it oxidizes strongly and turns brown.

【0028】つぎに、野菜、野草類に含有される渋味、
えぐ味成分の除去とポリフェノールの流出除去のための
ブランチング方法の適用について記述する。
Next, the astringency contained in vegetables and wild plants,
This paper describes the application of blanching method for removal of savory components and removal of polyphenol runoff.

【0029】下記の表14に野菜類の細胞内外における
ポリフェノールの含量を示したが、野菜、野草等の柔組
織中には、この表14に示すように細胞内および細胞間
にほぼ同量のポリフェノールが含有され、酸化変色の原
因をなしている。なお表14において、細胞内ポリフェ
ノール及び細胞間ポリフェノールについては、各野菜に
ついて、本細胞間物質分解酵素で単細胞化して得られた
単細胞懸濁液を3000rpmで5分遠心分離して分別
した沈殿物(単細胞粒子)及び上澄液から、それぞれ細
胞内ポリフェノール及び細胞間ポリフェノールの含量を
測定した。さらに、野菜、野草類の柔組織中には、細胞
外、細胞内を問わずクロロゲン酸、タンニン酸等の渋味
成分やホモゲンチシン酸、シュウ酸、アルカロイド、マ
グネシウム塩等のえぐ味物質が含有されている。このよ
うに、酸化変色の原因になるポリフェノールや渋味、え
ぐ味成分をでき得るかぎり細胞内外より流出減少させ
て、変色の少なく渋味、えぐ味のない単細胞懸濁液とす
ることが必要である。
Table 14 below shows the polyphenol content inside and outside the cells of vegetables. In parenchyma such as vegetables and wild grass, as shown in Table 14, almost the same amount of polyphenols was found inside and between cells. Contains polyphenols, causing oxidative discoloration. In Table 14, for intracellular polyphenols and intercellular polyphenols, for each vegetable, a precipitate obtained by centrifuging a single cell suspension obtained by converting the single cell with the present intercellular substance degrading enzyme at 3000 rpm for 5 minutes and separating the same ( The content of intracellular polyphenol and intercellular polyphenol were measured from the single cell particles) and the supernatant, respectively. Furthermore, the parenchyma of vegetables and wild plants contains astringent components such as chlorogenic acid and tannic acid, and harsh substances such as homogentisic acid, oxalic acid, alkaloids, and magnesium salts, both extracellularly and intracellularly. ing. In this way, it is necessary to reduce the outflow of polyphenols, astringency, and astringency components that cause oxidative discoloration from inside and outside the cell as much as possible, and to provide a single-cell suspension with little astringency and astringency without aroma. is there.

【0030】また、カボチャ等の各種野菜を本細胞間物
質分解酵素で単細胞粒子と細胞間液とに分別して、細胞
内と細胞間に存在する無機成分(Ca、Mg、K、F
e)の含量(mg/100g)を測定した結果を下記の
表15に示す。なお、無機成分の場合、測定試料、時期
等により、細胞内、細胞間の分布量に大きい差がある。
このようなえぐ味、渋味の原因となるCa、Mg等の過
剰の無機成分を溶出除去するために、80〜95℃前後
の熱湯中で5分以上ブランチングし、水晒しすることに
よって細胞間及び細胞内よりこれらの無機成分を溶出除
去するとともに、酸化変色の原因となるポリフェノール
をも流出除去して、ポリフェノールやCa、Mg等の無
機成分の含量を減少させ、酸化変色、えぐ味、渋味を減
少することができる。下記の表16及び表17に、高菜
(表16)及びホウレン草(表17)のそれぞれを、本
細胞間物質分解酵素で単細胞化した単細胞懸濁液及び機
械磨砕した機械磨砕液について、ブランチング処理した
場合のポリフェノールノ含量(mg/100g)につい
て示す。なお、表16及び表17において上澄液とは、
単細胞懸濁液及び機械磨砕液のそれぞれについて、30
00rpmで10分遠心分離して得られたた上澄液をい
う。また、下記の表18に、野菜(ホウレン草及びニン
ジン)について、ブランチング処理した場合の細胞内及
び細胞間液における無機成分の含量について示す。
Further, various vegetables such as pumpkins are separated into single cell particles and intercellular fluid by the present intercellular substance-decomposing enzyme, and inorganic components (Ca, Mg, K, F) existing inside and between cells are separated.
The results of measuring the content (mg / 100 g) of e) are shown in Table 15 below. In the case of an inorganic component, there is a large difference in the amount of distribution within a cell and between cells depending on a measurement sample, a timing, and the like.
In order to elute and remove excess inorganic components such as Ca and Mg that cause such harshness and astringency, blanching is performed for at least 5 minutes in hot water at about 80 to 95 ° C, and the cells are exposed to water. In addition to eluting and removing these inorganic components from between and inside the cells, polyphenols that cause oxidative discoloration are also removed by leaching, reducing the content of inorganic components such as polyphenols, Ca, and Mg. Astringency can be reduced. Tables 16 and 17 below show blanching of a single cell suspension obtained by converting each of Takana (Table 16) and spinach (Table 17) into a single cell with the present intercellular substance degrading enzyme and a mechanically ground liquid. The polyphenol content (mg / 100 g) in the case of the treatment is shown. In Tables 16 and 17, the supernatant is defined as
For each of the single cell suspension and the mechanical attrition, 30
This refers to the supernatant obtained by centrifugation at 00 rpm for 10 minutes. Table 18 below shows the content of the inorganic components in the intracellular and intercellular fluids of the vegetables (spinach and carrot) after the blanching treatment.

【0031】表16、表17及び表18に示されるよう
に、ブランチングによって溶出除去されるポリフェノー
ルは、高菜の場合約70〜80%に達するが、ホウレン
草の場合約40〜50%とやや低く、野菜の組織、構造
により溶出量の異なることがわかる。一方、無機成分の
溶出は、ホウレン草の場合、細胞内及び細胞間で最大約
55〜60%、ニンジンの場合、細胞内及び細胞間で最
大約50〜70%である。結局、硬い野菜では90〜9
5℃、軟かい野菜では80〜85℃で1〜5分又は6分
間ブランチングすれば、ポリフェノールやCa、Mg等
の変色原因物質や渋味、えぐ味原因物質が大きく溶出除
去できることは明白である。これらを商品として流通さ
せるにあたり、冷蔵、冷凍中における変色について、ホ
ウレン草、高菜、ケール大根葉等を使用して保存期間と
変色との関係を検討した結果、生葉をそのまま単細胞懸
濁液とした場合には、冷蔵では7日位までは、大きい酸
化変色はないが、以後著しく変色し、商品価値を失うこ
とが判明した。生葉を5分以上ブランチングして単細胞
懸濁液としたものでは、27日前後までは大きい変色は
なく、商品価値は保持可能であるが、以後は酸化変色が
進行する。冷凍する場合、生葉から調製した単細胞懸濁
液では1か月間は変色が少ない。ブランチングした生葉
から調製した単細胞懸濁液では、2〜3か月間は変色が
少なく商品価値は失われない。
As shown in Tables 16, 17 and 18, the amount of polyphenols eluted and removed by blanching reaches about 70-80% in the case of Takana but slightly lower in the case of spinach which is about 40-50%. It can be seen that the amount of elution differs depending on the structure and structure of the vegetables. On the other hand, the elution of the inorganic component is up to about 55 to 60% intracellularly and intercellularly in spinach, and up to about 50 to 70% intracellularly and intercellularly in the case of carrot. After all, 90-9 for hard vegetables
It is clear that if blanching is performed at 5 ° C and soft vegetables at 80 to 85 ° C for 1 to 5 or 6 minutes, substances causing discoloration such as polyphenols, Ca, and Mg, and astringent and astringent substances can be largely eluted and removed. is there. When distributing these as commercial products, as a result of examining the relationship between storage period and discoloration using spinach, Takana, kale radish leaves, etc. for discoloration during refrigeration and freezing, when raw leaves are directly used as single cell suspension It was found that there was no significant oxidative discoloration up to about 7 days in refrigerated storage, but the color changed markedly thereafter, losing commercial value. When a fresh leaf is blanched for 5 minutes or more to form a single cell suspension, there is no significant discoloration until about 27 days, and the commercial value can be maintained, but thereafter, oxidative discoloration proceeds. When frozen, a single-cell suspension prepared from fresh leaves shows little discoloration for one month. The single cell suspension prepared from the blanched fresh leaves has little discoloration for 2 to 3 months and does not lose its commercial value.

【0032】つぎに、高粘度または水分の少ない野菜、
野草等を単細胞化するにあたっての前処理方法について
記述する。
Next, vegetables having high viscosity or low water content,
The pretreatment method for converting wild grass and the like into single cells is described.

【0033】野菜、野草、薬草、果実等を本細胞間物質
分離酵素で単細胞化するにあたり、水分85%以上の植
物体では、酵素粉末を添加して撹拌するのみで単細胞化
が可能であるが、モロヘイヤのように極端に粘稠なもの
(但し野菜タイプのモロヘイヤは粘度が低い)では酵素
作用が進行しない上に黒変する。このような場合ブラン
チングを行うと、水分が90%に達して単細胞化が可能
であるが、よりよく単細胞化をおこなうために加水して
粘度を下げて行うと、十分に酵素作用が進行する。粘稠
な長薯の場合83〜85%の水分を含むので、水洗、切
断後、酵素粉末を加えて完全に単細胞化が可能である
が、甘藷は水分が68%と低く、水分90%相当分の約
20%の加水が必要で、馬鈴薯では水分が79%である
ので10%内外の加水が必要である。カボチャの場合水
分が78%前後であるので、10%内外の加水を行わな
いと十分な単細胞化が行われない。ただし、冷凍したカ
ボチャでは解凍により組織が軟化するとともに、水分が
切断した組織の表面に溶出するために、加水をしなくて
も単細胞化が可能である。以上によりモロヘイヤ、赤カ
ボチャ(くりさんご)、えびすカボチャ(濃緑カボチ
ャ)、及び冷凍えびすカボチャ、冷凍赤カボチャについ
て単細胞化した結果を、それぞれ下記の表19、表2
0、表21及び表22に示す。
When vegetables, wildflowers, medicinal plants, fruits and the like are converted into single cells with the present intercellular substance-separating enzyme, in plants having a water content of 85% or more, single cells can be formed only by adding enzyme powder and stirring. On the other hand, extremely viscous materials such as Moroheiya (however, vegetable-type Moroheiya have a low viscosity) do not proceed with enzymatic action and turn black. In such a case, when blanching is performed, the water content reaches 90% and single cells can be formed. However, if the viscosity is reduced by adding water to perform better single cells, the enzyme action sufficiently proceeds. . Since viscous potatoes contain 83-85% water, they can be completely single-celled by adding enzyme powder after washing and cutting, but sweet potatoes have a low water content of 68%, equivalent to 90% water content. About 20% of water is required, and potato has a water content of 79%. In the case of squash, the water content is about 78%, and unless the water content is 10% or less, sufficient single cells cannot be formed. However, in a frozen pumpkin, the tissue is softened by thawing, and since water elutes on the surface of the cut tissue, single cells can be formed without adding water. Table 19 and Table 2 below show the results obtained by converting single cells of Moloheiya, red pumpkin (Kurisango), Ebisu pumpkin (dark green pumpkin), frozen Ebisu pumpkin, and frozen red pumpkin, respectively.
0, Table 21 and Table 22.

【0034】さらに茶葉、銀杏葉のような樹木葉及び熊
笹葉では、生葉の水分が60〜70%と低く、かつ組織
が硬く、葉柄等の硬く長い繊維を含むため、ブランチン
グしたとしても水分不足でそのままでは酵素作用は進行
しない。銀杏葉では、加水量50%程度、茶葉のような
多くの葉柄を含むものでは、原料の100〜200%程
度、さらに熊笹葉では60〜150%の加水の後、酵素
粉末を加えて解離すれば完全に単細胞化が可能である
が、無加水または余り過剰な加水では撹拌効率が悪くな
り、単細胞化が不可能である。下記の表23に、茶葉
(水分67.5%、ブランチング後水分78.5%)、
銀杏葉(水分68.2%、流水晒し後水分75.2%)
及び熊笹葉(水分60.3%、流水晒し後水分70.6
%)を原料葉として用い、これらを本細胞間物質分解酵
素によって単細胞化した場合についての結果を示す。
Further, in the case of tree leaves such as tea leaves and ginkgo leaves, and the leaves of kuma bamboo grass, the fresh leaves have a low water content of 60 to 70%, and the tissue is hard and contains hard and long fibers such as petiole. Enzyme action does not proceed as it is in short supply. Ginkgo leaves have a water content of about 50%, and those containing many petiole patterns such as tea leaves have a water content of about 100-200%. If it is possible to completely convert the cells into single cells, it is impossible to convert the cells into single cells without adding water or adding excessive water, because the stirring efficiency is deteriorated. In Table 23 below, tea leaves (water 67.5%, water content after blanching 78.5%),
Ginkgo biloba (water content 68.2%, moisture content after exposure to running water 75.2%)
And bear bamboo leaf (moisture 60.3%, moisture 60.6% after running water exposure)
%) Is used as a raw material leaf, and the results are shown for the case where these were made into single cells by the present intercellular substance-decomposing enzyme.

【0035】つぎに、碾茶、煎茶等を加工乾燥して得ら
れた水分10%前後の茶葉では、原料葉の500〜70
0%の加水をしないと解離して単細胞化することが不可
能である。下記の表24に碾茶葉について加水して単細
胞化した例を示す。乾燥した脱脂大豆や乾燥した豆腐粕
の場合は原料の500〜700%の加水をしないと、単
細胞化は不可能である。生大豆はそのまま、乾燥大豆で
は十分吸水させた後切断し200%加水をして単細胞化
を行う。コーヒー豆のような極端に硬いものでは、十分
吸水させた後、切断し、原料の100%程度の加水をし
て初めて酵素による単細胞化が可能となる。スイートコ
ーンの生鮮物は水分が多く、切断原料に酵素粉末を加
え、解離して単細胞化することがが可能である。下記の
表25に乾燥大豆、下記の表26にコーヒー豆、下記の
表27にスイートコーンについてこのようにして単細胞
化した例を示す。なお、表27において不完全単細胞化
とあるのは、単細胞化を中途で中止したことを意味す
る。
Next, in tea leaves having a water content of about 10% obtained by processing and drying Tencha, Sencha, etc., 500-70
Without 0% water, it is impossible to dissociate into single cells. Table 24 below shows an example in which Tencha leaves were hydrolyzed into single cells. In the case of dried defatted soybeans and dried tofu cake, it is impossible to make single cells unless 500-700% of the raw material is added with water. Raw soybeans are left as they are, and dried soybeans are cut off after sufficient water absorption, and 200% water is added to form single cells. In the case of an extremely hard material such as coffee beans, a single cell can be formed by an enzyme only after sufficient water absorption, cutting, and adding about 100% of water to the raw material. Sweet corn fresh matter has a lot of moisture, and it is possible to add enzyme powder to the raw material for cutting, dissociate and make single cells. Table 25 below shows an example of dried soybeans, Table 26 below shows coffee beans, and Table 27 below shows an example of sweet corn as single cells. In Table 27, "incomplete unicellularization" means that the unicellularization was discontinued halfway.

