JP2707016B2 - DC TIG arc welding machine - Google Patents

DC TIG arc welding machine

Info

Publication number
JP2707016B2
JP2707016B2 JP4078574A JP7857492A JP2707016B2 JP 2707016 B2 JP2707016 B2 JP 2707016B2 JP 4078574 A JP4078574 A JP 4078574A JP 7857492 A JP7857492 A JP 7857492A JP 2707016 B2 JP2707016 B2 JP 2707016B2
Authority
JP
Japan
Prior art keywords
current
signal
voltage
arc
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4078574A
Other languages
Japanese (ja)
Other versions
JPH05237657A (en
Inventor
謙三 檀上
哲朗 池田
敏一 藤吉
雅洋 青山
晴雄 森口
国男 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP4078574A priority Critical patent/JP2707016B2/en
Publication of JPH05237657A publication Critical patent/JPH05237657A/en
Application granted granted Critical
Publication of JP2707016B2 publication Critical patent/JP2707016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、直流TIGアーク溶接
機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC TIG arc welding machine.

【0002】[0002]

【従来の技術】従来、直流TIGアーク溶接はタングス
テン電極を使用し、電極,母材の非接触状態でロッドを
アーク溶接する。
2. Description of the Related Art Conventionally, in DC TIG arc welding, a tungsten electrode is used, and a rod is arc welded in a non-contact state between the electrode and a base material.

【0003】この溶接に用いられる従来の直流TIGア
ーク溶接機は、出力電流のフィードバック制御により電
極,母材の溶接負荷に定電流制御された直流を給電す
る。
[0003] The conventional DC TIG arc welding machine used for this welding supplies a constant current controlled DC to the welding load of the electrode and the base material by feedback control of the output current.

【0004】ところで、この定電流制御された直流給電
のみを行う場合は、その電流値が十分なアーク電流を確
保するように設定されるため、とくに大電流溶接に適用
すると、タングステン電極を母材に接触させてアークス
タートさせる際、短絡移行時に定電流制御された過大な
電流により電極先端が母材にとけ込んで溶着し、アーク
スタートミスが生じ易い。
In the case where only the DC power supply controlled by the constant current is carried out, the current value is set so as to secure a sufficient arc current. When the arc is started by contacting with the electrode, the tip of the electrode melts into the base material and is welded due to the excessive current controlled by the constant current at the time of the transition to the short circuit, and an arc start mistake is likely to occur.

【0005】そこで、近年のこの種直流TIGアーク溶
接機は、多くの場合、前記直流給電を行うための直流電
源とともに、アークスタート用の高周波(2〜3MH
z),高電圧(2〜3000V)の高周波電源を備え
る。そして、アークスタートさせる際は電極,母材間に
空隙を設け、この空隙に高周波電源の高周波,高電圧を
印加してアークを発生し、このアーク発生後に直流給電
に移行し、大電流溶接時にもアークスタートミスが生じ
ないようにしている。
Therefore, in recent years, this type of DC TIG arc welding machine often includes a DC power supply for supplying the DC power and a high frequency (2 to 3 MHz) for arc start.
z), a high-frequency power supply of high voltage (2-3000 V) is provided. When starting the arc, a gap is provided between the electrode and the base material, an arc is generated by applying the high frequency and high voltage of a high frequency power supply to the gap, and after the arc is generated, the operation is switched to DC power supply. This also prevents an arc start mistake from occurring.

【0006】[0006]

【発明が解決しようとする課題】前記従来の直流給電の
みを行う直流TIGアーク溶接機の場合、アークスター
トミスを回避するため、比較的小電流の溶接にしか用い
ることができず、しかも、電流が少なくなると、アーク
移行時の電流不足によるアークスタートミスが生じ易
く、適用可能な電流範囲が限られる問題点がある。
The conventional DC TIG arc welding machine which performs only DC power supply can be used only for welding with a relatively small current in order to avoid an arc start mistake. When the number is small, there is a problem that an arc start mistake is likely to occur due to a shortage of current at the time of arc transfer, and an applicable current range is limited.

【0007】一方、従来の高周波電源を備えた直流TI
Gアーク溶接機の場合は、直流電源だけでなく高周波電
源も要するため、小型化,軽量化等が図れない問題点が
ある。しかも、高周波電源が発生する高周波ノイズによ
り、他の電気機器等の誤動作が生じる問題点もある。
On the other hand, a direct current TI equipped with a conventional high frequency power supply
In the case of a G arc welding machine, not only a direct current power source but also a high frequency power source is required, so that there is a problem that miniaturization and weight reduction cannot be achieved. In addition, there is a problem in that high-frequency noise generated by the high-frequency power supply causes malfunction of other electric devices and the like.