【0036】以上、野菜、野草、果実類は生原料または
ブランチングしたものは、無加水でも単細胞化が可能で
あり、根菜類も無加水で十分単細胞化が可能である。い
も類は少量(10〜20%)の加水が必要となる。この
ように、本発明の方法においては、原料の水分、物理的
性質に応じて、本細胞間物質分解酵素で単細胞化すると
きに、必要に応じて加水して行う。
As described above, vegetables, wildflowers, and fruits are raw materials or blanched ones, and can be made into single cells even without water, and root vegetables can be made into single cells without water. Potatoes require a small amount of water (10-20%). As described above, in the method of the present invention, depending on the water content and physical properties of the raw material, when the cells are converted into single cells with the present intercellular substance-decomposing enzyme, they are added with water as needed.

【0037】つぎに、野菜、野草、果実、樹木葉、熊笹
等を本細胞間物質分解酵素により単細胞化して得られた
単細胞懸濁液と機械的に磨砕して得られた機械的磨砕液
との差異について以下に記述する。
Next, a mechanically milled liquid obtained by mechanically grinding a vegetable, wild grass, fruit, tree leaf, Kumabasa, etc., into a single cell suspension obtained by converting the cells into single cells with the present intercellular substance-decomposing enzyme. The differences from the above are described below.

【0038】植物柔組織を本細胞間物質分解酵素で単細
胞化した懸濁液は一般の機械的磨砕法で行った磨砕液と
は明らかに異なる。下記の表28及び表29に、ニンジ
ン及びイチゴにつき、本細胞間物質分解酵素により単細
胞化した懸濁液及びホモゲナイザーを用いて機械的に破
砕した機械的磨砕液(ピューレー)の粒度分布をそれぞ
れ測定した結果を示す。なお、粒度分布については、株
式会社堀場製作所製の粒度分布測定装置(LA−500
V−1回転式)を用いて測定した。ニンジンの場合は、
単細胞懸濁液は、粒径0.02〜0.04mmの細胞が
約42%を示し、他の50%余りが0.02mm以下の
粒径の小さい細胞粒子からなっていて、平均粒径も0.
018mmと大きい。一方、機械的磨砕液では、主とし
て0.03mm以下の破砕粒子からなり、平均粒径も
0.009mmと小さく、また、細胞は全く見当たら
ず、破砕された細胞内顆粒及び細胞壁の破砕されたもの
からなっている。
A suspension obtained by converting plant parenchyma into a single cell with the present intercellular substance-degrading enzyme is clearly different from a trituration solution obtained by a general mechanical trituration method. In Tables 28 and 29 below, for carrots and strawberries, the particle size distributions of a suspension prepared as a single cell with the present intercellular substance-decomposing enzyme and a mechanically ground solution (pure) mechanically crushed using a homogenizer were measured. The results are shown. The particle size distribution was measured using a particle size distribution analyzer (LA-500 manufactured by Horiba, Ltd.).
V-1 rotation type). For carrots,
In the single cell suspension, cells having a particle size of 0.02 to 0.04 mm represent about 42%, and the remaining 50% consist of small cell particles having a particle size of 0.02 mm or less. 0.
It is as large as 018 mm. On the other hand, in the mechanical grinding solution, the crushed particles mainly consist of crushed particles of 0.03 mm or less, the average particle diameter is small as 0.009 mm, and no cells are found, and crushed intracellular granules and crushed cell walls are obtained. Consists of

【0039】下記の表30に、ニンジン、ホウレン草、
白菜、玉ネギ、リンゴ及びミカンのそれぞれについて、
本細胞間物質分解酵素により単細胞化した懸濁液と機械
的に磨砕した機械的磨砕液(ピューレー)との一般成分
及び粒度分布を測定した結果を示す。野菜の種類によっ
て、粒度分布はそれぞれ差があるが、機械的磨砕液は全
く細胞が見当たらないのと異なり、単細胞懸濁液の方は
1ml中に106 個以上の楕円型または円型の細胞で占
められている。下記の表31に、ニンジンについての単
細胞懸濁液と市販の三種の機械的磨砕液(凍結粉砕、裏
ごし液及びミクロペースト)とについての比較結果を示
したが、機械磨砕液は何れも単細胞は全く認められな
い。これに対して、単細胞懸濁液は、丸いまたは楕円型
の角のない型の細胞が細胞間液中に分散した懸濁液であ
るので、機械的磨砕液のような不定型の角のある破砕粒
子の磨砕液とは物理的性質が自から異なる。
Table 30 below shows carrots, spinach,
For each of Chinese cabbage, onion, apple and tangerine,
The result of measurement of the general components and the particle size distribution of the suspension made into a single cell by the present intercellular substance-decomposing enzyme and the mechanically ground mechanically ground solution (Purey) is shown. The particle size distribution varies depending on the type of vegetable, but unlike the mechanical attrition solution, where no cells are found, the single-cell suspension has more than 10 6 oval or circular cells per ml. Occupied by. Table 31 below shows the comparison results between the single cell suspension for carrots and three commercially available mechanically milled liquids (freeze-milled, flattened liquid and micropaste). Not at all. In contrast, a single-cell suspension is a suspension of round or oval cells with no corners dispersed in the intercellular fluid, and therefore has irregular corners such as a mechanical trituration solution. The physical properties of the crushed particles are different from those of the grinding liquid.

【0040】ニンジンについての単細胞懸濁液及び機械
磨砕液の界面張力及び表面張力を測定した結果を下記の
表32に示した。なお、表32において、単細胞懸濁液
(A)及び単細胞懸濁液(B)は、本細胞間物質分解酵
素及び前記の特公平6−71413号公報に記載の細胞
分離酵素をそれぞれ用いて得られた単細胞懸濁液であ
る。また、界面張力は液体(水)と液体(油)とが混じ
り合おうとするのを妨げる力であり、表面張力は液体
(水)と空気とが混じり合おうとするのを妨げる力であ
る。したがって、界面張力が高いのは油となじみ難いこ
とを、低いのは油となじみ易いことを意味し、さらに、
表面張力が高いのは空気となじみ難いことを、低いのは
空気となじみ易いことを意味する。表32の結果から、
単細胞懸濁液(A)は機械磨砕液に比して界面張力及び
表面張力の何れもが低く、油と混ざり易く油に対して分
散性が良いので、油を分散させたドレッシングやクリー
ムと混合しやすく、また空気となじみ易く、泡立ち易く
ふわっとしたものが作り易い。
The results of measuring the interfacial tension and the surface tension of the single-cell suspension and the cartilage solution for carrot are shown in Table 32 below. In Table 32, the single-cell suspension (A) and the single-cell suspension (B) were obtained using the present intercellular substance-decomposing enzyme and the cell-separating enzyme described in Japanese Patent Publication No. 6-71413, respectively. This is the obtained single cell suspension. The interfacial tension is a force that prevents liquid (water) and liquid (oil) from mixing with each other, and the surface tension is a force that prevents liquid (water) with air from mixing with each other. Therefore, a high interfacial tension means that it is not easily compatible with oil, and a low interfacial tension means that it is easily compatible with oil.
A high surface tension means that it is difficult to adapt to air, and a low surface tension means that it is easy to adapt to air. From the results in Table 32,
Single-cell suspension (A) has lower interfacial tension and surface tension than machine-milled liquid, and is easily mixed with oil and has good dispersibility in oil. Therefore, it is mixed with oil-dispersed dressing or cream. It is easy to make, easy to mix with air, easy to foam and fluffy.

【0041】下記の表33に示すように、ニンジンから
得られた単細胞懸濁液(A)、単細胞懸濁液(B)及び
機械的磨砕液に、蒸留水、大豆油、牛乳を加えて、粘度
測定(26℃、162rpm/分で測定)すると、何れ
の場合も単細胞懸濁液(A)のほうが機械的磨砕液より
粘度が半分近くも低く、単細胞懸濁液は水や油に対し分
散性が良いため、流れがスムーズで粘度が低くなり、ま
たその流れ易さがさらっとした喉越しの良さに好結果を
与える。一方、機械磨砕液は粘度が高く、粒度が大き
く、水に対し分散性が悪いので、スムーズに流れなくな
り、ごつごつした喉越しのものとなる。
As shown in Table 33 below, distilled water, soybean oil, and milk were added to the single-cell suspension (A), the single-cell suspension (B), and the mechanically ground suspension obtained from carrots. When the viscosity was measured (measured at 162 rpm / min at 26 ° C.), the viscosity of the single-cell suspension (A) was almost half lower than that of the mechanical grinding solution in each case, and the single-cell suspension was dispersed in water or oil. Due to the good properties, the flow is smooth and the viscosity is low, and the ease of the flow gives a good result to the smooth throat. On the other hand, the mechanical grinding liquid has a high viscosity, a large particle size, and poor dispersibility in water, so that it does not flow smoothly and becomes a rough throat.

【0042】つぎに、野菜、野草、果実、薬草、樹木
葉、熊笹葉等の植物柔組織を本細胞間物質分解酵素で単
細胞化した事実を確認する方法について以下に記述す
る。
Next, a method for confirming the fact that plant parenchyma such as vegetables, wildflowers, fruits, medicinal plants, tree leaves, and bamboo grass leaves have been converted into single cells with the present intercellular substance-degrading enzyme will be described below.

【0043】植物柔組織を単細胞化したと報告しても、
ただ、顕微鏡観察によってただ細胞が見えたという事実
からのみでは、植物柔組織を単細胞化した証明とはなら
ない。植物柔組織の細胞間接着が完全に分解され、個々
の無数の細胞が完全に単細胞に解離したことを確認しな
くてはならない。完全に単離したことを確認する方法と
して、単細胞化した懸濁液を2〜10倍までの各段階に
希釈して、十分撹拌分散させ、40〜600倍の倍率の
顕微鏡で、各希釈段階の懸濁液をそれぞれ1〜2回づつ
観察し、細胞同士が接着することなく完全に遊離状態に
なっていることを確認する必要がある。さらに、トーマ
の血球計を用いて2〜10倍の希釈液を使用して、5回
以上計測し、計算により、懸濁液1g中の細胞数を産出
する。この場合、試料とした植物柔組織を本細胞間物質
分解酵素で単細胞化するに当り、加水した場合には、そ
の加水量を換算して原料柔組織1gについての細胞数を
算出する。下記の表34に、ニンジンを本細胞間物質分
解酵素で単細胞化して得られた単細胞懸濁液の細胞数を
上記の方法によって測定した例を示す。このように、使
用した原料を本細胞間物質分解酵素により、構成する細
胞を破壊しないで完全に単細胞に解離し、無数の細胞が
細胞間液中に懸濁した単細胞懸濁液とすることによっ
て、はじめて植物柔組織を単細胞化したといえる。
Even if it is reported that the plant parenchyma has been converted into a single cell,
However, the mere fact that cells were visible by microscopic observation does not prove that plant parenchyma has been converted into single cells. It must be ensured that the cell-cell adhesion of the plant parenchyma has been completely degraded and that countless individual cells have completely dissociated into single cells. As a method for confirming complete isolation, a single cell suspension is diluted in each stage of 2 to 10 times, sufficiently stirred and dispersed, and subjected to each dilution step with a microscope of 40 to 600 times magnification. Must be observed once or twice each to confirm that the cells are completely free without adhering to each other. Further, using a toma hemacytometer, the measurement is performed 5 times or more using a 2 to 10-fold dilution, and the number of cells in 1 g of the suspension is calculated. In this case, when the plant parenchyma used as the sample is converted into a single cell with the present intercellular substance degrading enzyme, when the water is added, the amount of water is converted to calculate the number of cells per 1 g of the raw parenchyma. Table 34 below shows an example in which the number of cells of a single cell suspension obtained by converting carrots into single cells with the present intercellular substance degrading enzyme was measured by the above method. In this way, the used raw material is completely dissociated into single cells without destroying the constituent cells by the present intercellular substance-decomposing enzyme, thereby forming a single cell suspension in which countless cells are suspended in the intercellular fluid. It can be said that for the first time plant parenchyma was converted into a single cell.

【0044】つぎに、単細胞懸濁液の粘稠性と単細胞の
沈降との関係及び沈降防止対策について以下に記述す
る。
Next, the relationship between the viscosity of the single-cell suspension and the sedimentation of the single cells and measures for preventing sedimentation will be described below.

【0045】野菜、野草、果実、薬草、樹木葉、熊笹等
の植物柔組織は無数の細胞が、プロトペクチンを主体と
するペクチン質や若干のヘミセルロース、微量のリグニ
ン等により、細胞同士で、または葉脈等のセルロース等
に膠着されて構成されている。本細胞間物質分解酵素に
よって、無数のプロトペクチン分子等を連続的に切断す
ることにより、細胞間又は細胞とセルロース等の接着が
離れて単細胞となって解離し、細胞同士を膠着している
プロトペクチン分子の間に介在した細胞間液中に、ペク
チン質やその他の水溶性成分が溶解し、粘稠な液とな
る。この粘稠液内に無数の単細胞が懸濁し、ますますそ
の粘稠性が増加した状態になっている。但し、その単細
胞懸濁液の粘度は、原料により、また品種や産地その他
栽培地の土質、気候その他無数の条件に左右される。ニ
ンジンを例にとってみても、本発明者が日本、アメリ
カ、中国産のニンジンを、4年間にわたって100回程
度単細胞化し、得られた単細胞懸濁液の粘度を測定した
ところ、その粘度は835〜6350cpの範囲にあ
り、ニンジンの種類によって極めて大きい差があり、詳
細には1本毎にその粘度が異なることが判明した。下記
の表35にニンジン、ホウレン草の単細胞懸濁液につい
て、その希釈程度による粘度の変化を示す。ニンジンで
は、単細胞懸濁液の1.5倍の水を加え2.5倍に希釈
すると、粘度は180cpまで低下し、最初の粘度の1
/15に低下する。ホウレン草では、同様に、単細胞懸
濁液の1.5倍の水を加え2.5倍に希釈すると、粘度
は113cpまで低下し、最初の粘度の1/15に低下
する。
In plant parenchyma such as vegetables, wild grasses, fruits, medicinal plants, tree leaves, and bamboo grass, innumerable cells are generated from each other by pectic substances mainly composed of protopectin, a small amount of hemicellulose, trace amounts of lignin, etc. It is configured by being adhered to cellulose such as leaf veins. By continuously cutting countless protopectin molecules, etc., with this intercellular substance-decomposing enzyme, the adhesion between cells or cells and cellulose etc. is separated and dissociated into single cells to dissociate. The pectic substance and other water-soluble components are dissolved in the intercellular fluid interposed between the pectin molecules to form a viscous liquid. Countless single cells are suspended in this viscous liquid, and the viscosity is increasing. However, the viscosity of the single-cell suspension depends on the raw material, the variety, the soil of the production area and other cultivation areas, the climate, and countless other conditions. Taking carrots as an example, the present inventor made carrots produced in Japan, the United States, and China into single cells about 100 times over 4 years, and measured the viscosity of the obtained single cell suspension. The viscosity was 835 to 6350 cp. And there was a very large difference depending on the type of carrot. Specifically, it was found that the viscosity of each carrot was different. Table 35 below shows the change in viscosity depending on the degree of dilution of a single cell suspension of carrot and spinach. For carrots, adding 1.5 times the water of a single cell suspension and diluting 2.5 times reduces the viscosity to 180 cp and the initial viscosity of 1
/ 15. In spinach, similarly, when the water is diluted 1.5 times by adding 1.5 times the water of the single cell suspension, the viscosity decreases to 113 cp, and decreases to 1/15 of the initial viscosity.

【0046】下記の表36に、ニンジン及びホウレン草
の場合につき、これらの単細胞懸濁液の希釈による粘度
低下と静置による細胞粒子の沈降率(常温で24時間静
置後の上澄の生成率を示す)とについて測定した結果を
示した。ニンジンの場合、最初2700cpの粘度を示
したニンジンの単細胞懸濁液に同量の水を加えて2倍に
希釈すると300cpまで粘度が低下し、この粘度で
は、常温で24時間経過しても細胞粒子が沈降して上澄
を生成する分離現象は起らない。ホウレン草の場合、1
800cpの粘度を示した単細胞懸濁液の原液に、その
75%の容量の水を加えて、1.75倍に希釈すると2
90cpまで粘度が低下するが、この状態では24時間
常温放置しても、細胞粒子の沈降は起こらず上澄の発生
はない。
Table 36 below shows, for the carrot and spinach plants, a decrease in viscosity due to dilution of these single cell suspensions and a sedimentation rate of cell particles upon standing (a rate of formation of a supernatant after standing at room temperature for 24 hours). Are shown). In the case of carrot, the same amount of water was added to a single-cell suspension of carrot, which initially exhibited a viscosity of 2700 cp, and the viscosity was reduced to 300 cp by diluting the suspension twice. There is no separation phenomenon in which the particles settle and produce a supernatant. In the case of spinach, 1
To a stock solution of a single cell suspension having a viscosity of 800 cp, 75% volume of water was added to dilute the solution to 1.75 times to obtain 2
Although the viscosity decreases to 90 cp, in this state, even if left at room temperature for 24 hours, no sedimentation of the cell particles occurs and no supernatant is generated.

【0047】さらに、下記の表37に示すように、ニン
ジンの単細胞懸濁液で粘度2700cpのものに、15
0%の加水をして2.5倍に希釈した粘度145cpの
懸濁液は、常温24時間後細胞粒子の沈降が起こり、8
%の上澄を生成する。この液に寒天を加えていき0.1
%以上を添加すると、粘度は285cp以上を示し、2
4時間放置後も全く沈降が起こらず、上澄は生成しなく
なる。同様に400%の加水をして5倍に希釈した粘度
20cpのニンジンの懸濁液は、36%の上澄を生成す
るが、この場合は寒天を0.12%加えても粘度が19
5cpまでにしか上昇せず、この状態では1%の上澄を
生成し、これ以上の寒天の溶解は困難で、結局沈降を完
全に防止することができない。ホウレン草の単細胞懸濁
液は、粘度1800cpの原液に、150%の加水をし
て2.5倍に希釈した粘度90cpの懸濁液は、常温2
4時間後細胞粒子の沈降が起こり、12%の上澄を生成
する。この液に寒天を加えていき0.1%以上を添加す
ると、粘度は310cp以上を示し、24時間放置後も
全く沈降が起こらず、上澄の発生もない。同様に400
%の加水をして5倍に希釈した粘度15cpのホウレン
草の懸濁液は、38%の上澄を生成するが、これに寒天
を0.12%加えても粘度が270cpまでにしか上昇
せず、若干の沈降が起こり1.5%の上澄を発生する。
Further, as shown in Table 37 below, a carrot single cell suspension having a viscosity of 2700 cp
A suspension having a viscosity of 145 cp, diluted 2.5 times with 0% water, causes sedimentation of cell particles after 24 hours at room temperature,
% Supernatant. Add agar to this liquid and add 0.1
% Or more, the viscosity shows 285 cp or more,
After standing for 4 hours, no sedimentation occurs and no supernatant is formed. Similarly, a 20 cp viscosity carrot suspension diluted 5 fold with 400% water yields a 36% supernatant, in which case 0.12% agar is added and the viscosity is 19%.
It only rises to 5 cp, producing 1% of supernatant in this state, and it is difficult to dissolve the agar any more, and eventually it is impossible to completely prevent sedimentation. A single-cell suspension of spinach is a stock solution having a viscosity of 1800 cp, and a suspension having a viscosity of 90 cp diluted 2.5-fold by adding 150% water to a stock solution having a viscosity of 1800 cp.
After 4 hours, sedimentation of the cell particles occurs, producing a 12% supernatant. When agar is added to this solution and 0.1% or more is added, the viscosity becomes 310 cp or more, and no sedimentation occurs even after standing for 24 hours, and no supernatant is generated. Likewise 400
A suspension of spinach with a viscosity of 15 cp, diluted 5 times with 1% water, produces a 38% supernatant, to which 0.12% of agar increases the viscosity only to 270 cp. But a slight settling occurs, producing 1.5% supernatant.

【0048】また下記の表38に示すように、2.5倍
希釈のニンジンの単細胞懸濁液は145cpの粘度を示
し、8%の上澄を発生するが、これに0.04%以上の
カラギーナンを添加すると、粘度は270cp以上に上
昇し、24時間放置後も全く沈降が起こらず、上澄は発
生しない。同様に、5倍希釈のニンジンの単細胞懸濁液
は20cpの粘度を示し、36%の上澄を発生するが、
この場合はカラギーナンを0.12%加えても粘度が3
80cpにまでしか上昇せず、細胞粒子の沈降が起こ
り、12%の上澄を生成する。2.5倍希釈のホウレン
草の単細胞懸濁液の場合は、95cpの粘度を示し、1
3%の上澄を発生するが、これに0.12%のカラギー
ナンを添加すると、粘度は350cpに上昇し、全く沈
降が起こらず、上澄は発生しない。同様に、5倍希釈の
ホウレン草の単細胞懸濁液の場合は、15cpの粘度を
示し38%の上澄を発生するが、これにカラギーナンを
0.12%加えても粘度が160cpまでにしか上昇せ
ず、8%の上澄を発生する。
As shown in Table 38 below, a single-cell suspension of carrot at a 2.5-fold dilution had a viscosity of 145 cp and produced 8% of supernatant, which was 0.04% or more. When carrageenan is added, the viscosity increases to 270 cp or more, no sedimentation occurs even after standing for 24 hours, and no supernatant is generated. Similarly, a 5-fold dilution of a single-cell suspension of carrots exhibits a viscosity of 20 cp and yields 36% of the supernatant,
In this case, even if 0.12% of carrageenan is added, the viscosity becomes 3
It only rises to 80 cp and sedimentation of cell particles occurs, producing 12% supernatant. A single-cell suspension of spinach, diluted 2.5-fold, has a viscosity of 95 cp and has a viscosity of 1 cp.
3% of supernatant is generated, but when 0.12% of carrageenan is added thereto, the viscosity increases to 350 cp, no sedimentation occurs, and no supernatant is generated. Similarly, in the case of a 5-cell dilution of a single-cell suspension of spinach, a viscosity of 15 cp is exhibited and a 38% supernatant is generated. However, even if 0.12% of carrageenan is added thereto, the viscosity increases only to 160 cp. No, yielding 8% supernatant.

【0049】なお、製造した単細胞懸濁液は、これを容
器包装後一定期間凍結貯蔵したのち解凍すると、凍結に
よる懸濁液の物理的状態の変化のため、下記の表39に
示すように粘度が低下するので、解凍後再度十分撹拌し
て細胞分散をはかり、粘度を製造時の粘度にもどす必要
がある。
When the prepared single cell suspension is frozen and stored for a certain period of time after packaging and thawing, the suspension changes the physical state of the suspension due to freezing. Therefore, after thawing, it is necessary to mix well after stirring again to measure the cell dispersion and return the viscosity to the viscosity at the time of production.

【0050】つぎに、農産加工残渣及び廃棄物を本細胞
間物質分解酵素で処理することによる単細胞化方法につ
いて以下に記述する。
Next, a method for forming a single cell by treating agricultural processing residues and wastes with the present intercellular substance degrading enzyme will be described below.

【0051】農産物の加工にあたり、排出する残渣とし
ては、加熱処理を行わないものでは果実、野菜等の切断
圧偏、磨砕圧偏等のように破砕、圧延された細胞からな
るジュース粕があり、またその他に破砕加熱抽出圧偏し
た製餡、豆腐粕等があり、さらに原料に砂糖を大量に加
え加熱濃縮後篩別したジャム残渣、切断した生原料から
溶剤抽出した脱脂大豆等もあるが、これらを本細胞間物
質分解酵素で処理することにより、破砕圧偏されさらに
加熱変性した組織を破砕され変形した細胞単位に分離す
れば、0.01〜0.05mm程度の微粒子に分離する
ことが可能となり、有効利用をすることができる。ま
ず、下記の表40に示すように、手芒豆または小豆の製
餡粕を本細胞間物質分解酵素で処理すると、71〜91
%の回収率(歩留)で細胞単位の微粒子に単離されるの
で、製餡粕を有効に利用することができる。下記の表4
1に示すように、乾燥豆腐粕も500%以上の水を加え
て本細胞間物質分解酵素で処理すれば、概ね80%以上
の回収率(歩留)で微細な細胞単位まで分離された微粒
子を回収し得る。下記の表42に示すように、柚子搾汁
粕に10〜20%程度の加水をして、本細胞間物質分解
酵素で処理すると、70〜80%の回収率(歩留)で、
破砕、変形した単細胞懸濁液を得ることができる。この
液は、無処理の搾汁粕を用いると、リモノイドに属する
苦味があるので、予め搾汁粕に2倍量の水を加え、短時
間加熱してリモノイドを抽出し、軽く圧偏して脱汁後、
酵素処理すると苦味の少ない単細胞懸濁液が約80%の
回収率で得られる。
In the processing of agricultural products, the residue to be discharged may be juice residue made of crushed and rolled cells, such as non-uniform cutting pressure and non-uniform grinding pressure of fruits and vegetables, without heat treatment. In addition, there are also bean paste, tofu cake, etc., which are crushed and heated and extracted at an unbalanced pressure, and furthermore, there are jam residues sifted after adding a large amount of sugar to the raw materials and then heating and concentrating, and defatted soybeans which are solvent-extracted from the cut raw materials. If these are treated with the present intercellular substance-decomposing enzyme, the crushing pressure-biased and further heat-denatured tissues are separated into crushed and deformed cell units, which can be separated into fine particles of about 0.01 to 0.05 mm. Becomes possible, and can be used effectively. First, as shown in Table 40 below, when bean jam or adzuki bean jam was treated with the present intercellular substance degrading enzyme,
%, The bean jam can be effectively used. Table 4 below
As shown in FIG. 1, when dried tofu cake is treated with the intercellular substance-decomposing enzyme by adding 500% or more of water, fine particles separated into fine cell units with a recovery (yield) of approximately 80% or more are obtained. Can be recovered. As shown in Table 42 below, when about 10 to 20% of water is added to the citrus juice and treated with the present intercellular substance-decomposing enzyme, a recovery rate (yield) of 70 to 80% is obtained.
A crushed and deformed single cell suspension can be obtained. This liquid has a bitter taste belonging to limonoids when untreated juice lees is used, so twice the amount of water is added to the juice lees in advance, and the mixture is heated for a short time to extract the limonoids. After draining,
Enzyme treatment results in a single-cell suspension with low bitterness with a recovery of about 80%.

【0052】ニンジンジュース粕は、原料ニンジンの5
0%に達し、その有効利用法が重要な問題である。下記
の表43に示すように、ニンジンジュース粕に同重量の
水を加え、本細胞間物質分解酵素を0.25%加え2.
5時間撹拌すると、圧偏破壊されたジュース粕が、すべ
て細胞単位で解離されて完全に単細胞化する。勿論、1
mm径以下の微細粒子であるため、単細胞懸濁液を放置
しても、上部に僅かの離水(液汁の分離)が生ずるのみ
で、細胞単位の微粒子になっている事実が明白である。
[0052] Carrot juice lees consist of 5 parts of raw carrot.
It reaches 0%, and its effective use is an important issue. As shown in Table 43 below, the same weight of water was added to carrot juice lees, and 0.25% of the present intercellular substance-degrading enzyme was added.
After stirring for 5 hours, the pressure-rupture-disrupted juice cake is completely dissociated in cell units and completely converted into single cells. Of course, 1
Since the fine particles have a diameter of not more than mm, even if the single-cell suspension is left alone, only slight water separation (separation of sap) occurs at the upper portion, and the fact that the suspension is fine particles per cell is apparent.

【0053】イチゴジャム製造時のパルパー・フィニッ
シャー上の残渣は、粒径1mm以上の残渣であるが、下
記の表44に示すように、この残渣に25%の加水をし
て、本細胞間物質分解酵素を加え単細胞化すると、破砕
されたイチゴ組織が単細胞単位に解離されたイチゴ微粒
子が、50〜55%程度の回収率(歩留)で得られる。
さらに、脱脂大豆の場合、下記の表45に示すように、
約3倍量の加水の後、本細胞間物質分解酵素により処理
すると、50%前後の回収率(歩留)で単細胞単位の微
粒子が回収される。
The residue on the pulper finisher during the production of strawberry jam is a residue having a particle size of 1 mm or more. As shown in Table 44 below, the residue was hydrolyzed by 25% to give the intercellular substance. When the degrading enzyme is added to form a single cell, strawberry fine particles in which the crushed strawberry tissue is dissociated into single cells can be obtained at a recovery rate (yield) of about 50 to 55%.
Further, in the case of defatted soybeans, as shown in Table 45 below,
When treated with the present intercellular substance-decomposing enzyme after about three times the amount of water, fine particles in a unit of single cell are recovered at a recovery rate (yield) of about 50%.

【0054】つぎに、野菜、野草、果実、薬草等を本細
胞間物質分解酵素により単細胞化した懸濁液及び粒子の
食品としての機能性に関して、以下に機械的磨砕物と比
較して記述する。
Next, the functionality of suspensions and particles obtained by converting cells, vegetables, wildflowers, fruits, herbs, and the like into single cells with the present intercellular substance-decomposing enzyme will be described below in comparison with mechanically ground products. .

【0055】リンゴ及び剥皮した温州ミカンを本細胞間
物質分解酵素により単細胞化した懸濁液、機械的磨砕液
及び搾汁液の三者について一般分析及び遊離アミノ酸分
析を行った結果をそれぞれ下記の表46及び表47に示
す。一般成分含量及び特性については、リンゴ、温州ミ
カン共に、ほぼ単細胞懸濁液が最もその値が高く、特に
リンゴにおいては、直接還元糖の値が機械磨砕液及び搾
汁液に比べて単細胞懸濁液は約3%大きい。また、単細
胞懸濁液はリンゴ、温州ミカンの何れの場合も、他の二
者に比べて、アミノ態窒素において約1.5倍量、遊離
アミノ酸において約2.5倍量以上多い。これは、細胞
間物質分解酵素中に含まれるα−アミラーゼ(α−am
ylase)、グルコアミラーゼ(glucoamyl
ase)及び酸性プロテアーゼ(protease)の
作用によるものと考えられる。カンキツ果皮について
も、下記の表48に示すように、単細胞懸濁液は機械磨
砕液に比べて、ビタミンB群含量が高く、当然、遊離ア
ミノ酸含量も遥かに高い。
The results of a general analysis and a free amino acid analysis of a suspension, a mechanically ground solution and a squeezed solution obtained by converting apples and peeled Satsuma mandarins into single cells using the present intercellular substance-decomposing enzyme are shown in the following table, respectively. 46 and Table 47. Regarding the content and characteristics of general components, the single cell suspension is the highest in both apple and Satsuma mandarin, and the value of the direct reducing sugar is particularly high in apples compared to the mechanically milled and squeezed liquids. Is about 3% larger. In addition, the single cell suspension is about 1.5 times as much in amino nitrogen and about 2.5 times or more in free amino acids in both apple and Satsuma mandarin compared to the other two. This is due to the fact that α-amylase (α-am
ylase), glucoamylase (glucoamyl)
ase) and the action of acidic protease (protease). As for the citrus peel, as shown in Table 48 below, the single-cell suspension has a higher vitamin B group content and, of course, a much higher free amino acid content than the mechanically ground solution.