【0008】そして、一層の小型化,軽量化が求めら
れ、しかも、電気機器や制御機器のデジタル化が進み、
その動作電圧が低くなっている現在、直流給電のみを行
うとともに母材,電極を短絡してアークスタートする溶
接手法が見直されつつある。
[0008] Further, further miniaturization and weight reduction are required, and the digitization of electric devices and control devices has been progressing.
At present, when the operating voltage is low, a welding technique of performing only DC power supply and short-circuiting a base material and an electrode to start an arc is being reviewed.

【0009】本発明は、定電流制御された直流給電のみ
を行う直流TIGアーク溶接機において、短絡移行時の
過大電流を防止するとともにアーク移行時の電流不足を
防止し、適用可能な電流範囲を拡大することを目的とす
る。
According to the present invention, in a DC TIG arc welding machine which performs only constant-current controlled DC power supply, an excessive current at the time of transition to a short circuit and a shortage of current at the time of arc transition are prevented, and the applicable current range is reduced. The purpose is to expand.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の直流TIGアーク溶接機においては、溶
接負荷の電流を検出する電流検出器と、溶接負荷の電圧
を検出する電圧検出器と、電流検出器の電流検出信号に
より電流の有無の判別信号を形成する電流判別部と、電
圧検出器の電圧検出信号により電圧の有無の判別信号を
形成する電圧判別部と、前記両判別信号をゲート処理
し,アークスタート時無電流状態の開放から短絡への変
化及び短絡から有電流状態の開放への変化により出力信
号が反転するゲート部と、このゲート部の出力信号を微
分して電流補正用の微分信号を形成する微分回路と、定
電流制御の設定信号に微分信号を加算した信号と電流検
出信号との誤差信号を定電流制御の給電制御信号として
形成する誤差増幅器とを備え、前記給電制御信号により
アークスタート時の電流を短絡電流が減少してアーク移
行電流が増大する微分波形に補正する。
In order to achieve the above object, a DC TIG arc welding machine according to the present invention comprises a current detector for detecting a current of a welding load, and a voltage detector for detecting a voltage of the welding load. A current determining unit that forms a determination signal of the presence or absence of a current based on a current detection signal of a current detector; a voltage determination unit that forms a determination signal of the presence or absence of a voltage based on a voltage detection signal of a voltage detector; Gate processing of the signal, the gate section where the output signal is inverted by the change from open to short circuit in the no-current state and the change from short circuit to open in the current state at arc start, and the output signal of this gate section is differentiated. A differential circuit for forming a differential signal for current correction, and an error amplifier for forming an error signal between a signal obtained by adding the differential signal to a setting signal for constant current control and a current detection signal as a power supply control signal for constant current control Wherein the power supply control signal current at the time of arc start circuit current due to decrease correcting the differential waveform arc transition current increases.

【0011】[0011]

【作用】前記のように構成された本発明の直流TIGア
ーク溶接機の場合、電流検出器の電流検出信号,電圧検
出器の電圧検出信号に基づく電流判別部,電圧判別部の
電流,電圧の有,無の判別信号がゲート部により処理さ
れ、電極,母材を短絡して開放するアークスタート時、
短絡による無電圧での電流の無から有への短絡移行変
化,開放(アーク発生)による有電流での電圧の無から
有へのアーク移行変化により反転する出力信号が形成さ
れる。
In the case of the DC TIG arc welding machine of the present invention configured as described above, a current discriminating unit based on the current detection signal of the current detector and the voltage detection signal of the voltage detector, and the current and voltage of the voltage discriminating unit. The presence / absence discrimination signal is processed by the gate unit, and when the arc starts to open by short-circuiting the electrode and base material,
An output signal is formed which is inverted by a change in a short-circuit transition from no to a current without a voltage due to a short circuit, and a change in an arc from a non-existence to a voltage with a current due to opening (arc generation).

【0012】そして、この出力信号が微分回路で微分さ
れ、短絡移行変化とアーク移行変化とで極性が異なる電
流補正用の微分信号が形成され、この微分信号が定電流
制御の設定信号に加算される。
Then, the output signal is differentiated by a differentiating circuit to form a differential signal for current correction having a different polarity between a change in short-circuit and a change in arc, and this differential signal is added to a set signal for constant current control. You.

【0013】この加算により定電流制御の設定信号は、
短絡移行時に減少方向に補正されてアーク移行時に増大
方向に補正される。そして、この信号補正に基づき、出
力電流が短絡移行時に設定信号の値より減少補正されて
大電流溶接時の過電流が防止されるとともに、アーク移
行時に増大補正されて小電流溶接時の電流不足が防止さ
れる。
By this addition, the setting signal of the constant current control is
The correction is made in the decreasing direction when the short-circuit shifts, and is increased in the increasing direction when the arc shifts. Then, based on this signal correction, the output current is corrected to decrease from the value of the set signal at the time of transition to short-circuit, thereby preventing an overcurrent at the time of welding with a large current and increasing the correction at the time of transition to an arc, resulting in insufficient current at the time of welding at a small current. Is prevented.