【0056】このように、単細胞懸濁液のように本細胞
間物質分解酵素で60〜120分分解処理を施したもの
は、ビタミンB群をはじめ直接還元糖、遊離アミノ酸等
の易消化性の栄養成分が機械磨砕液より20〜250%
と多くなり、食品の栄養機能は明らかに高くなる。さら
に、野菜の単細胞懸濁液及び機械磨砕液のそれぞれにキ
モトリプシンを添加し、分解により遊離してくる直接還
元糖(ブドウ糖)及びアミノ酸(グリシン)を測定する
と、野菜1g当りの直接還元糖量は、単細胞懸濁液の場
合は132.5mgであって、機械磨砕液の場合の6
0.12mgに比べて2倍以上であり、また、野菜1g
当りのアミノ酸(グリシン)量は、単細胞懸濁液の場合
は86.23μgであって、機械磨砕液の場合の79.
66μgに比べて約10%多い。すなわち、単細胞懸濁
液は、消化作用を受けやすい単細胞単位となっているた
め、栄養機能が高いということができる。但し下記の表
49に示すように、イチゴのような柔らかく30分以内
で単細胞に分離され、果実中酵素で殆ど分解されている
ものでは、単細胞化処理を施しても、単細胞懸濁液の栄
養成分は機械磨砕液(ホモゲナイズ液)の栄養成分と変
わらない。しかしながら、単細胞懸濁液は機械磨砕液に
比べてすべて円型または楕円型すなわち丸型の単細胞に
なっており、細胞粒子の大きさが機械磨砕液に比べてほ
ぼ揃っているので、口当たりが滑らかで、喉越しが良好
であリ、かつ、単細胞懸濁液は手で触っても滑らかで、
細胞粒子の大きさがほぼ揃っているので、全く沈降現象
が起こらず、飲料として飲み易い。また、単細胞懸濁液
は、糖分、アミノ酸、酸度が増加するので、味が濃厚で
あって、旨さ、おいしさ等の食品としての二次機能が増
大する。
As described above, the suspension treated with the present intercellular substance-decomposing enzyme for 60 to 120 minutes, such as a single-cell suspension, is readily digestible with direct reducing sugars, free amino acids, etc., including the vitamin B group. Nutrition component is 20-250% than machine grinding liquid
And the nutritional function of the food is clearly higher. Furthermore, chymotrypsin was added to each of the vegetable single-cell suspension and the machine-milled liquid, and the direct reducing sugar (glucose) and amino acid (glycine) released by decomposition were measured. , 132.5 mg for a single cell suspension and 6
More than twice as much as 0.12mg, and 1g of vegetables
The amount of amino acid (glycine) per unit was 86.23 μg in the case of a single cell suspension, and 79.23 in the case of a mechanically ground solution.
About 10% more than 66 μg. That is, since the single-cell suspension is a single-cell unit that easily undergoes digestion, it can be said that the single-cell suspension has a high nutritional function. However, as shown in Table 49 below, in the case of a strawberry-like substance that is softly separated into single cells within 30 minutes and is almost degraded by enzymes in fruits, the nutrition of the single-cell suspension can be maintained even if the single-cell processing is performed. The ingredients are the same as the nutrients of the machine grinding liquid (homogenizing liquid). However, single cell suspensions are all circular or elliptical, ie, round single cells, compared to the mechanical grinding solution, and the cell particles are almost uniform in size compared to the mechanical grinding solution. In, the over throat is good, and the single-cell suspension is smooth even when touched by hand,
Since the sizes of the cell particles are almost uniform, no sedimentation phenomenon occurs, and it is easy to drink as a beverage. In addition, since the single-cell suspension has an increased sugar content, amino acid, and acidity, the taste is rich, and the secondary functions as foods such as taste and taste are increased.

【0057】つぎに、本細胞間物質分解酵素の作用によ
り得られた単細胞懸濁液につき、加熱殺菌時における細
胞内酵素の失活の困難性について以下に記述する。
Next, with respect to the single cell suspension obtained by the action of the present intercellular substance-decomposing enzyme, the difficulty of inactivating the intracellular enzyme during heat sterilization will be described below.

【0058】一般の透明または混濁した野菜汁、果汁等
では加熱殺菌時において、熱伝導を遮断する細胞壁等の
障害がないため、熱の伝導はその粘度により若干の差は
あるが円滑におこなわれ、浮遊する微生物や溶解してい
る酵素の殺菌、失活は容易である。これに対して、単細
胞懸濁液のように、セルロース及びヘミセルロース、プ
ロトペクチン質蛋白質その他の強い二重の細胞壁とその
内にある細胞膜との三重の障害物によって囲まれた10
6 /ml個前後の細胞が懸濁したものにおいては、10
6 /ml個のそれぞれの細胞内への熱伝導が悪く、通常
の透明液、混濁液に対する殺菌時間では細胞内のプロテ
アーゼ、リパーゼ、アミラーゼのような加水分解酵素を
完全に失活させることは不可能である。牛乳及び脱脂乳
にニンジンの単細胞懸濁液を添加して加熱殺菌を行い、
細胞内のプロテアーゼによる苦味ペプチドの生成と、細
胞内リパーゼによる苦味脂肪酸の生成とによる、牛乳の
苦味生成について検討した結果を下記の表50に示す。
この結果から、結局100℃、20分以上の殺菌を行わ
ないと、ニンジン細胞内プロテアーゼが作用して牛乳カ
ゼイン蛋白を分解凝固し、苦味ペプチドを生成すること
がわかる。細胞間及び細胞内プロテアーゼとリパーゼの
加熱による失活を測定した結果を図1、図2及び図3に
示す。図1及び図2に、ニンジン単細胞間液中及びニン
ジン単細胞懸濁液中の酸性プロテアーゼ(pH4.5)
の熱処理後の残存活性を示し、図3に、ニンジン単細胞
及び単細胞間液の熱処理(熱処理時間は各温度とも30
分である)による残存リパーゼ活性を示す。なお図3の
縦軸におけるNaOHのml値は、生成脂肪酸を1/1
0N−NaOH液で滴定した滴定値である。図1〜図3
から明らかのように、100℃、30分の加熱で細胞内
の酸性プロテアーゼ及びリパーゼは完全に失活する。し
かしながら、酸性プロテアーゼの場合、90℃では、4
時間もの加熱で始めて完全に失活することが判明した。
In the case of general transparent or cloudy vegetable juice, fruit juice, etc., there is no obstacle such as a cell wall that blocks heat conduction at the time of heat sterilization. Therefore, heat conduction is carried out smoothly although there is a slight difference depending on the viscosity. It is easy to sterilize and deactivate suspended microorganisms and dissolved enzymes. On the other hand, like a single cell suspension, cellulose and hemicellulose, protopectin protein and other strong double cell walls surrounded by a triple obstacle between the cell wall and the cell membrane within 10
In the case where about 6 / ml cells are suspended, 10
Heat conduction into 6 / ml cells is poor, and it is impossible to completely inactivate hydrolases such as proteases, lipases and amylase in a normal sterilization time for clear liquids and turbid liquids. It is possible. Heat sterilization by adding a single-cell suspension of carrots to milk and skim milk,
Table 50 below shows the results of examining the generation of bitterness in milk due to the production of bitter peptides by intracellular proteases and the production of bitter fatty acids by intracellular lipase.
From these results, it can be seen that, unless sterilization is performed at 100 ° C. for 20 minutes or more, carrot protease acts to decompose and coagulate milk casein protein to produce a bitter peptide. The results of measuring the inactivation of the intercellular and intracellular proteases and lipase by heating are shown in FIGS. 1, 2 and 3. 1 and 2 show the acidic protease (pH 4.5) in the carrot single cell intercellular fluid and the carrot single cell suspension.
3 shows the residual activity after heat treatment. FIG. 3 shows the heat treatment of carrot single cells and intercellular fluid (the heat treatment time was 30 minutes at each temperature).
Lipase activity). The ml value of NaOH on the vertical axis of FIG.
This is a titration value obtained by titration with a 0N-NaOH solution. 1 to 3
As is clear from the above, the acidic protease and lipase in the cells are completely inactivated by heating at 100 ° C. for 30 minutes. However, in the case of acidic protease, at 90 ° C., 4
It was found that it was completely deactivated only after heating for a long time.

【0059】つぎに、野菜、野草、果実、薬草、樹木
葉、熊笹葉等を完全単細胞化して食品化する技術につい
て以下に記述する。
Next, a technique for completely transforming vegetables, wild plants, fruits, medicinal plants, tree leaves, bear bamboo leaves, etc. into single cells to produce food will be described.

【0060】本発明方法により、野菜、野草、果実、薬
草、樹木葉、熊笹葉等の柔組織を完全に単細胞単位に解
離して、葉脈や葉柄その他茎等と分別し、すべての細胞
と細胞間接着物質を回収して食品化する技術を確立する
ことができる。
According to the method of the present invention, soft tissues such as vegetables, wild grasses, fruits, medicinal plants, tree leaves, and bamboo grass leaves are completely dissociated into single cell units, separated from leaf veins, petiole and other stems, and all cells and cells are separated. It is possible to establish a technology for recovering the adhesive substance into food.

【0061】野草の代表として、0.3〜1m前後まで
伸びた野生大型よもぎの上部葉を主として採取し、これ
を単細胞化した。通常の野菜では、水分が85〜95%
含有されるので、単細胞化操作中に細胞間物質中の水分
が溶出して、加水しなくても生原料のままこれに本細胞
間物質分解酵素を添加し、撹拌、単細胞化することがで
きるが、野草の大型よもぎでは、小さいよもぎに比して
水分が少なく、また葉の表面が毛羽だっているので、1
00%の加水をしないと酵素作用による単細胞化が不可
能である。草丈0.3〜1mに伸びた大型よもぎを単細
胞化した結果を下記の表51に示す。生原料を単細胞化
すると、細胞壁が硬いため単細胞化操作の撹拌中に細胞
壁が破壊され、単細胞懸濁液中の細胞数がブランチング
した場合の1/10程度と少なく、当然遠心沈殿量も少
ない。但し、生原料を90〜95℃で1〜2分ブランチ
ングすると、生原料の硬く嵩張った組織が柔軟化するた
め、撹拌の衝撃による細胞壁の破壊がなく、組織は順次
単細胞化されていく。かくして完全に単細胞化される
と、葉柄、葉脈等の長い繊維状残渣のみが15〜25%
程度残存し、他は単細胞化されて、結局、約67〜76
%の歩留で単細胞懸濁液が回収される。
As a representative of wild grass, the upper leaves of wild large wormwood extending to about 0.3 to 1 m were mainly collected and made into single cells. For ordinary vegetables, the water content is 85-95%
Since it is contained, the water in the intercellular substance elutes during the single celling operation, and the present intercellular substance-degrading enzyme can be added to this as a raw material without adding water, followed by stirring to form a single cell. However, the large wormwood of wild grass has less moisture than the small wormwood, and the surface of the leaves is fluffy.
Unless 00% of water is added, single cells cannot be formed by enzymatic action. Table 51 below shows the results obtained by converting large wormwood that has grown to a plant height of 0.3 to 1 m into single cells. When the raw material is converted into a single cell, the cell wall is broken during the stirring of the single cell operation because the cell wall is hard, and the number of cells in the single cell suspension is about 1/10 of that when blanching, and the amount of centrifugal sedimentation is naturally small. . However, when the raw material is blanched at 90 to 95 ° C. for 1 to 2 minutes, the hard and bulky tissue of the raw material is softened, so that the cell wall is not broken by the impact of stirring, and the tissue is sequentially converted into single cells. . Thus, when the cells are completely unicellularized, only fibrous residues such as petiole and veins are 15 to 25%.
To some extent, the others are unicellularized and eventually become about 67-76.
A single cell suspension is recovered at a% yield.

【0062】つぎに、根菜類の代表として、大根、カ
ブ、レンコン、ゴボウ、タケノコ、ニンジンについて本
細胞間物質分解酵素で完全単細胞化した結果を、下記の
表52、表53、表54、表55及び表56に示す。大
根、カブのような白色野菜では、単細胞化中に微量含有
されるフェノールまたはポリフェノール物質が、酸化酵
素により酸化されて、得られた単細胞懸濁液が灰白色と
なり、商品価値が低下するので、酸化防止剤であるアス
コルビン酸、アスコルビン酸ナトリウム、エリソルビン
酸等を、0.3%以上添加すれば、原料野菜と同様な白
色の単細胞懸濁液が高収率で得られる。レンコン、ゴボ
ウはともに十分に土砂を除き、十分洗浄後95℃以上で
3〜5分間ブランチングを行い、フェノール酸化酵素や
ポリフェノール酸化酵素等の酸化酵素を失活させ、剥皮
後切断して単細胞化する。レンコンの場合は、本細胞間
物質分解酵素で単細胞化する操作中に、自動酸化により
変色するのを防ぐため、酸化防止剤であるアスコルビン
酸、アスコルビン酸ナトリウム等を0.4%以上添加す
ると、原料野菜と同様の白色の単細胞懸濁液が得られ
る。ゴボウの場合はブランチングのみで十分であり、酸
化防止剤を添加する必要はない。レンコンを完全に解離
して単細胞化するためには、1回目90分程度解離した
のちの残渣をさらにもう一度3時間解離すると、残渣は
最終的に3.5%となり、88%の最終歩留で単細胞懸
濁液を回収することができる。ゴボウでは、一回だけの
解離でも5時間継続すれば、10%の残渣でかつ81%
の歩留で単細胞懸濁液を回収することができる。
Next, as a representative of root vegetables, radish, turnip, lotus root, burdock, bamboo shoot, and carrot were completely unicellularized with the present intercellular substance-decomposing enzyme, and the results are shown in Tables 52, 53, 54 and 54 below. 55 and Table 56. In white vegetables such as radishes and turnips, phenol or polyphenol substances contained in trace amounts during single cell formation are oxidized by oxidizing enzymes, and the resulting single cell suspension becomes grayish white, reducing commercial value. If ascorbic acid, sodium ascorbate, erythorbic acid and the like, which are inhibitors, are added in an amount of 0.3% or more, a white single-cell suspension similar to the raw vegetable can be obtained in high yield. Both lotus root and burdock thoroughly remove soil and sand, and after sufficient washing, blanch at 95 ° C or higher for 3 to 5 minutes to deactivate oxidases such as phenol oxidase and polyphenol oxidase, and after peeling, cut and cut into single cells. I do. In the case of lotus root, in order to prevent discoloration due to autoxidation during the operation of forming single cells with the present intercellular substance-decomposing enzyme, adding 0.4% or more of antioxidants such as ascorbic acid and sodium ascorbate, A white single-cell suspension similar to the raw vegetable is obtained. In the case of burdock, only blanching is sufficient and there is no need to add an antioxidant. In order to completely dissociate the lotus root into single cells, the residue after the first dissociation for about 90 minutes is further dissociated for another 3 hours, and the residue finally becomes 3.5%, with a final yield of 88%. A single cell suspension can be collected. In burdock, if only one dissociation lasts for 5 hours, 10% residue and 81%
The single cell suspension can be recovered at a yield of.

【0063】また、タケノコでは、1回目で2時間、2
回目で3時間の解離を行うと、残渣は最終的に17%と
なり、76%の最終歩留で単細胞懸濁液を回収可能であ
る。ニンジンの場合は、機械磨砕液ほどではないが、1
000〜5000cpの強い粘性を示すため、酵素作用
の進行が悪く、単細胞化は撹拌操作と時間に強く影響さ
れる。したがって、完全に単細胞化するためには、60
〜180分位の作用時間で、単細胞懸濁液が60%以上
の歩留で回収できるようになった時に、一度20メッシ
ュ前後の篩別をして、未分解の残渣を回収したのち、再
度酵素粉末を加えて単細胞化をおこなうと、残渣が全原
料の5%前後になるまでほぼ完全に単細胞化することが
可能となる。
In the case of bamboo shoots, the first time was 2 hours,
After a third round of dissociation, the residue will ultimately be 17% and a single cell suspension can be recovered with a final yield of 76%. In the case of carrots, although not as much as mechanically milled liquids,
Since it has a strong viscosity of 000 to 5000 cp, the progress of the enzyme action is poor, and the formation of a single cell is strongly affected by the stirring operation and time. Therefore, in order to completely transform into a single cell, 60 cells are required.
When the single cell suspension can be recovered at a yield of 60% or more with an action time of about 180 minutes, once sieving about 20 mesh to collect the undecomposed residue, and then again When the enzyme powder is added to form a single cell, the cell can be almost completely converted into a single cell until the residue is about 5% of the whole raw material.

【0064】果菜類の代表としてのカボチャ(えびすカ
ボチャ及び赤皮カボチャ)、キュウリ、メロンを本細胞
間物質分解酵素で単細胞化した結果を下記の表57、表
58、表59及び表60に示す。青皮のえびすカボチャ
(西洋カボチャ)では、剥皮が不十分であると、皮の色
素、クロロフィールが、果肉のフラボノイド、カロチン
系黄色色素と混色され灰褐色に変色して商品価値を失う
ので、クロロフィール部が残存しないよう剥皮する必要
がある。但し、カボチャの30%を占める果肉中心部の
「わた」と種子を除去しても、除去しなくても色調には
無関係であるが、わた及び種子のついたまま単細胞化す
ると、得られた単細胞懸濁液は糖分がやや減少し、さら
に細胞数がほぼ半減する。通常、カボチャの加工では最
初に全果のままブランチング等の加熱処理を行うが、生
果を単細胞化するのと異なり、若干糖分と細胞数が減少
する。赤皮カボチャ(くりさんご)の場合は、果皮を除
く必要がなく、全果を切断してブランチング後単細胞化
すればよい。赤皮カボチャは、青皮カボチャのように果
皮を除く必要がないので、使用原料の90%前後の収率
で単細胞懸濁液が得られる。原料の貯蔵のため、冷凍保
存したカボチャを自然解凍後単細胞化すると、ほぼ完全
に単細胞化ができるので、原料の90%以上の収率で単
細胞懸濁液が得られ、細胞数はほぼ106 /gを示す。
キュウリでは、表皮の一部が残渣として残存する。メロ
ンについては、生原料でも、冷凍貯蔵したものも、僅か
30分の酵素作用で単細胞化が可能であり、生メロンの
場合は、種子や「わた」の繊維質が残渣として約10%
前後残存し、単細胞懸濁液が約90%の歩留で回収でき
る。冷凍メロンでは残渣は1〜2%のみであり、96%
の歩留で単細胞懸濁液が回収できる。
Table 57, Table 58, Table 59 and Table 60 below show the results obtained by converting pumpkins (Ebisu pumpkin and red-skinned pumpkin), cucumber and melon as representatives of fruit vegetables into single cells with the present intercellular substance-decomposing enzyme. . In the case of blue-skinned pumpkin (Western pumpkin), if the peeling is insufficient, the skin pigment, chlorophyll, is mixed with flavonoids and carotene-based yellow pigment of the flesh and turns grayish brown, losing commercial value. It is necessary to peel the skin so that the feel does not remain. However, the color tone is irrelevant even if the cotton and the seeds in the central part of the pulp occupying 30% of the squash are removed or not removed. Single cell suspensions have a slight reduction in sugar content, and the cell number is almost halved. Usually, in the processing of squash, heat treatment such as blanching is first performed with the whole fruit, but unlike a single fruit cell, the sugar content and the number of cells are slightly reduced. In the case of red-skinned squash (Kurisango), it is not necessary to remove the pericarp, and the whole fruit may be cut and made into a single cell after branching. The red-skinned pumpkin does not need to remove the pericarp like the blue-skinned pumpkin, so that a single-cell suspension can be obtained with a yield of about 90% of the raw material used. If the pumpkin stored frozen is naturally thawed and converted into single cells for storage of the raw materials, the single cells can be almost completely converted into single cells. Therefore, a single cell suspension is obtained with a yield of 90% or more of the raw materials, and the number of cells is approximately 10 6. / G.
In cucumber, part of the epidermis remains as a residue. As for melon, both raw materials and those stored frozen can be converted into single cells by enzymatic action for only 30 minutes. In the case of raw melon, seeds and fibrous material of "cotton" are about 10% as residue.
The single-cell suspension remains before and after and can be recovered with a yield of about 90%. Frozen melon has only 1-2% residue, 96%
A single cell suspension can be recovered at a yield of.

【0065】果実類の代表としてのリンゴ及びイチゴ
を、本細胞間物質分解酵素でそれぞれ単細胞化した結果
を下記の表61及び表62に示す。青リンゴでは、剥
皮、切断等の前処理をした場合、果肉中に存在するポリ
フェノールやその酸化酵素のため、酸化褐変がおこり、
商品価値が失われるので、剥皮、切断した調整果は、直
ちに酸化防止剤液(例えば、L−アスコルビン酸1%、
クエン酸0.5%以上の混液)に浸漬して、ポリフェノ
ールオキシダーゼ等の酸化酵素を失活させ、L−アスコ
ルビン酸により酸化を防止する必要がある。そののち、
本細胞間物質分解酵素の0.3%と酸化防止剤のL−ア
スコルビン酸等の0.5%以上とを加えて、撹拌下に単
細胞化すると、90%前後の歩留で、青リンゴの果肉の
淡緑色と同色の単細胞懸濁液が回収できる。なお、赤リ
ンゴの場合には、赤リンゴの果肉の色調と同色のはだ色
の単細胞懸濁液が得られる。イチゴでは、へたを除去す
る操作が繁雑であるから、十分水洗して土砂、微生物を
除去したものを水切り後、直ちに単細胞化する場合と、
へたを除去して単細胞化する場合とで、得られる単細胞
懸濁液については大きい差はない。結局、労働力と経費
の問題で、何れの方法でもよい。へた付きの場合は9%
の残渣となり、へた除去の場合は約3.5%の残渣のみ
で他は単細胞懸濁液として回収され、単細胞化所要時間
は約30分である。
Tables 61 and 62 below show the results of converting apples and strawberries as typical fruits into single cells with the present intercellular substance-decomposing enzyme. In green apples, when subjected to pretreatment such as peeling and cutting, oxidized browning occurs due to polyphenols and their oxidases present in the pulp.
Since the commercial value is lost, the peeled and cut adjusted fruits are immediately treated with an antioxidant solution (for example, L-ascorbic acid 1%,
It is necessary to immerse the mixture in citric acid (0.5% or more) to inactivate oxidizing enzymes such as polyphenol oxidase and to prevent oxidation with L-ascorbic acid. after that,
When 0.3% of the present intercellular substance-decomposing enzyme and 0.5% or more of antioxidant L-ascorbic acid and the like are added to form single cells under stirring, the yield of green apple is about 90%. A single cell suspension of the same color as the pale green of the pulp can be collected. In the case of a red apple, a single-cell suspension of an amber color that is the same color as the color tone of the pulp of the red apple is obtained. In strawberries, the operation of removing waste is complicated, so that after washing thoroughly with water and removing the soil, microorganisms, and then draining, immediately convert to single cells,
There is no significant difference in the obtained single cell suspension between the case where the spine is removed and the single cell is formed. In the end, either method is acceptable due to labor and cost issues. 9% in case of looseness
In the case of waste removal, only about 3.5% of the residue is recovered as a single-cell suspension, and the time required for single-cell formation is about 30 minutes.

【0066】葉茎菜類の代表としてのホウレン草、小松
菜、玉ねぎ、ニンニク及び淡色野菜(キュウリ、キャベ
ツ、白菜)を本細胞間物質分解酵素で単細胞化した結果
を、下記の表63、表64、表65、表66及び表67
に示す。ホウレン草は、生葉(無処理)のまま本細胞間
物質分解酵素で単細胞化すると細胞壁が撹拌操作のため
破壊されて、懸濁液中の細胞数は105 /ml程度とブ
ランチングした場合の1/10または1/100以下と
なり、遠心分離によって沈殿する細胞が0.8ml/1
0mlと極めて少なくなる。ブランチングすれば、時間
が20秒でも5分でも得られる懸濁液中の細胞数は、1
6 /ml以上に増加するが、含有されるポリフェノー
ルのため、冷蔵保存中に酸化して緑黄色ないし緑褐色と
なり、商品価値が低下するので、ブランチング後30分
程度の水晒しにより、ポリフェノールを細胞内外より溶
出除去した後単細胞化処理を施す必要がある。
The results obtained by converting spinach, komatsuna, onion, garlic and light-colored vegetables (cucumber, cabbage, Chinese cabbage) as representatives of leaf stem vegetables into single cells with the present intercellular substance degrading enzyme are shown in Tables 63 and 64 below. Table 65, Table 66 and Table 67
Shown in When spinach is transformed into a single cell with the present intercellular substance-degrading enzyme as it is in a fresh leaf (untreated), the cell wall is broken due to the stirring operation, and the number of cells in the suspension is about 10 5 / ml. / 10 or 1/100 or less, and the cells precipitated by centrifugation are 0.8 ml / 1
It is extremely small at 0 ml. With branching, the number of cells in the suspension, which can be obtained in 20 seconds or 5 minutes, is 1
0 6 / ml increases above but, because of polyphenols contained, it is greenish yellow to green-brown to oxidation during refrigerated storage, since commercial value decreases, the water exposed for about 30 minutes after blanching, the polyphenol After elution and removal from inside and outside the cells, it is necessary to perform a single cell treatment.

【0067】小松菜は、緑黄色野菜の中でも渋味、えぐ
味成分及びポリフェノールのような酸化変色物質の少な
い野菜であることは、無処理の生菜とブランチング後の
小松菜のポリフェノール含量の差が少ない事実から明白
である。また、両者について、単細胞懸濁液の収率につ
いても余り差がなく、細胞数については全く差がなく、
単細胞懸濁液の色調についても余り差がない。唯、無処
理の場合、若干色調が濃い傾向がある程度である。玉ね
ぎの場合は、繊維の多いものと、繊維の少ないものとが
あり、繊維の少ない玉ねぎでは残渣は1%程度で90%
以上の回収率で単細胞懸濁液が得られるが、一方、繊維
の多い品種では、10%程度の残渣があり、約80%の
回収率で単細胞懸濁液が得られる。繊維の多い品種で
は、単細胞懸濁液の細胞数も繊維の少ない品種にくらべ
て少ない。
Among the green and yellow vegetables, Komatsuna is a vegetable having less astringency, astringency components and oxidatively discoloring substances such as polyphenols. This is due to the fact that the difference in the polyphenol content between untreated raw vegetables and blanched Komatsuna is small. Is obvious from. Also, for both, there is no significant difference in the yield of the single cell suspension, there is no difference in the number of cells,
There is no significant difference in the color tone of the single cell suspension. However, in the case of no processing, the color tone tends to be slightly dark to some extent. In the case of onions, there are those with a high fiber content and those with a low fiber content.
A single-cell suspension can be obtained with the above recovery rate, while a variety with a large amount of fiber has a residue of about 10%, and a single-cell suspension can be obtained with a recovery rate of about 80%. In varieties with a high fiber content, the cell number of the single cell suspension is also lower than in varieties with a low fiber content.

【0068】生ニンニクを切断したり磨砕したりする
と、含硫化合物であるアリインがアリイナーゼにより分
解されてアリシンを生成し強烈な臭気を呈するので、生
のまま酵素処理をすることは不可能である。そこで、ま
ず、ニンニクを90℃で2分程度ブランチングしてアリ
イナーゼを失活させて後、本細胞間物質分解酵素を作用
させ単細胞化するが、この場合ニンニクを切断しても、
丸のままでも単細胞化作用には関係ない。しかしなが
ら、得られる単細胞懸濁液が粘稠なため50〜60%程
度の解離で作用が進行しなくなるので、完全に単細胞化
するためには、最初90〜120分作用させ、得られた
単細胞懸濁液を除き、残渣をもう一度単細胞化する、二
段分解法により単細胞化すると残渣は完全になくなり、
合計で88%以上の回収率で単細胞懸濁液が得られる。
キュウリ、キャベツ、白菜のような変色の少ない淡色系
野菜にはポリフェノール成分は極僅かしかなく、殆ど変
色は起こらない。キャベツでは、芯があったり、茎があ
ったりするので、未分解残渣が約20%生ずるが白菜で
は約6%の繊維状残渣が残るのみで約90%の歩留で単
細胞懸濁液が得られる。
When raw garlic is cut or ground, alliin, which is a sulfur-containing compound, is decomposed by alliinase to produce allicin, which gives an intense odor. is there. Therefore, first, garlic is blanched at 90 ° C. for about 2 minutes to inactivate the allinase, and then the present intercellular substance-degrading enzyme is actuated to form single cells. In this case, even if the garlic is cut,
Even if it is a circle, it has nothing to do with the single cell action. However, since the obtained single-cell suspension is viscous and the action does not progress at about 50 to 60% of dissociation, it is necessary to first act for 90 to 120 minutes and to obtain the single-cell suspension in order to completely convert to a single cell. Remove the turbid solution, re-single the residue into single cells.
A single cell suspension is obtained with a total recovery of 88% or more.
Light-colored vegetables, such as cucumber, cabbage, and Chinese cabbage, with little discoloration have very few polyphenol components and little discoloration occurs. Since cabbage has a core or stem, about 20% of undecomposed residue is generated, but only about 6% of fibrous residue remains in Chinese cabbage, and a single cell suspension can be obtained at a yield of about 90%. Can be

【0069】いも類の代表としての甘藷と長薯とについ
て本細胞間物質分解酵素で単細胞化した結果を下記の表
68に示す。これらのいも類にはポリフェノールやその
酸化酵素を含有するので、切断または剥皮直後に、酸化
酵素の作用を止める食塩水、酸性液または酸化防止剤液
に浸漬後、引き上げてからL−アスコルビン酸をやや過
剰気味に加えて単細胞化を行うと86〜92%の歩留で
単細胞懸濁液が得られる。
Table 68 below shows the results of single cells of the sweet potato and the potato as representatives of the potatoes by using the present intercellular substance-decomposing enzyme. Since these potatoes contain polyphenols and their oxidizing enzymes, immediately after cutting or peeling, they are immersed in a saline solution, acid solution or antioxidant solution to stop the action of the oxidizing enzymes, and then lifted to remove L-ascorbic acid. When a single cell is formed in addition to a slight excess, a single cell suspension is obtained with a yield of 86 to 92%.

【0070】豆類の代表としての大豆及びスイートコー
ンを、本細胞間物質分解酵素により単細胞化した結果を
下記の表69及び表27に示す。大豆では十分吸水後、
四分の一に切断して本細胞間物質分解酵素で処理したが
一回の解離で45%しか解離することができず、残渣を
回収して再処理しても、合計57%しか解離することが
できず、34%の最終残渣量となった。スイートコーン
では、生のもの及び急速凍結品を解凍したものを完全単
細胞化すると、何れも原料に皮が多いため27%前後の
残渣があり、53〜54%の歩留で、単細胞懸濁液が得
られる。
Tables 69 and 27 show the results of soybeans and sweet corn, which are representative of beans, converted into single cells using the present intercellular substance-decomposing enzyme. After absorbing water sufficiently with soybeans,
Although cut into quarters and treated with the present intercellular substance-decomposing enzyme, only 45% can be dissociated in one dissociation. Even if the residue is collected and reprocessed, only 57% dissociates in total. And a final residue of 34%. In the case of sweet corn, when raw and quick-frozen products are thawed and completely converted into single cells, both raw materials have a large amount of skin and therefore have a residue of about 27%, and a single cell suspension with a yield of 53 to 54%. Is obtained.