【0014】[0014]

【実施例】1実施例について、図1及び図2を参照して
説明する。図1において、1a〜1cは溶接機の3相の
交流入力端子、2は入力端子1a〜1cの3相の交流入
力電源を整流するダイオードブリッジ構成の入力側整流
器、3は入力側の平滑コンデンサ、4はコンデンサ3に
より平滑形成された直流電源が給電されるインバータで
あり、内部のトランジスタ,MOS−FET,IGBT
などの制御素子のスイッチングにより直流電源を高周波
交流に変換する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment will be described with reference to FIGS. In FIG. 1, 1a to 1c are three-phase AC input terminals of a welding machine, 2 is an input-side rectifier having a diode bridge configuration for rectifying three-phase AC input power of input terminals 1a to 1c, and 3 is an input-side smoothing capacitor. Reference numerals 4 and 4 denote inverters to which a DC power supply smoothed by the capacitor 3 is supplied, and which includes internal transistors, MOS-FETs, and IGBTs.
A DC power supply is converted into a high-frequency AC by switching of a control element such as a DC power supply.

【0015】5はインバータ4の高周波交流を変圧する
出力変圧器、6は変圧器5の出力を整流する出力側整流
器であり、ダイオード6a,6bの全波整流器からな
る。7は平滑用のリアクトル、8はTIG溶接用のタン
グステン電極、9は母材であり、電極8とともに溶接負
荷10を形成する。
Reference numeral 5 denotes an output transformer for transforming the high-frequency AC of the inverter 4, and reference numeral 6 denotes an output rectifier for rectifying the output of the transformer 5, which comprises full-wave rectifiers of diodes 6a and 6b. Reference numeral 7 denotes a smoothing reactor, 8 denotes a tungsten electrode for TIG welding, 9 denotes a base material, and forms a welding load 10 together with the electrode 8.

【0016】11は溶接負荷10の電流(出力電流)I
を検出する電流検出器、12は検出器11の電流検出信
号が入力される電流電圧変換器であり、電流検出信号を
電圧信号(以下変換検出信号という)Siに変換する変
換部及び出力電流の有無の判別信号Diを形成する電流
判別部を有する。
Reference numeral 11 denotes the current (output current) I of the welding load 10.
, A current-to-voltage converter 12 to which the current detection signal of the detector 11 is input, a conversion unit that converts the current detection signal into a voltage signal (hereinafter referred to as a conversion detection signal) Si, and an output current It has a current discriminating unit that forms the presence / absence discrimination signal Di.

【0017】13は正電源端子+Bの電圧を分圧して定
常アーク(開放)時の定電流制御用の設定信号αを形成
する定常電流設定器、14は正電源端子+Bの電圧を分
圧してアークスタート(短絡)時の定電流制御用の設定
信号βを形成するアークスタート電流設定器、15,1
6は設定信号切換用の2個のアナログスイッチである。
Reference numeral 13 denotes a steady current setter for dividing the voltage of the positive power supply terminal + B to form a setting signal α for constant current control at the time of steady arc (opening), and 14 divides the voltage of the positive power supply terminal + B. Arc start current setting device for forming a setting signal β for constant current control at the time of arc start (short circuit), 15, 1
Reference numeral 6 denotes two analog switches for setting signal switching.

【0018】17は定電流制御用の給電制御信号Scを
形成する誤差増幅器であり、反転入力端子に入力抵抗1
8を介した電圧信号Siが入力され、非反転入力端子に
入力抵抗19,アナログスイッチ15を介した設定信号
α及び入力抵抗20,アナログスイッチ16を介した設
定信号βが並列に入力される。
An error amplifier 17 generates a power supply control signal Sc for constant current control.
8, a voltage signal Si via the input resistor 19 and the analog switch 15 and a setting signal β via the input resistor 20 and the analog switch 16 are input in parallel to the non-inverting input terminal.

【0019】21は溶接負荷10の電圧(出力電圧)V
を検出する電圧検出器、22は検出器21の電圧検出信
号Svが入力される電圧判別部であり、出力電圧の有無
の判別信号Dvを形成する。23は判別信号Di,Dv
が入力されるアンドゲートであり、アナログスイッチ1
6の制御信号を形成する。24はアンドゲート23の出
力信号を反転してアナログスイッチ15の制御信号を形
成するインバータゲートであり、アンドゲート23とと
もにゲート部25を形成する。
Reference numeral 21 denotes the voltage (output voltage) V of the welding load 10
Is a voltage discriminating unit to which the voltage detection signal Sv of the detector 21 is inputted, and forms a discrimination signal Dv for the presence or absence of the output voltage. 23 is a discrimination signal Di, Dv
Is an input and gate, and the analog switch 1
6 are formed. An inverter gate 24 inverts an output signal of the AND gate 23 to form a control signal for the analog switch 15, and forms a gate unit 25 together with the AND gate 23.