【0071】薬草の代表としての薬用ニンジン(朝鮮ニ
ンジン)、アロエ、ケール葉、紅花子葉及び麦若葉につ
いて本細胞間物質分解酵素により単細胞化処理を行い、
その結果を下記の表70、表71、表72、表73、表
74及び表75に示す。薬用ニンジンでは、原料にもよ
るが、30%の加水をしないと単細胞化が困難であり、
13〜22%の残渣が残り73〜87%の歩留で単細胞
懸濁液が回収できる。1〜2年生、4年生以上の薬用ニ
ンジンについて、ひげ根が多く土臭が強いので、除去す
るため過酸化水素分解処理をしたが、土臭が完全に除去
できないので、過マンガン酸カリウムで完全酸化し、蓚
酸で還元除去する方法を講じた場合、土臭は完全に除去
することができて、20〜30%程度の残渣と60〜7
0%程度の歩留で単細胞懸濁液を回収することができ
る。アロエの生葉では76%の歩留で単細胞懸濁液が得
られる。ケール葉ではポリフェノール含量が多いためブ
ランチングしないとポリフェノールの酸化による変色が
おこる。しかしながら、単細胞懸濁液は、それを加熱殺
菌して長期保存するにあたってpH5.5前後の微酸性
のままでは、クロロフィールの分解によって黄変するの
で、pHを7.0前後に中和して加熱殺菌すれば、クロ
ロフィールの分解が起こらず、緑色の単細胞懸濁液を長
期貯蔵することができる。紅花子葉はブランチングの必
要がなく、生葉をそのまま単細胞化し、得られた単細胞
懸濁液をpH7.0付近まで中和後、包装、加熱殺菌す
れば、緑色のまま長期保存することができる。麦若葉に
おいては、無加水の場合に比べて、加水量が100%の
場合のほうが、単細胞懸濁液の収率が10%以上高くな
る。当然のことであるが、加水量が100%の場合、単
細胞懸濁液の成分は加水の分だけ稀薄になるのはやむを
得ない。この場合もpH7.0に中和して80℃−15
分の殺菌をすると、濃緑色を保持することができる。
The medicinal carrots (Korean carrots), aloe, kale leaves, safflower cotyledons and wheat young leaves as representatives of herbs are subjected to a single cell treatment with the present intercellular substance-decomposing enzyme,
The results are shown in Tables 70, 71, 72, 73, 74 and 75 below. In medicinal carrots, depending on the raw material, it is difficult to form a single cell without adding 30% water,
A single cell suspension can be recovered with 13-22% residue remaining and 73-87% yield. For medicinal carrots of 1st to 2nd grade and 4th grade and above, the roots are many and the soil smell is strong, so hydrogen peroxide decomposition treatment was performed to remove them, but since the earth smell could not be completely removed, it was completely oxidized with potassium permanganate. When the method of reducing and removing with oxalic acid is adopted, the earth odor can be completely removed, and about 20 to 30% of the residue and 60 to 7%
A single cell suspension can be recovered with a yield of about 0%. With aloe leaves, a single cell suspension is obtained with a 76% yield. Kale leaves have a high polyphenol content, and if not blanched, discoloration occurs due to oxidation of the polyphenol. However, when the single-cell suspension is sterilized by heat and stored for a long period of time, if it remains slightly acidic at a pH of about 5.5, it turns yellow due to the decomposition of chlorophyll, so the pH is neutralized to about 7.0. If heat sterilized, the decomposition of chlorophyll does not occur and the green single-cell suspension can be stored for a long time. Safflower cotyledons do not need to be blanched, and fresh leaves can be converted into single cells as they are, and the resulting single cell suspension can be neutralized to around pH 7.0, packaged, and heat-sterilized to preserve green for a long period of time. In wheat young leaves, the yield of the single-cell suspension is higher by 10% or more when the amount of water is 100% than when no water is added. As a matter of course, when the amount of water is 100%, the components of the single-cell suspension must be diluted by the amount of water. Also in this case, neutralize to pH 7.0, and
When sterilized for a minute, a dark green color can be maintained.

【0072】[0072]

【実施例】【Example】

実施例1 適度に生育したニンジンを収穫後、葉を切取り、十分水
洗して、土砂を除き直ちに原料として使用する。室温に
放置する時は、2〜3日以内に使用する。貯蔵する場合
には、ポリ袋または密封できる箱に入れるのが正常であ
るが、冷蔵庫の湿度が85%に調湿可能な場合は無包装
でよい。5℃以下の冷蔵でも1か月以内に使用する。長
期貯蔵では、ニンジン表皮の一部にメラニン色素を形成
する反応が起こり、このようなニンジンを使用するとや
や黒味がかった色調のニンジンとなり商品価値が大きく
低下するので、長期間単細胞化ニンジン懸濁液を製造す
るときは、ニンジンの栽培期間を順次ずらして、製造に
適したニンジンが順次収穫できるように栽培することが
必要である。かくして得られた原料ニンジンを、スチー
ムピーラーに半容量投入し密蓋して直ちに蒸気を吹き込
み、強く4〜5回回転してニンジン同志のこすり合いに
より外皮を剥ぎ取る。または、95℃以上の熱湯中に投
入して、1〜2分ブランチングを行い、研磨洗浄等によ
り表皮をこすり取って剥皮する。蒸気処理またはブラン
チングによりニンジンの水分は1%位減少する。剥皮し
たニンジンはそのままダイサーにかけて0.5cm角に
切断する。スチームピラー剥皮の場合、95℃で30秒
位のブランチングを行い、直ちに45℃位に冷却し、ダ
イサーにかけて0.5cm角に切断する。これ以上小さ
く切断すると、切断箇所の細胞が壊れ、製品の単細胞懸
濁液1g中の細胞数が原料の1/3量以上減少するの
で、0.5cmが切断の限界の大きさとなる。
Example 1 After harvesting a suitably grown carrot, the leaves are cut off and washed sufficiently with water to remove the earth and sand and used immediately as a raw material. When left at room temperature, use within 2-3 days. When storing, it is normal to put it in a plastic bag or a sealable box, but if the humidity of the refrigerator can be adjusted to 85%, it may be unpackaged. Use within one month even if refrigerated below 5 ° C. During long-term storage, a reaction occurs that forms a melanin pigment in a part of the carrot epidermis.Using such a carrot results in a carrot with a slightly darker color tone, and its commercial value is greatly reduced. When producing a liquid, it is necessary to cultivate so that carrots suitable for production can be successively harvested by sequentially shifting the cultivation period of carrots. The raw material carrot thus obtained is put into a steam peeler in half volume, closed tightly, steam is immediately blown, and the carrot is strongly rotated 4 to 5 times to peel off the outer skin by rubbing between the carrots. Alternatively, it is put into hot water of 95 ° C. or more, blanched for 1 to 2 minutes, and the skin is rubbed off by polishing and washing to peel off. Carrot moisture is reduced by about 1% by steaming or blanching. The peeled carrot is cut into 0.5 cm squares by using a dicer as it is. In the case of steam pillar peeling, blanching is performed at 95 ° C. for about 30 seconds, immediately cooled to about 45 ° C., and cut with a dicer into 0.5 cm squares. If the cut is made smaller than this, the cells at the cut site will be broken, and the number of cells in 1 g of the single cell suspension of the product will be reduced by 1/3 or more of the raw material.

【0073】賽の目に切断した直後の品温は30℃以上
を保っているので、この切断品を撹拌槽中へ投入し、
0.2〜0.3%前後の量の本細胞間物質分離酵素を加
え、酸化を防ぎ、pHを僅かでも低下させるためにL−
アスコルビン酸を0.2%量添加し、40℃の品温で9
0〜120分撹拌して単細胞化させると、70〜80%
の回収率で20メッシュ篩を通過する単細胞懸濁液が得
られ、篩上の20〜25%量の残渣は十分に単細胞化さ
れていないニンジン顆粒であるから、これは撹拌槽中へ
返送して、つぎの切断原料とともに単細胞化を行う。得
られた単細胞懸濁液は仕込んだ原料の70〜80%の回
収率で得られる。単細胞懸濁液は直ちにパストライザー
に送り、95℃で25〜30秒間加熱殺菌を行ってヒー
トタンクへ送り、80〜75℃の品温を保持しつつ包装
容器へ封入する。熱充填であるから包装容器に若干の微
生物が残存していても、75℃以上の殺菌済みの単細胞
懸濁液を入れるので、容器中の微生物や充填時空気中か
ら落下した微生物があっても、75℃以上の高温を密封
後も長時間保持しているため、大腸菌群は陰性、一般生
菌数は300/g以下、カビ、酵母等も無検出の結果を
示し、衛生上安全な単細胞懸濁液が得られ、これを−2
5℃以下に凍結貯蔵すれば、1〜2年間は全く異常のな
い単細胞懸濁液を維持することができる。かくして最終
の回収率は使用原料の約85%である。原料として、中
国産ニンジン、米国産ニンジン及び日本産ニンジンを用
いた場合にそれぞれ得られる単細胞懸濁液の成分組成及
び特性について測定し、その最小値及び最大値を下記の
表76に示す。表76に示すように、農産物は、同一品
種、同一時期、同一地域に栽培した原料もすべて成分組
成及び特性が異なり、厳格には一本ごとにその成分組成
が異なるので、製造のバッチごとに成分分析を行う必要
があることが判明した。
Since the temperature of the product immediately after being cut is kept at 30 ° C. or higher, the cut product is put into a stirring tank,
Add about 0.2-0.3% of the present intercellular substance separating enzyme to prevent oxidation and to lower the pH even slightly.
0.2% of ascorbic acid was added, and 9
70-80% when agitated for 0-120 minutes to form single cells
A single-cell suspension passing through a 20-mesh sieve is obtained at a recovery rate of 20 to 25% of the residue on the sieve, which is not fully unicellularized carrot granules. Then, a single cell is formed together with the following raw material for cutting. The resulting single cell suspension is obtained with a recovery of 70-80% of the charged raw material. The single-cell suspension is immediately sent to a pasteurizer, sterilized by heating at 95 ° C for 25 to 30 seconds, sent to a heat tank, and sealed in a packaging container while maintaining the product temperature of 80 to 75 ° C. Even if some microorganisms remain in the packaging container because it is heat-filled, a sterilized single-cell suspension at 75 ° C or higher is added, so even if there are microorganisms in the container or microorganisms that have fallen from the air at the time of filling, , Since the high temperature of 75 ° C or more is maintained for a long time even after sealing, the coliform group is negative, the general viable cell count is 300 / g or less, no mold, yeast, etc. are detected. A suspension was obtained, which was
When stored frozen at 5 ° C. or lower, a single-cell suspension without any abnormality can be maintained for 1 to 2 years. The final recovery is thus about 85% of the raw material used. The composition and properties of the single cell suspensions obtained when Chinese, American and Japanese carrots were used as raw materials were measured, and the minimum and maximum values are shown in Table 76 below. As shown in Table 76, the agricultural products are the same varieties, at the same time, and the ingredients cultivated in the same area all have different component compositions and characteristics. Strictly, the component compositions are different from each other, so each production batch It turned out that a component analysis was necessary.

【0074】実施例2 下記の表61に示す条件によって、原料の国産青リンゴ
(王林)、米国産青リンゴ(Granny Smit
h)、国産赤リンゴ(紅玉)及び中国産青リンゴのそれ
ぞれを単細胞化した。赤色系または緑色系の原料リンゴ
は表面に多くの酵母類が付着しているので、ブラッシ洗
浄機でよく洗浄し、必要があれば剥皮機にて剥皮し芯抜
きする。リンゴにはクロロゲン酸、カテコール等のフェ
ノール化合物を含み、さらにこれを酸化して褐変化する
ポリフェノールオキシダーゼやカテコラーゼ、パーオキ
シダーゼ等の酸化酵素を含むので、剥皮、切断後少時で
も放置すると表面が褐変する。したがって酸化変色を防
ぐために、酸化防止剤としてL−アスコルビン酸、1.
0〜1.1%、クエン酸0.67%の混合液中に浸漬し
た状態で輸送、移動等を行い、さらに1cm角にダイサ
ーで切断し、同様に酸化防止剤中で貯蔵、輸送を行う。
Example 2 Under the conditions shown in Table 61 below, the raw green apples (Wang Lin) and the US green apples (Granny Smit) were used as raw materials.
h), domestic red apples (red balls) and Chinese green apples were each converted into single cells. Since the red or green apples have many yeasts on the surface, they are thoroughly washed with a brush washing machine, and if necessary, peeled and cored with a peeling machine. Apple contains phenolic compounds such as chlorogenic acid and catechol, and also contains oxidizing enzymes such as polyphenol oxidase, catecholase, and peroxidase, which oxidize this and turn brown. I do. Therefore, in order to prevent oxidative discoloration, L-ascorbic acid, 1.
Transport, transfer, etc. are performed in a state of being immersed in a mixed solution of 0 to 1.1% and citric acid 0.67%, further cut into 1 cm squares with a dicer, and similarly stored and transported in an antioxidant. .

【0075】つぎに、サイコロ状に切断したリンゴを酸
化防止剤液より引き上げて送風により表面を乾燥したの
ち、撹拌タンクへ所定量投入する。この中へ本細胞間物
質分解酵素0.3%と、酸化防止剤としてのL−アスコ
ルビン酸0.5%とを添加し、撹拌下に30℃で60〜
120分単細胞化を行う。これを0.7〜0.6mm穴
径のパルパー・フィニッシャーにて篩別して残渣と単細
胞懸濁液とに分別する。緑色系のリンゴの場合にはクロ
ロフィールを含有するため、パストライザー等で90〜
95℃の加熱殺菌処理を行うと、少量あるクロロフィー
ルが分解されてフロバフェンとなり褐色化する。したが
ってどうしても酵母数を減少させたい場合には、90〜
95℃の加熱殺菌の代わりに、単細胞懸濁液を65℃で
30分程度殺菌するとクロロフィールの分解なく、酵母
細胞の対数増殖期の若い酵母細胞だけを失活させ全体の
酵母数を減少させることが可能となる。なお単細胞懸濁
液を直ちに包装密封後−25℃で凍結貯蔵すれば変色す
ることなく、長期貯蔵が可能である。但し、103 /g
以上の酵母数と若干のカビならびに104 /g前後の一
般生菌を保有するものである。なお、本凍結単細胞懸濁
液は自然解凍後空気中に3〜4時間暴露しても緑色のま
まで変色しないが、それ以上の放置で退色がはじまり変
色がおこる。得られた単細胞懸濁液の成分組成及び特性
について、下記の表61に示す。
Next, the apple cut into a dice is pulled up from the antioxidant solution, the surface is dried by blowing air, and then put into a stirring tank in a predetermined amount. To this, 0.3% of the present intercellular substance-decomposing enzyme and 0.5% of L-ascorbic acid as an antioxidant are added, and the mixture is stirred at 30 ° C for 60 to 60%.
The cells are converted into single cells for 120 minutes. This is sieved with a pulper finisher having a hole diameter of 0.7 to 0.6 mm to separate into a residue and a single cell suspension. Since green apples contain chlorophyll, they are 90-90
When a heat sterilization treatment at 95 ° C. is performed, a small amount of chlorophyll is decomposed to flofafen and browned. Therefore, if you really want to reduce the number of yeasts,
When the single cell suspension is sterilized at 65 ° C. for about 30 minutes instead of heat sterilization at 95 ° C., only the young yeast cells in the logarithmic growth phase of yeast cells are inactivated and the total number of yeast cells is reduced without decomposition of chlorophyll. It becomes possible. If the single-cell suspension is immediately frozen and stored at -25 ° C. after packaging and sealing, long-term storage is possible without discoloration. However, 10 3 / g
It possesses the above yeast number, some mold and about 10 4 / g general viable bacteria. The frozen single-cell suspension remains green and does not discolor even when exposed to air for 3 to 4 hours after spontaneous thawing, but discoloration starts and discoloration occurs when the suspension is left longer than that. The composition and properties of the obtained single cell suspension are shown in Table 61 below.

【0076】実施例3 樹木葉の一種で日本人に最も多く利用されている茶葉
は、常緑樹で年中葉があるのに利用されているのは6〜
9月頃までの1番茶〜3番茶位が主体で他は番茶葉とし
て若干利用されている程度である。茶葉中の酸化防止能
成分やカテキン類やカフェイレその他の生理機能を有す
るポリフェノール成分は10〜5月頃までの老茶葉に多
く含まれることが予想されるので、この時期の未利用の
茶葉を有効に利用するため、本細胞間物質分解酵素で葉
脈、葉柄等と細胞とを解離して単細胞懸濁液とし、噴霧
乾燥して粉末化すれば、天然の酸化防止剤、クロロフィ
ール系緑色天然色素剤、その他茶様香気付与物質として
利用範囲は広いものと考えられる。
Example 3 A type of tree leaf that is most frequently used by Japanese is the evergreen tree, which has an annual leaf but is used in the number of 6 to
Until around September, the first to third teas are mainly used, and the others are slightly used as bancha. Since antioxidant components in tea leaves and polyphenol components having catechins, caffeine and other physiological functions are expected to be contained in a lot of old tea leaves until about October to May, effective use of unused tea leaves at this time is effective. For use, this intercellular substance-degrading enzyme dissociates cells from leaf veins, petiole, etc. into a single cell suspension, spray-dried and powdered, and is a natural antioxidant, chlorophyll green natural pigment It is considered that the range of use as a tea-like flavor imparting substance is wide.

【0077】以上からして、10〜12月頃の茶葉を、
40℃に加温した0.1〜1.0%濃度のNaOH液に
30〜180秒浸漬し撹拌して、茶葉表面の臘質物を溶
解除去すると、茶葉表面の自然の光沢が全く失われ、臘
質物が除去されたことが明らかになる。水洗により、ア
ルカリを十分除去し、93〜95℃の熱湯中で60〜1
20秒ブランチングする。直ちに水冷し、引き上げて、
1cm角に切断した後、1.75倍重量の水を加えて、
本細胞間物質分解酵素粉末を0.5%添加して、撹拌下
に30℃で2時間単細胞化する。葉柄、葉脈と単細胞懸
濁液とを分別するためにパルパー・フィニッシャーまた
は20メッシュ前後の篩上で圧搾分別して、葉脈、葉柄
等の残渣と単細胞懸濁液とに分別する。得られた結果を
単細胞化条件とともに下記の表6に示す。残渣量は全体
の20〜22%を占めるが、試料として用いたブランチ
ング水切原料の約55〜60%を示している。
From the above, the tea leaves from October to December are
When immersed in a 0.1-1.0% NaOH solution heated to 40 ° C. for 30-180 seconds and stirred to dissolve and remove waxy substances on the tea leaf surface, the natural gloss of the tea leaf surface is completely lost, It becomes clear that waxy matter has been removed. Alkali is sufficiently removed by washing with water, and 60 to 1 in hot water of 93 to 95 ° C.
Branch for 20 seconds. Immediately water-cool, pull up,
After cutting into 1 cm squares, add 1.75 times the weight of water,
0.5% of the present intercellular substance-degrading enzyme powder is added, and single cells are formed at 30 ° C. for 2 hours with stirring. In order to separate the petiole and leaf veins from the single-cell suspension, they are squeezed and separated on a pulper finisher or a sieve of about 20 mesh to separate the leaf veins and petiole residues and the single-cell suspension. The results obtained are shown in Table 6 below together with the conditions for forming a single cell. Although the residue amount accounts for 20 to 22% of the whole, it indicates about 55 to 60% of the blanching and draining raw material used as the sample.

【0078】単細胞懸濁液量は全体の85〜88%を占
めておりその1ml中の細胞数は、脱臘に用いたNaO
Hの濃度が0.1〜0.5%の範囲の場合には107
ml程度を示すが、NaOHの濃度が1%液の場合に
は、1ml中の細胞数が105〜106 程度と少なくな
る。この液をpH7.0に補正後、スプレードライヤー
にかけて噴霧乾燥して単細胞粉末を得た。最初の原料茶
葉に対する単細胞粉末茶の収率は、単細胞懸濁液中の細
胞数が107 /mlの場合には、13〜14%と多く、
106 /mlの場合には11%、105 /mlの場合に
は10%以下となる。また得られた単細胞粉末の色調
も、単細胞懸濁液中の細胞数が106 /mlのものでは
黄色味の強い緑色粉末となり、105 /mlのものでは
粉末の色調は緑褐色となる。これは、破壊された細胞が
多いと、クロロフィールが懸濁液中に露出し、これが噴
霧乾燥中に200℃以上のドラムに噴霧された場合に、
クロロフィール分子が直接熱を受けて分解し、その結
果、クロロフィール含量が減少し、始めからあったフラ
ボノイドの黄色が強くでたものと考えられる。
The amount of the single-cell suspension accounts for 85 to 88% of the whole, and the number of cells in 1 ml is determined by the NaO used for dewaxing.
When the concentration of H is in the range of 0.1 to 0.5%, 10 7 /
In the case of a 1% NaOH solution, the number of cells in 1 ml is as small as about 10 5 to 10 6 . This solution was adjusted to pH 7.0 and then spray-dried with a spray drier to obtain a single cell powder. The yield of single-cell powdered tea with respect to the first raw tea leaves is as large as 13 to 14% when the number of cells in the single-cell suspension is 10 7 / ml,
In the case of 10 6 / ml, it becomes 11%, and in the case of 10 5 / ml, it becomes 10% or less. The color tone of the obtained single-cell powder is a green powder with a strong yellowish color when the number of cells in the single-cell suspension is 10 6 / ml, and the color tone of the powder is green-brown when the number of cells in the suspension is 10 5 / ml. This means that if there are many disrupted cells, chlorophyll will be exposed in the suspension and if this is sprayed onto a drum above 200 ° C during spray drying,
It is considered that the chlorophyll molecules were directly decomposed by heat and as a result, the chlorophyll content was reduced, and the yellow color of the flavonoids that had originally been intensified.

【0079】[0079]

【表1】 [Table 1]

【0080】[0080]

【表2】 [Table 2]

【0081】[0081]

【表3】 [Table 3]

【0082】[0082]

【表4】 [Table 4]

【0083】[0083]

【表5】 [Table 5]

【0084】[0084]

【表6】 [Table 6]

【0085】[0085]

【表7】 [Table 7]

【0086】[0086]

【表8】 [Table 8]

【0087】[0087]

【表9】 [Table 9]

【0088】[0088]

【表10】 [Table 10]

【0089】[0089]

【表11】 [Table 11]

【0090】[0090]

【表12】 [Table 12]

【0091】[0091]

【表13】 [Table 13]

【0092】[0092]

【表14】 [Table 14]

【0093】[0093]

【表15】 [Table 15]

【0094】[0094]

【表16】 [Table 16]

【0095】[0095]

【表17】 [Table 17]

【0096】[0096]

【表18】 [Table 18]

【0097】[0097]

【表19】 [Table 19]

【0098】[0098]

【表20】 [Table 20]

【0099】[0099]

【表21】 [Table 21]

【0100】[0100]

【表22】 [Table 22]

【0101】[0101]

【表23】 [Table 23]

【0102】[0102]

【表24】 [Table 24]

【0103】[0103]

【表25】 [Table 25]

【0104】[0104]

【表26】 [Table 26]

【0105】[0105]

【表27】 [Table 27]

【0106】[0106]

【表28】 [Table 28]

【0107】[0107]

【表29】 [Table 29]

【0108】[0108]

【表30】 [Table 30]

【0109】[0109]

【表31】 [Table 31]

【0110】[0110]

【表32】 [Table 32]

【0111】[0111]

【表33】 [Table 33]

【0112】[0112]

【表34】 [Table 34]

【0113】[0113]

【表35】 [Table 35]

【0114】[0114]

【表36】 [Table 36]

【0115】[0115]

【表37】 [Table 37]

【0116】[0116]

【表38】 [Table 38]

【0117】[0117]

【表39】 [Table 39]

【0118】[0118]

【表40】 [Table 40]

【0119】[0119]

【表41】 [Table 41]

【0120】[0120]

【表42】 [Table 42]

【0121】[0121]

【表43】 [Table 43]

【0122】[0122]

【表44】 [Table 44]

【0123】[0123]

【表45】 [Table 45]

【0124】[0124]

【表46】 [Table 46]

【0125】[0125]

【表47】 [Table 47]

【0126】[0126]

【表48】 [Table 48]

【0127】[0127]

【表49】 [Table 49]

【0128】[0128]

【表50】 [Table 50]

【0129】[0129]

【表51】 [Table 51]

【0130】[0130]

【表52】 [Table 52]

【0131】[0131]

【表53】 [Table 53]

【0132】[0132]

【表54】 [Table 54]

【0133】[0133]

【表55】 [Table 55]

【0134】[0134]

【表56】 [Table 56]

【0135】[0135]

【表57】 [Table 57]

【0136】[0136]

【表58】 [Table 58]

【0137】[0137]

【表59】 [Table 59]

【0138】[0138]

【表60】 [Table 60]

【0139】[0139]

【表61】 [Table 61]

【0140】[0140]

【表62】 [Table 62]

【0141】[0141]

【表63】 [Table 63]

【0142】[0142]

【表64】 [Table 64]

【0143】[0143]

【表65】 [Table 65]

【0144】[0144]

【表66】 [Table 66]

【0145】[0145]

【表67】 [Table 67]

【0146】[0146]

【表68】 [Table 68]

【0147】[0147]

【表69】 [Table 69]

【0148】[0148]

【表70】 [Table 70]

【0149】[0149]

【表71】 [Table 71]

【0150】[0150]

【表72】 [Table 72]

【0151】[0151]

【表73】 [Table 73]

【0152】[0152]

【表74】 [Table 74]

【0153】[0153]

【表75】 [Table 75]

【0154】[0154]

【表76】 [Table 76]

【0155】[0155]

【発明の効果】前記した特公平6−71413号公報に
示される方法で用いる細胞分離酵素では、強固な細胞間
接着物質であるプロトペクチンからなる樹木葉組織や熊
笹葉のような硬い組織については殆ど単細胞に分離する
ことは不可能であったが、本発明において用いる細胞間
物質分解酵素を用いると、硬く強固なプロトペクチンに
より膠着された細胞間接着物質を容易に分解し、野菜、
野草、果実、薬草、樹木葉等は葉柄、茎、葉脈に膠着さ
れている細胞や細胞同志の接着も完全に分解して、すべ
ての細胞を完全に単細胞化することができる。したがっ
て、本発明の方法は、産業的に採算のとれる有効な方法
である。
According to the cell separating enzyme used in the method disclosed in Japanese Patent Publication No. 6-71413, hard tissue such as tree leaf tissue or kuma bamboo leaf made of protopectin which is a strong intercellular adhesive substance is used. Although it was almost impossible to separate cells into single cells, the use of the intercellular substance-decomposing enzyme used in the present invention easily decomposes the intercellular adhesive substance adhered by hard and strong protopectin to produce vegetables,
Wild grasses, fruits, medicinal plants, tree leaves, and the like can completely degrade the cells stuck to the petiole, stem, and vein and the adhesion between cells, and can completely convert all cells into single cells. Therefore, the method of the present invention is an industrially profitable and effective method.

【0156】また本発明に用いる細胞間物質分解酵素
は、上記の特公平6−71413号公報に示される細胞
分離酵素のenndo−polygalacturon
aseとpectin−trans−eliminas
eが主体でかつセルラーゼを含まない酵素とは全く異な
り、Caを介して二重、三重に連結してセルロース、ヘ
ミセルロース、ペクチン分子と結合した強固な膠着物質
となっているプロトペクチンだけを単独に分解して単細
胞に解離する特殊な酵素であることが大きい利点であ
る。さらに、上記の特公平6−71413号公報に示さ
れる方法では、一部の野菜や果実だけを単細胞化するこ
とができるが、実際には上記の細胞分離酵素粉末を切断
した野菜、野草、果実、薬草等に加えて撹拌作用させて
単細胞化することができるのは、極く一部の野菜のみで
あり、かかる一部の野菜のみに適用される方法では、実
用化不可能のものが多い。
The intercellular substance-degrading enzyme used in the present invention is the endo-polygalacturon of the cell separating enzyme disclosed in Japanese Patent Publication No. 6-71413.
case and pectin-trans-eliminas
e is mainly different from the enzyme which does not contain cellulase, and only protopectin which is double and triple linked via Ca to form a strong adhesive substance bonded to cellulose, hemicellulose and pectin molecules alone A great advantage is that it is a special enzyme that decomposes and dissociates into single cells. Furthermore, according to the method disclosed in Japanese Patent Publication No. 6-71413, only some of the vegetables and fruits can be made into single cells, but actually, the vegetables, wildflowers and fruits obtained by cutting the above-mentioned cell-separating enzyme powder are obtained. It is only a very small number of vegetables that can be made into single cells by agitation in addition to herbs, etc., and many of those that cannot be put into practical use by the method applied to only such a few vegetables .

【0157】本発明の方法では、水分が85%より少な
い野菜、野草では、85〜90%相当の水分まで加水し
て行うこと、また、水分が85%以上含まれていても高
粘度の野菜では、10〜20%の加水をすることによっ
て、単細胞化が困難であるこれらの野菜等を単細胞化す
ることができる。また、多くのポリフェノールを含む野
菜または、Ca、Mgその他のえぐ味、渋味成分を含む
野菜、野草では、適度なブランチング、水晒し等の操作
でポリフェノール酸化酵素を失活させるとともに、ポリ
フェノール及びCa、Mg等のえぐ味、渋味成分を溶出
除去し、その後、単細胞化作用を進める本発明の方法に
よって、褐変、黒変等の変色がおこらず、原料野菜、野
草の色調そのままの単細胞懸濁液を得ることができる。
In the method of the present invention, for vegetables and wildflowers having a water content of less than 85%, water is added up to a water content of 85 to 90%. Then, by adding 10 to 20% of water, it is possible to convert these vegetables and the like, which are difficult to convert into single cells, into single cells. In addition, vegetables containing a lot of polyphenols, Ca, Mg and other astringent tastes, vegetables containing astringent components, wild grasses, moderate blanching, deactivating the polyphenol oxidase by operations such as water exposure, polyphenols and The method of the present invention, which elutes and removes the astringent and astringent components such as Ca and Mg and then promotes the single cell action, does not cause discoloration such as browning and black discoloration, and is a single cell suspension of raw vegetables and wild grass as it is. A suspension can be obtained.