【0020】26はインバータゲート24の出力端子と
誤差増幅器17の非反転入力端子との間に微分用の抵抗
27,コンデンサ28を直列に設けて形成された微分回
路であり、電流補正用の微分信号γを発生する。
Reference numeral 26 denotes a differentiating circuit formed by providing a differential resistor 27 and a capacitor 28 in series between the output terminal of the inverter gate 24 and the non-inverting input terminal of the error amplifier 17, and a differential circuit for current correction. A signal γ is generated.

【0021】29,30は制御信号Scの分圧用の抵
抗、31は判別信号Dvにより制御されるアナログスイ
ッチであり、制御信号Scの分圧を制御する。32はイ
ンバータ4の制御素子を駆動するインバータ駆動回路で
あり、抵抗29,30及びスイッチ31の分圧回路を介
した制御信号Scが供給される。なお、判別信号Diは
出力電流の有,無により”1”(ハイレベル),”0”
(ローレベル)に変化し、判別信号Dvは出力電圧の
有,無により”0”,”1”に変化する。
Reference numerals 29 and 30 denote resistors for dividing the control signal Sc, and reference numeral 31 denotes an analog switch controlled by the discrimination signal Dv, which controls the division of the control signal Sc. Reference numeral 32 denotes an inverter drive circuit for driving a control element of the inverter 4, to which a control signal Sc is supplied via resistors 29 and 30 and a voltage dividing circuit of the switch 31. The discrimination signal Di is "1" (high level) or "0" depending on the presence or absence of the output current.
(Low level), and the discrimination signal Dv changes to “0” or “1” depending on the presence or absence of the output voltage.

【0022】また、アナログスイッチ15,16はアン
ドゲート23,インバータゲート24の出力信号の”
1”,”0”によりオン,オフし、アナログスイッチ3
1は判別信号Dvの”0”,”1”によりオン,オフす
る。そして、まず電源投入により、電極8と母材9とを
開放した状態で入力端子1a〜1cに交流電源を給電す
る。
The analog switches 15 and 16 output the output signals of the AND gate 23 and the inverter gate 24, respectively.
1 ”,“ 0 ”turns on and off, analog switch 3
1 is turned on and off according to "0" and "1" of the discrimination signal Dv. Then, when the power is turned on, an AC power is supplied to the input terminals 1a to 1c in a state where the electrode 8 and the base material 9 are opened.

【0023】この交流電源は整流器2,コンデンサ3に
より整流,平滑され、直流電源に変換されてインバータ
4に給電され、このインバータ4は駆動回路32の駆動
制御により直流電源を高周波交流に変換する。
The AC power is rectified and smoothed by the rectifier 2 and the capacitor 3, converted into a DC power, and supplied to the inverter 4. The inverter 4 converts the DC power into a high-frequency AC by the drive control of the drive circuit 32.

【0024】さらに、この高周波交流が変圧器5を介し
て整流器6に供給され、整流器6,リアクトル7の整
流,平滑により形成された直流が母材9を正とする極性
で電極8,母材9に供給される。
Further, the high-frequency alternating current is supplied to the rectifier 6 via the transformer 5, and the direct current formed by the rectification and smoothing of the rectifier 6 and the reactor 7 is applied to the electrode 8, the base material having a polarity with the base material 9 being positive. 9.

【0025】このとき、電極8,母材9間が開放され、
図2の(f)に示すように出力電流Iが流れないため、
電流検出器11の電流検出信号は0に保持され、変換器
12の変換検出信号Siが0になるとともに判別信号D
iが”0”になる。
At this time, the space between the electrode 8 and the base material 9 is opened,
Since the output current I does not flow as shown in FIG.
The current detection signal of the current detector 11 is held at 0, the conversion detection signal Si of the converter 12 becomes 0, and the discrimination signal D
i becomes "0".

【0026】また、図2の(a)に示す出力電圧Vの検
出に基づき、電圧検出器21は出力電圧Vに比例した電
圧検出信号Svを出力し、この信号Svに基づき電圧判
別部22が図2の(b)に示す”0”の判別信号Dvを
出力し、この”0”の判別信号Dvによりアナログスイ
ッチ31はオンする。
On the basis of the detection of the output voltage V shown in FIG. 2A, the voltage detector 21 outputs a voltage detection signal Sv proportional to the output voltage V. The discrimination signal Dv of “0” shown in FIG. 2B is output, and the analog switch 31 is turned on by the discrimination signal Dv of “0”.

【0027】そして、判別信号Di,Dvが共に”0”
になるため、アンドゲート23の出力信号が”0”に保
持されてアナログスイッチ16はオフし、図2の(c)
に示すようにインバータゲート24の出力信号が”1”
に保持されてアナログスイッチ15はオンする。
The discrimination signals Di and Dv are both "0".
Therefore, the output signal of the AND gate 23 is held at "0", and the analog switch 16 is turned off.
As shown in FIG. 7, the output signal of the inverter gate 24 is "1".
And the analog switch 15 is turned on.

【0028】このアナログスイッチ15のオンにより、
誤差増幅器17の非反転入力端子に供給される図2の
(e)の基準入力信号は、抵抗19を介した設定信号α
になり、この信号αと電圧信号Siとの誤差増幅によ
り、α−Siの給電制御信号Scが形成される。
When the analog switch 15 is turned on,
The reference input signal shown in FIG. 2E supplied to the non-inverting input terminal of the error amplifier 17 is a setting signal α via a resistor 19.
The power amplification control signal Sc of α-Si is formed by the error amplification between the signal α and the voltage signal Si.

【0029】このとき、出力電流Iが0で変換検出信号
Siも最小の0になるため、制御信号Scは最大(=
α)になる。さらに、アナログスイッチ31のオンによ
り制御信号Scは抵抗29,30により分圧され、定常
アーク時の制御応答特性等に応じた調整が施されて駆動
回路32に供給される。
At this time, since the output current I is 0 and the conversion detection signal Si also becomes the minimum 0, the control signal Sc becomes the maximum (=
α). Further, when the analog switch 31 is turned on, the control signal Sc is divided by the resistors 29 and 30, adjusted according to the control response characteristics at the time of a steady arc, and supplied to the drive circuit 32.

【0030】そして、駆動回路32により制御信号Sc
が0になるようにインバータ4が駆動され、この駆動に
より出力電圧Vは最大の無負荷電圧でなく、制御信号S
cで定まる大きさの電圧になる。
Then, the control signal Sc is output from the drive circuit 32.
Is driven to be 0, and the output voltage V is not the maximum no-load voltage but the control signal S
The voltage has a magnitude determined by c.

【0031】つぎに、アークスタートするため、時刻t
1に電極8を母材9に短絡すると、出力電圧Vは0に消
失し、出力電流Iが流れ始める。そして、出力電圧Vの
消失により判別信号Dvが”1”に反転してアナログス
イッチ31がオフするとともに、電流検出器11の電流
検出信号に基づき、判別信号Diが”1”に反転する。
Next, at the time t to start the arc,
When the electrode 8 is short-circuited to the base material 9 at 1, the output voltage V disappears to 0, and the output current I starts to flow. Then, the discrimination signal Dv is inverted to “1” due to the disappearance of the output voltage V, the analog switch 31 is turned off, and the discrimination signal Di is inverted to “1” based on the current detection signal of the current detector 11.

【0032】さらに、判別信号Di,Dvが共に”1”
になるため、ゲート部25は無電流状態の開放から短絡
への変化を検出してアンドゲート23の出力信号が”
1”に反転し、この反転に伴いインバータゲート24の
出力信号が”0”に反転する。そして、アンドゲート2
3の”1”の出力信号によりアナログスイッチ16がオ
ンし、インバータゲート24の”0”の出力信号により
アナログスイッチ15がオフする。
Further, the discrimination signals Di and Dv are both "1".
Therefore, the gate section 25 detects the change from the open state to the short circuit in the no-current state, and the output signal of the AND gate 23 becomes "".
As a result, the output signal of the inverter gate 24 is inverted to "0".
The analog switch 16 is turned on by the output signal of "1" of 3, and the analog switch 15 is turned off by the output signal of "0" of the inverter gate 24.

【0033】このとき、アナログスイッチ15,16の
オフ,オンにより、設定信号αの代わりに設定信号βが
抵抗20を介して誤差増幅器17に基準入力信号として
供給され、定電流制御の設定信号が切換わる。また、イ
ンバータゲート24の出力信号が微分回路26により微
分され、インバータゲート24の出力信号が”1”か
ら”0”に反転する短絡移行時はコンデンサ27の放電
に基づき、図2の(d)に示す立下り微分特性の電流補
正用の微分信号γが形成される。
At this time, when the analog switches 15 and 16 are turned off and on, the setting signal β is supplied as a reference input signal to the error amplifier 17 via the resistor 20 instead of the setting signal α, and the setting signal for constant current control is output. Switch. In addition, when the output signal of the inverter gate 24 is differentiated by the differentiating circuit 26 and the output signal of the inverter gate 24 transitions from a short to an inversion from “1” to “0”, the discharge of the capacitor 27 is performed. The differential signal γ for current correction having the falling differential characteristic shown in FIG.

【0034】そして、微分信号γが設定信号βに加算さ
れるため、短絡移行時の誤差増幅器17の基準入力信号
は図2の(e)からも明らかなように、設定信号βを微
分信号γで減少補正した信号になる。
Since the differential signal γ is added to the setting signal β, the reference input signal of the error amplifier 17 at the time of the transition to the short circuit is changed from the setting signal β to the differential signal γ, as is apparent from FIG. And the signal is corrected for the decrease.