【0158】さらに、大根、レンコン等の白色の野菜、
甘藷、長薯、リンゴ、キュウイ等のように、ポリフェノ
ール物質とその酸化酵素であるポリフェノールオキシタ
ーゼを含む野菜、果実類であって、ブランチング等の加
熱処理でポリオキシダーゼを失活させると、その加熱操
作によりポリフェノールそのものが酸化して変色して全
く商品化不可能となるようなものの場合、本発明では、
剥皮切断した瞬間から酸化防止剤であるL−アスコルビ
ン酸、グルタチオン、L−アスコルビン酸ナトリウム等
に、またはこれらの酸化防止剤とクエン酸、酢酸等の有
機酸との混液に浸漬して酸化酵素の失活をはかって酸化
を抑制してから単細胞化作用を進める。すなわち、上記
の酸化酵素の失活をはかったのち、つぎの本細胞間物質
分解酵素の作用による撹拌操作中に起こる強力な酸化を
防ぐために、L−アスコルビン酸等をやや過剰量添加し
て単細胞化させる。かくすることによって、本発明で
は、原料の色調が全く失われることなく、完全に単細胞
化が可能となる。この際、酸化防止剤の添加量が少ない
と、酵素作用中に酸化防止剤が酸化されつくして、着色
物質と変り、単細胞懸濁液は強い褐色物質に変色してし
まうが、本発明においては、このような野菜、果実に応
じて適当な変色防止方法を採用することにより、変色が
なく商品価値のある製品を得ることができる。
Furthermore, white vegetables such as radish and lotus root,
Vegetables and fruits, such as sweet potatoes, potatoes, apples, and cucumber, that contain a polyphenolic substance and its oxidase, polyphenol oxidase. In the case where the polyphenol itself is oxidized and discolored by the operation to make it impossible to commercialize at all, in the present invention,
From the moment of peeling and cutting, immersion in an antioxidant such as L-ascorbic acid, glutathione, sodium L-ascorbate, or a mixture of these antioxidants and an organic acid such as citric acid or acetic acid to form an oxidase. Inhibits oxidation by deactivating and promotes single celling. That is, in order to prevent the strong oxidization occurring during the stirring operation due to the action of the next intercellular substance-decomposing enzyme after the inactivation of the above oxidase, a slight excess amount of L-ascorbic acid or the like is added to the single cell. To Thus, in the present invention, single cells can be completely formed without any loss of the color tone of the raw material. At this time, if the added amount of the antioxidant is small, the antioxidant is completely oxidized during the action of the enzyme and turns into a colored substance, and the single-cell suspension turns into a strong brown substance, but in the present invention, By adopting an appropriate method for preventing discoloration according to such vegetables and fruits, a product having no discoloration and having commercial value can be obtained.

【0159】また、樹木葉の単細胞化のための前処理方
法や単細胞化のための加水方法により、本発明では樹木
葉の完全単細胞化をおこなうことができる。さらに、熊
笹葉、銀杏葉等においては、冷蔵貯蔵により、変色また
は乾燥が起こるが、本発明では、流水浸漬法を採用する
ことにより、1か月以上の長期貯蔵が可能となり、ま
た、膨潤により軟化して硬い組織の単細胞化が可能とな
る。
Further, according to the present invention, tree leaves can be completely converted into single cells by a pretreatment method for converting tree leaves into single cells or a watering method for converting single cells. Further, in the case of kuma bamboo leaves, ginkgo leaves, etc., discoloration or drying occurs due to refrigerated storage, but in the present invention, long-term storage for one month or more becomes possible by adopting a running water immersion method, and swelling The softened and hard tissue can be made into a single cell.

【0160】以上のように、本発明により、野菜、野
草、果実、薬草、樹木葉、熊笹葉等あらゆる植物柔組織
の単細胞化を行うことができる。
As described above, according to the present invention, any plant parenchyma such as vegetables, wild grasses, fruits, medicinal plants, tree leaves, bear bamboo leaves, etc. can be converted into single cells.

【0161】本発明の方法により得られた単細胞懸濁液
またはその乾燥粉末は、食品素材として、第一の機能性
である栄養面は勿論、第二の機能性であるおいしさ、す
なわち、舌ざわり、喉越し、風味等の物理的性質が良好
であり、また、表面張力、界面張力が機械磨砕により得
られたものにくらべて低く水や油とも非常に混合しやす
く、したがって食品素材としての価値の高いものであ
る。また、本発明の方法により得られた単細胞懸濁液の
乾燥粉末は、吸湿性が機械磨砕による乾燥粉末の1/2
以下と低く、可視光線照射による変色(退色)も少な
い。
The single cell suspension obtained by the method of the present invention or the dry powder thereof can be used as a food material not only in terms of nutritional aspects as the first function, but also as delicious as the second function, that is, tongue texture. It has good physical properties such as over throat and flavor, and has a lower surface tension and interfacial tension than those obtained by mechanical grinding, and is very easy to mix with water and oil. It is of high value. In addition, the dry powder of the single cell suspension obtained by the method of the present invention has a hygroscopicity that is 1/2 that of the dry powder obtained by mechanical grinding.
The discoloration (discoloration) due to visible light irradiation is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ニンジン単細胞間液中の酸性プロテアーゼ(p
H4.5)の熱処理後の残存活性を示す曲線図。
FIG. 1 shows the acidic protease (p
H4.5) A curve diagram showing the residual activity after the heat treatment.

【図2】ニンジン単細胞懸濁液中の酸性プロテアーゼ
(pH4.5)の熱処理後の残存活性を示す曲線図。
FIG. 2 is a curve diagram showing the residual activity after heat treatment of an acidic protease (pH 4.5) in a carrot single cell suspension.

【図3】ニンジン単細胞と細胞間液の熱処理による残存
リパーゼ活性を示す曲線図。
FIG. 3 is a curve diagram showing residual lipase activity after heat treatment of a carrot single cell and an intercellular fluid.

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 植物に、Rhizopus属糸状菌から
分離される酵素で、強固なプロトペクチンを解離するプ
ロトペクチナーゼを主体とする細胞間物質分解酵素を作
用させて、植物柔組織の細胞間物質を分解して植物を完
全に単細胞化することを特徴とする植物の完全単細胞化
方法。
An enzyme isolated from a filamentous fungus of the genus Rhizopus, which acts on a plant with an intercellular substance-degrading enzyme mainly composed of protopectinase, which dissociates strong protopectin, to convert intercellular substances of plant parenchyma. A method for completely transforming a plant into single cells, comprising decomposing the plant to completely transform into a single cell.
【請求項2】 植物を予め温アルカリ液中に浸漬して、
植物表面の臘質物を溶去し、さらに水洗し、ついでブラ
ンチングした後に、該細胞間物質分解酵素を作用させる
請求項1記載の植物の完全単細胞化方法。
2. immersing the plant in a warm alkaline solution in advance;
2. The method for completely transforming a plant into a single cell according to claim 1, wherein the waxy substance on the plant surface is dissolved off, further washed with water, and then blanched, and then the intercellular substance-degrading enzyme is acted on.
【請求項3】 植物を予めブランチングして、植物中に
含有される、変色作用をなす酸化酵素、クロロフィール
を分解変色する酵素または不快臭の原因となる酵素を失
活させた後に、該細胞間物質分解酵素を作用させる請求
項1記載の植物の完全単細胞化方法。
3. A plant which has been previously blanched to deactivate an oxidizing enzyme having a discoloring effect, an enzyme which degrades and discolors chlorophyll or an enzyme which causes an unpleasant odor contained in the plant. 2. The method for completely transforming a plant into a single cell according to claim 1, wherein an intercellular substance degrading enzyme is acted on.
【請求項4】 植物に予め酸化防止剤を添加して、植物
に含有されるポリフェノ−ル化合物に起因する酸化変色
を防止した後に、該細胞間物質分解酵素を作用させる請
求項1記載の植物の完全単細胞化方法。
4. The plant according to claim 1, wherein an antioxidant is added to the plant in advance to prevent oxidative discoloration caused by a polyphenol compound contained in the plant, and then the intercellular substance-degrading enzyme is acted on. Method of complete single cell.
【請求項5】 植物を予めブランチング及び水晒しし
て、植物中に含有される渋味、えぐ味成分をポリフェノ
−ル化合物とともに除去した後に、該細胞間物質分解酵
素を作用させる請求項1記載の植物の完全単細胞化方
法。
5. The method according to claim 1, wherein the plant is previously blanched and exposed to water to remove the astringent and harsh components contained in the plant together with the polyphenol compound, and then act on the intercellular substance-degrading enzyme. A method for completely transforming a plant into a single cell as described above.
【請求項6】 植物に予め水を添加して、水分含量を8
5%以上に加水した後に、該細胞間物質分解酵素を作用
させる請求項1記載の植物の完全単細胞化方法。
6. The water content of the plant is adjusted to 8 by adding water in advance.
2. The method according to claim 1, wherein the intercellular substance-degrading enzyme is allowed to act after adding 5% or more of water.
【請求項7】 植物に予め20〜50%の加水をして、
粘調な性質を示す成分を含有する植物の粘度を下げた後
に、該細胞間物質分解酵素を作用させる請求項1記載の
植物の完全単細胞化方法。
7. The plant is pre-watered with 20 to 50% water,
2. The method according to claim 1, wherein the intercellular substance-degrading enzyme is acted on after reducing the viscosity of the plant containing the component exhibiting viscous properties.
【請求項8】 植物を完全単細胞化して得られた単細胞
懸濁液を噴霧乾燥により粉末化する請求項1記載の植物
の完全単細胞化方法。
8. The method according to claim 1, wherein the single cell suspension obtained by completely converting the plant into single cells is powdered by spray drying.
【請求項9】 植物を完全単細胞化して得られた単細胞
懸濁液の粘度を300cp以上に保持して、単細胞懸濁
液の単細胞粒子が沈降しないようにする請求項1記載の
植物の完全単細胞化方法。
9. The complete single cell of a plant according to claim 1, wherein the single cell suspension obtained by converting the plant into a single cell is maintained at a viscosity of 300 cp or more to prevent sedimentation of the single cell particles of the single cell suspension. Method.
【請求項10】 カラギーナンまたは寒天の粘稠液を単
細胞懸濁液に添加して、単細胞懸濁液の粘度を300c
p以上に保持する請求項9記載の植物の完全単細胞化方
法。
10. A viscous liquid of carrageenan or agar is added to the single cell suspension to reduce the viscosity of the single cell suspension to 300 c.
The method for completely transforming a plant into a single cell according to claim 9, which is maintained at p or more.
【請求項11】 植物として、植物の加工の際に排出す
る残渣または廃棄物を用いる請求項1記載の植物の完全
単細胞化方法。
11. The method according to claim 1, wherein a residue or waste discharged during processing of the plant is used as the plant.
【請求項12】 植物を完全単細胞化して得られた単細
胞懸濁液を、95〜100℃で30分以上加熱して細胞
内の加水分解酵素を完全に失活させる請求項1記載の植
物の完全単細胞化方法。
12. The plant according to claim 1, wherein the single-cell suspension obtained by completely transforming the plant into a single cell is heated at 95 to 100 ° C. for 30 minutes or more to completely inactivate the intracellular hydrolase. Complete single cell method.
【請求項13】 植物に少なくとも二度細胞間物質分解
酵素を作用させて、植物を完全に単細胞化する請求項1
記載の植物の完全単細胞化方法。
13. The method according to claim 1, wherein the intercellular substance degrading enzyme is allowed to act on the plant at least twice to completely convert the plant into a single cell.
A method for completely transforming a plant into a single cell as described above.
JP25948195A 1995-09-13 1995-09-13 How to make plants completely unicellular Expired - Lifetime JP2709289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25948195A JP2709289B2 (en) 1995-09-13 1995-09-13 How to make plants completely unicellular

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25948195A JP2709289B2 (en) 1995-09-13 1995-09-13 How to make plants completely unicellular

Publications (2)

Publication Number Publication Date
JPH0975026A JPH0975026A (en) 1997-03-25
JP2709289B2 true JP2709289B2 (en) 1998-02-04

Family

ID=17334684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25948195A Expired - Lifetime JP2709289B2 (en) 1995-09-13 1995-09-13 How to make plants completely unicellular

Country Status (1)

Country Link
JP (1) JP2709289B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142245B2 (en) 1996-06-28 2001-03-07 株式会社資生堂 External preparation for skin
KR100243929B1 (en) * 1997-10-29 2000-02-01 김길환 The process of manufacturing the watermelon juice
KR20000028547A (en) * 1998-10-24 2000-05-25 손경식 Cosmetic composition containing useful component recovered from plant
JP2002058449A (en) * 2000-08-22 2002-02-26 Toyo Shinyaku:Kk Method for producing young leaf powder
JPWO2005099481A1 (en) * 2004-04-14 2007-08-16 有限会社智間 Processed soybean and method for producing the same
JP3986541B1 (en) * 2006-07-10 2007-10-03 赤澤 基 Plant cell unicellularization apparatus and method for producing unicellular plant
JP5625237B2 (en) * 2008-12-08 2014-11-19 株式会社カネカ Processed Lamiaceae plant and its manufacturing method
JP5563235B2 (en) * 2009-04-27 2014-07-30 株式会社スギヨ Process for producing processed vegetable ingredients and processed vegetable ingredients
WO2011048852A1 (en) 2009-10-19 2011-04-28 バイオアイ株式会社 Pectin lyase, pectin lyase gene, enzyme preparation, and method for production of single cells of plant tissue
JP5528487B2 (en) * 2012-02-07 2014-06-25 有限会社柏崎青果 Burdock processed food, its production method and Burdock secondary processed food

Also Published As

Publication number Publication date
JPH0975026A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
CN107751909B (en) Jujube and kiwi fruit composite jam and preparation method thereof
JP2008119012A (en) Morinda citrifolia dietary fiber
CN107212195A (en) One kind is rich in SOD Juices and its processing method
JP2709289B2 (en) How to make plants completely unicellular
KR20000045949A (en) Processing method of ginseng tea made of leaves and stems of ginseng
KR101226459B1 (en) Manufacturing Method of Dried Citrus Unshiu Peel Tea And Citrus Unshiu Peel Tea Using The Same
JPWO2007139094A1 (en) White pepper production method and white pepper
KR0145505B1 (en) Manufacturing method of beverage mainly from radish
KR101977833B1 (en) Green apple puree and manufacturing method thereof
JPH0568526A (en) Preparation of extract for tobacco flavoring
KR20120064875A (en) Manufacturing method for mesil chojang
KR102222805B1 (en) Manufacturing method for tomato sundaetguk and tomato sundaetguk manufactured by the same
KR102200919B1 (en) Method for manufacturing health pickled radish using onion and health pickled radish using turmeric manufactured by the same
KR101742975B1 (en) Method for Manufacturing Kimchi Containing Sugar Immersion Extracts of Purslane
CN115191528A (en) Preparation process for rose-flavor grape concentrated juice
JP2004173559A (en) Viscous guava fruit processed food product, method for producing the same and use thereof
KR20110012047A (en) Method for manufacturing health food containing enzyme, and health food
KR102389400B1 (en) Production method of dried persimmon paste enhancing preservative quality
KR20100097348A (en) The black garlic extract making method
CN109349488A (en) A kind of production method of the solid beverage rich in shrub althea flower effective component
KR102327225B1 (en) Softening method of Muguennamul using radish leave
KR102388851B1 (en) Manufacture method of functional leaf mustard
KR102382629B1 (en) Method of manufacturing jam using green tangerine and green tangerine jam prepared thereby
Amadioha et al. Pectolytic enzymes produced by Rhizoctonia bataticola in culture and Rhizoctonia-infected tissues of potato tubers (Solanum tuberosum L.)
KR101935538B1 (en) Mixture of extract or fermentation using Allium tuberosum and production method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 16

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term