【0035】この補正した信号(β+γ)と電圧信号S
iとの誤差に基づく給電制御信号Scにより駆動回路3
2がインバータ4を駆動して出力電流Iを定電流制御す
るため、短絡移行時の出力電流I(短絡電流)は設定信
号βに基づく電流から減少補正され、0から徐々に設定
信号βの規定値に上昇する。なお、アナログスイッチ3
1のオフにより給電制御信号Scは分圧調整することな
く、そのまま駆動回路32に供給される。また、制御応
答の遅れ等により、出力電流Iは微分信号γより若干遅
れて上昇変化する。
The corrected signal (β + γ) and the voltage signal S
drive circuit 3 based on a power supply control signal Sc based on an error with respect to i.
2 drives the inverter 4 to control the output current I at a constant current. Therefore, the output current I (short-circuit current) at the time of transition to short-circuit is corrected to decrease from the current based on the setting signal β, and the setting signal β is gradually defined from 0. Rise to value. Note that the analog switch 3
By turning off 1, the power supply control signal Sc is directly supplied to the drive circuit 32 without adjusting the voltage division. Further, due to a delay in the control response or the like, the output current I rises and changes slightly later than the differential signal γ.

【0036】つぎに、時刻t2に電極8を母材9から離
して開放し、アークに移行すると、電極8,母材9間の
アークの発生により出力電流Iの流れた状態で出力電圧
Vが上昇し、判別信号Dvが”1”から”0”に反転
し、アナログスイッチ31がオンする。
Next, at time t2, when the electrode 8 is separated from the base material 9 and opened to shift to an arc, the output voltage V is changed with the output current I flowing due to the occurrence of an arc between the electrode 8 and the base material 9. As a result, the determination signal Dv is inverted from “1” to “0”, and the analog switch 31 is turned on.

【0037】さらに、ゲート部25は短絡から有電流状
態の開放への変化を検出してアンドゲート23の出力信
号が”0”に反転し、インバータゲート24の出力信号
が”1”に反転する。そして、アンドゲート23,イン
バータゲート24の出力信号の反転により、アナログス
イッチ16がオフしてアナログスイッチ15がオンし、
設定信号βの代わりに設定信号αが誤差増幅器17に供
給される。
Further, the gate section 25 detects the change from the short circuit to the open state of the current-carrying state, and the output signal of the AND gate 23 is inverted to "0", and the output signal of the inverter gate 24 is inverted to "1". . The analog switch 16 is turned off and the analog switch 15 is turned on by the inversion of the output signals of the AND gate 23 and the inverter gate 24.
The setting signal α is supplied to the error amplifier 17 instead of the setting signal β.

【0038】また、インバータゲート24の出力信号の
微分により、微分信号γは立上り微分特性の信号にな
る。そして、設定信号αに微分信号γが加算されるた
め、アーク移行時の誤差増幅器17の基準入力信号は設
定信号αを微分信号γで増大補正した信号になる。
The differential signal γ becomes a signal having a rising differential characteristic due to the differentiation of the output signal of the inverter gate 24. Since the differential signal γ is added to the setting signal α, the reference input signal of the error amplifier 17 at the time of arc transition is a signal obtained by increasing the setting signal α by the differential signal γ.

【0039】この補正した信号(α+γ)と電圧信号S
iとに基づく給電制御信号Scにより駆動回路32がイ
ンバータ4を駆動して出力電流Iを定電流制御するた
め、アーク移行時の出力電流I(アーク移行電流)は設
定信号αに基づく電流から増大補正され、急峻に立上っ
た後徐々に設定信号αの規定値に収束する。
The corrected signal (α + γ) and the voltage signal S
Since the drive circuit 32 drives the inverter 4 by the power supply control signal Sc based on i and controls the output current I at a constant current, the output current I at the time of arc transition (arc transition current) increases from the current based on the setting signal α. After being corrected and rising sharply, it gradually converges to the specified value of the setting signal α.

【0040】そして、アークスタートの短絡移行時の短
絡電流が微分信号γにより強制的に減少補正されるた
め、大電流溶接の際にも短絡移行時の電流が過大になら
ず、電極8の先端の母材9への溶着が防止される。
Since the short-circuit current at the time of the short-circuit transition of the arc start is forcibly reduced and corrected by the differential signal γ, the current at the time of the short-circuit transition does not become excessive even in the case of high current welding. Is prevented from being welded to the base material 9.

【0041】また、アーク移行電流が微分信号γにより
強制的に増加補正されるため、例えばアーク電流が短絡
電流より小さく設定されて小電流溶接される際にもアー
ク移行時の電流不足がなく、アークスタートミスが防止
される。そのため、適用可能な電流範囲が従来より大幅
に拡大する。
Further, since the arc transfer current is forcibly increased and corrected by the differential signal γ, even when the arc current is set to be smaller than the short-circuit current and small current welding is performed, there is no shortage of current at the time of arc transfer. Arc start mistake is prevented. As a result, the applicable current range is greatly expanded as compared with the conventional case.

【0042】しかも、この実施例では定電流制御の設定
信号を短絡時とアーク時とで切換え、短絡電流の設定値
とアーク電流の設定値とを変えるため、短絡電流を極力
小さく選定してアークスタート時の損失を低減すること
ができる。
Further, in this embodiment, the setting signal of the constant current control is switched between the time of the short circuit and the time of the arc, and the set value of the short circuit current and the set value of the arc current are changed. The loss at the start can be reduced.

【0043】そして、定電流制御用の設定信号を短絡時
とアーク時とで切換えない場合に適用できるのは勿論で
ある。また、各部の構成等が実施例に限定されないのは
勿論である。
It is needless to say that the present invention can be applied to a case where the setting signal for constant current control is not switched between a short circuit and an arc. In addition, it goes without saying that the configuration of each unit is not limited to the embodiment.

【0044】[0044]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。電流検出器
11の電流検出信号,電圧検出器21の電圧検出信号に
基づく電流判別部(電流電圧変換器12),電圧判別部
22の電流,電圧の有,無の判別信号をゲート部25に
より処理し、電極8,母材9を短絡して開放するアーク
スタート時、短絡による無電圧での電流の無から有への
短絡移行変化,開放(アーク発生)による有電流での電
圧の無から有へのアーク移行変化により反転する出力信
号を形成し、この出力信号を微分回路26で微分して短
絡移行変化とアーク移行変化とで極性が異なる電流補正
用の微分信号を形成し、この微分信号を定電流制御の設
定信号に加算するため、誤差増幅器17に供給される定
電流制御の設定信号が短絡移行時に減少方向に補正され
てアーク移行時に増大方向に補正される。
Since the present invention is configured as described above, the following effects can be obtained. The gate unit 25 outputs the current detection signal of the current detector 11 and the current determination unit (current-voltage converter 12) based on the voltage detection signal of the voltage detector 21 and the current / voltage presence / absence determination signal of the voltage determination unit 22 by the gate unit 25. At the time of the arc start in which the electrode 8 and the base material 9 are short-circuited and opened, the change of the short-circuit transition from the absence of the current with no voltage due to the short-circuit to the presence of the short-circuit, and the absence of the voltage with the current due to the opening (arc generation). An output signal which is inverted by the change of the arc transition to "yes" is formed, and the output signal is differentiated by the differentiating circuit 26 to form a differential signal for current correction having different polarities between the short-circuit transition change and the arc transition change. In order to add the signal to the setting signal of the constant current control, the setting signal of the constant current control supplied to the error amplifier 17 is corrected in the decreasing direction at the time of the transition of the short circuit and is corrected in the increasing direction at the transition of the arc.

【0045】そして、この信号補正に基づき、出力電流
を短絡移行時に設定信号の値より減少補正して大電流溶
接の過電流を防止することができるとともに、アーク移
行時に増大補正して小電流溶接の電流不足を防止するこ
とができ、溶接負荷10に定電流制御された直流のみを
給電し、電極8,母材9を短絡から開放してアークを発
生する直流TIGアーク溶接機の適用可能な電流範囲
を、大幅に拡大して性能を著しく向上することができ
る。
Based on the signal correction, the output current is corrected to be smaller than the value of the set signal at the time of transition to the short circuit, thereby preventing an overcurrent of the large current welding, and increasing at the time of the arc transition to the small current welding. Current can be prevented, a DC TIG arc welding machine that supplies only a constant current controlled direct current to the welding load 10 and opens an electrode 8 and a base material 9 from a short circuit to generate an arc can be applied. The current range can be greatly extended to significantly improve performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の直流TIGアーク溶接機の1実施例の
結線図である。
FIG. 1 is a connection diagram of one embodiment of a DC TIG arc welding machine of the present invention.

【図2】(a)〜(f)は図1の動作説明用の各部の波
形図である。
2 (a) to 2 (f) are waveform diagrams of respective parts for explaining the operation of FIG.

【符号の説明】[Explanation of symbols]

8 電極 9 母材 10 溶接負荷 11 電流検出器 12 電流判別部を形成する電流電圧変換器 17 誤差増幅器 21 電圧検出器 22 電圧判別部 25 ゲート部 26 微分回路 Reference Signs List 8 electrode 9 base material 10 welding load 11 current detector 12 current-voltage converter forming current discriminating section 17 error amplifier 21 voltage detector 22 voltage discriminating section 25 gate section 26 differentiating circuit

フロントページの続き (72)発明者 青山 雅洋 大阪市東淀川区淡路2丁目14番3号 株 式会社三社電機製作所内 (72)発明者 森口 晴雄 大阪市東淀川区淡路2丁目14番3号 株 式会社三社電機製作所内 (72)発明者 狩野 国男 大阪市東淀川区淡路2丁目14番3号 株 式会社三社電機製作所内 (56)参考文献 特開 昭53−95155(JP,A)Continued on the front page (72) Masahiro Aoyama 2-14-3 Awaji, Higashi-Yodogawa-ku, Osaka-shi Inside Sansha Electric Manufacturing Co., Ltd. (72) Inventor Haruo Moriguchi 2- 14-3 Awaji, Higashi-Yodogawa-ku, Osaka-shi (72) Inventor Kunio Kano 2-14-3 Awaji, Higashi-Yodogawa-ku, Osaka City In-house Sansha Electric Works (56) References JP-A-53-95155 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極,母材の溶接負荷に定電流制御され
た直流のみを給電し、前記電極,前記母材を短絡から開
放してアークスタートする直流TIGアーク溶接機にお
いて、 前記溶接負荷の電流を検出する電流検出器と、 前記溶接負荷の電圧を検出する電圧検出器と、 前記電流検出器の電流検出信号により電流の有無の判別
信号を形成する電流判別部と、 前記電圧検出器の電圧検出信号により電圧の有無の判別
信号を形成する電圧判別部と、 前記両判別信号をゲート処理し,アークスタート時無電
流状態の開放から短絡への変化及び短絡から有電流状態
の開放への変化により出力信号が反転するゲート部と、 前記出力信号を微分して電流補正用の微分信号を形成す
る微分回路と、 前記定電流制御の設定信号に前記微分信号を加算した信
号と前記電流検出信号との誤差信号を前記定電流制御の
給電制御信号として形成する誤差増幅器とを備え、 前記給電制御信号によりアークスタート時の電流を短絡
電流が減少してアーク移行電流が増大する微分波形に補
正したことを特徴とする直流TIGアーク溶接機。
1. A DC TIG arc welding machine that supplies only a constant-current controlled DC current to a welding load of an electrode and a base material and opens the electrode and the base material from a short circuit to start an arc. A current detector that detects a current; a voltage detector that detects a voltage of the welding load; a current determination unit that forms a determination signal of the presence or absence of a current based on a current detection signal of the current detector; A voltage discriminator for forming a discrimination signal of the presence or absence of a voltage based on the voltage detection signal; A gate for inverting an output signal due to a change; a differentiation circuit for differentiating the output signal to form a differential signal for current correction; and a signal obtained by adding the differential signal to the constant current control setting signal. An error amplifier for forming an error signal from the current detection signal as a power supply control signal for the constant current control. A DC TIG arc welding machine characterized in that the waveform has been corrected.
JP4078574A 1992-02-27 1992-02-27 DC TIG arc welding machine Expired - Fee Related JP2707016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4078574A JP2707016B2 (en) 1992-02-27 1992-02-27 DC TIG arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4078574A JP2707016B2 (en) 1992-02-27 1992-02-27 DC TIG arc welding machine

Publications (2)

Publication Number Publication Date
JPH05237657A JPH05237657A (en) 1993-09-17
JP2707016B2 true JP2707016B2 (en) 1998-01-28

Family

ID=13665675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4078574A Expired - Fee Related JP2707016B2 (en) 1992-02-27 1992-02-27 DC TIG arc welding machine

Country Status (1)

Country Link
JP (1) JP2707016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759464B1 (en) 1997-02-10 1999-03-05 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A MULTI-LAYERED OPTICAL MATERIAL WITH ULTRAVIOLET RADIATION-DENSIFICATION CROSS-DENSIFICATION AND OPTICAL MATERIAL THUS PREPARED
JP6259341B2 (en) * 2014-03-28 2018-01-10 株式会社アマダミヤチ Joining device
CN114211093A (en) * 2021-12-30 2022-03-22 唐山松下产业机器有限公司 Small current detection device and method and arc welding equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395155A (en) * 1977-01-31 1978-08-19 Kobe Steel Ltd Starting method for arc welding

Also Published As

Publication number Publication date
JPH05237657A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
KR100260654B1 (en) Apparatus of electric source
JP2001045763A (en) Converter circuit
JP6279080B2 (en) Power converter
JP2707016B2 (en) DC TIG arc welding machine
JPH05169258A (en) Consumable electrode dc arc welding machine
JP3231649B2 (en) Consumable electrode type DC arc welding machine
JP2017188974A (en) Welding power supply
JP6505261B2 (en) Power converter
CN110605459B (en) Welding power supply device
JPH0753313B2 (en) Power control device for inverter type resistance welding machine
JPH0241778A (en) Inverter welding machine
JPH1052754A (en) Power source device for arc working
JP2676070B2 (en) DC power supply
JP3161037B2 (en) Power supply for arc welding
JPH0622758B2 (en) DC arc welding machine
JPH10127046A (en) Control circuit for step-up converter
JP2021114807A (en) Arc machining power source device
JP2639195B2 (en) Inverter output control device for induction heating
JP2640313B2 (en) TIG arc welding machine
JPH06233536A (en) Rectifier
JPH07337088A (en) Inverter
JPH05185226A (en) Dc arc welding machine
JP2002291258A (en) Inverter device
JP2764535B2 (en) Power supply for plasma cutting
JPH0421362A (en) Power converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees