JP2706235B2 - Combined prime mover - Google Patents

Combined prime mover

Info

Publication number
JP2706235B2
JP2706235B2 JP61099476A JP9947686A JP2706235B2 JP 2706235 B2 JP2706235 B2 JP 2706235B2 JP 61099476 A JP61099476 A JP 61099476A JP 9947686 A JP9947686 A JP 9947686A JP 2706235 B2 JP2706235 B2 JP 2706235B2
Authority
JP
Japan
Prior art keywords
methanol
steam
preheater
gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61099476A
Other languages
Japanese (ja)
Other versions
JPS62258107A (en
Inventor
哲也 今井
真 長井
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61099476A priority Critical patent/JP2706235B2/en
Publication of JPS62258107A publication Critical patent/JPS62258107A/en
Application granted granted Critical
Publication of JP2706235B2 publication Critical patent/JP2706235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、効率の向上、コストの低減、プラントの小
形化を図れるようにしたメタノールの改質と分解を利用
する複合原動装置に関する。 〔従来の技術〕 従来、エンジン、ガスタービンなどの排ガスの顕熱を
熱源として利用し、メタノール又はメタノールと水の混
合物を原料として分解又は水蒸気改質を行わせる場合、
特定の触媒を用いてメタノール分解反応を行わせるか、
またはメタノール水蒸気改質反応のみを行わせていた。 メタノール分解反応は、次の(1)、(2)式のとお
りである。 CH3OH→CO+2H2 ΔH25℃=21.7kcal/mol ……(1) CH3OH+nH2O→(2+n)H2+(1−n)CO+nCO2 ……(2) ここで0<n<1 またメタノール水蒸気改質反応は、次の(3)式のと
おりである。 CH3OH+H2O→CO2+3H2 ΔH25℃=11.8kcl/mol ……(3) 〔発明が解決しようとする問題点〕 従来は、反応器の触媒層においては、反応が進行する
と共に熱移動が行われ、これと同時に排ガスの温度レベ
ルが低下する。この温度低下に伴ない触媒層温度の低
下、ついては反応速度の激減をひきおこすことから、効
率が非常に悪くなるという問題がある。 第4図に従来の複合原動装置の概略構成を示す。 供給された主としてメタノールからなる燃料aは、燃
料予熱器8aで予熱され、燃料蒸発器10aで気化され、メ
タノール分解反応器9bで分解された後、燃焼用空気bと
共に燃焼し、その燃焼エネルギーによりガスタービン発
電系2を駆動している。 このガスタービン発電系2は、ガスタービン2aとその
タービン出力によつて駆動される発電機2bおよび前記燃
焼用空気bに対する空気圧縮機2cを備えて構成され、発
電出力を得ている。 そして、ガスタービン発電系2の高温排ガスcは、排
熱ボイラ系3の排気本管3aおよび排気分岐管7を通して
排出される。 排気本管3a内には、ボイラ蒸気に対する給水予熱器3b
および蒸気発生器3cがあり、また排気分岐管7内には燃
料予熱器8a燃料蒸発器10aおよびメタノール分解反応器9
bが設けられており、前記排ガスcの熱エネルギを回収
し、蒸気発生および燃料の分解を行つている。 ここで発生した蒸気が、蒸気タービン発電系4の蒸気
タービン4aに供給され、発電機4bが駆動されてタービン
出力が得られるようになつている。尚、上記蒸気タービ
ン4aを駆動した後の蒸気は、復水器5に供給され、冷却
水dによつて冷却液化されたのち、冷却水ポンプ6を介
して前記給水予熱器3bに供給され、さらに蒸気発生器3c
により加熱されて高圧蒸気となる。 一方、分解反応器9bで分解された燃料は燃焼器1に導
入され、燃焼用空気bと共に燃焼する。 しかし、排気分岐管7内で排気ガスの温度は均一では
なく、大きな温度勾配を有するため、分解反応器9b内に
おいても同様に大きな温度勾配を有し、排ガス入口付近
の高温部分では触媒が劣化しやすく、また排ガス出口付
近の低温部分では反応は極めて遅くなり、十分な性能が
得られないという問題があつた。 本発明は、上記の問題点を解決し、長時間に亘つて高
効率で運転を行うことが可能な複合原動装置を提供する
ことにある。 〔問題点を解決するための手段〕 本発明者らは、上記の問題点を解決すべく鋭意実験、
検討を重ねた結果、排ガス(熱媒)の温度勾配に応じて
高温側にメタノール分解反応器、低温側にメタノール水
蒸気改質反応器をこの順に配列してメタノールの分解と
改質を利用する複合原動装置は、一種類の反応器を用い
た従来の複合原動装置よりも、排熱から有効に熱を回収
するとともに、触媒に適した温度で反応を進行させるこ
とができるとの知見を得た。 本発明は、上記知見に基づくもので、ガスタービンの
排熱エネルギーの一部を熱媒を介して回収するに際し、
高温側のメタノール分解触媒から低温側のメタノール水
蒸気改質の順に配列した反応器をもつことを特徴とする
複合原動装置を提供するものである。 すなわち本発明は、ガスタービン排ガスを熱源とする
排熱ボイラ内を排気本管と排気分岐管とに分け、排気本
管に上記ガスタービン排ガスの入側から出側に向つて蒸
気発生器及び給水予熱器を順次連通して設け、排気分岐
管に上記ガスタービン排ガスの入側から出側に向つてメ
タノール分解反応器、メタノール水蒸気改質反応器及び
これら反応器へ供給される原料ガスの予熱器を順次連通
して設け、上記蒸気発生器で発生する蒸気を蒸気タービ
ンへ導くラインと、上記メタノール分解反応器で生成す
る分解ガスを上記ガスタービンの燃焼器へ導くラインと
を設けることを特徴とするメタノールの改質及び分解を
利用する複合原動装置に関するものである。 〔作用〕 本発明の複合原動装置においては、排熱から有効に熱
を回収できるため、反応器自体を小型化できる上に、排
ガスボイラーおよびスチームタービンの出力を大きくと
れるため、発電出力および発電効率を向上させることが
できる。また触媒に適した速度で反応を進行させること
ができる。 〔実施例〕 第1〜3図は、本発明により、低温側に改質反応器、
高温側に分解反応器を持つ改質/分解複合原動装置の構
成例を示すものである。なお、第1〜3図中、第4図と
同一の部分は同一符号を付してある。 第1図の例では、水蒸気改質用燃料fはメタノールと
水の混合物で、これが燃料予熱器8bで予熱され、燃料蒸
発器10aで気化された後、メタノール水蒸気改質反応器9
aで水蒸気改質される。一方、主としてメタノールから
なる分解用燃料aは、燃料予熱器8aで予熱され、燃料蒸
発器10aで気化された後、水蒸気改質された燃料と混合
されて、分解反応器9bに導かれ、分解されてから燃焼器
1に導入される。 第2図の例では、燃料aはメタノールで、燃料予熱器
8a、燃料蒸発器10aを通つた後、その一部は蒸気発生器3
cから出た蒸気の一部と混合され、水蒸気改質反応器9a
に導かれる。燃料蒸発器10aを出た残りの燃料は、水蒸
気改質反応器9aを出た燃料と混合され、分解反応器9bで
分解され、燃焼器に導かれる。 第3図の例では、燃料aはメタノールで、燃料予熱器
8a、燃料蒸発器10aを通つた後、その一部は蒸気タービ
ン4aから抽気された蒸気と混合され、水蒸気改質反応器
9aに導かれる。燃料蒸発器10aを出た残りの燃料は、水
蒸気改質反応器9aを出た燃料と混合され、分解反応器9b
で分解され、燃焼器に導かれる。 第1図に示す改質/分解複合原動装置の性能を、コン
ピユーターシミユレーシヨンを使つて試算すると、第4
図の従来のものに比べて、触媒量で30%の減少、発電効
率で0.2%の向上となる。 具体的には分解反応器9bとして白金触媒19m3とニツケ
ル−銅系触媒19m3とを充填したものを用い、水蒸気改質
反応器として銅−亜鉛系触媒19m3を充填したものを用
い、505℃の排熱をボイラ3に導入する第1図に示す複
合原動装置によりコンピユーターシミユレーシヨンを用
いて試験を行つた。 すなわち、メタノール(410kmol/h)とスチーム(410
kmol/h)の混合気を265℃で供給し、水蒸気改質反応器9
aで水蒸気改質反応を行わせ、1440kmol/hのガス(H26
1.3%、CO3.1%、CO218.3%、CH3OH7.1%、H2O10.2%
のガス組成)を得た。このガスに燃料予熱器8aから1360
kmol/hのメタノールを265℃で供給し、分解反応器9bで
分解反応を行わせたところ、4700kmol/hのガス(H261.
7%、CO19.0%、CO28.0%、CH3OH9.7%、H2O1.2%)を
得た。メタノール転化率は90%であつた。また、このガ
スを燃焼器1で燃焼させてガスタービン2aを回し、その
排熱の一部を排熱ボイラ3で回収し、蒸気発生器3cで発
生させた蒸気によりスチームタービン4aを回すと、ガス
タービン2a出力は121600kw、スチームタービン4a出力は
37400kwとなり、発電効率47.2%が得られた。 一方、第4図の分解反応器9bとして白金触媒とニツケ
ル−銅系触媒とを充填したものを用いた複合原動装置を
コンピユーターシミユレーシヨンにより試験を行うと、
メタノール(1770kmol/h)とスチーム(170kmol/h)を
投入し、メタノール転化率90%を達成するには白金触媒
27m3と、ニツケル−銅系触媒54m3が必要であつた。ま
た、前記と同様の計算を行うと、ガスタービン2a出力は
121920kw、スチームタービン4a出力は35200kwとなり、
発電効率は46.6%となつた。 また、第2図、第3図に示す改質/分解複合原動装置
についても、第1図のものと同様な性能を得ることがで
きる。 〔発明の効果〕 以上、実施例から明らかなように、本発明の複合原動
装置を用いることにより、従来に比べて触媒量で30%の
減少すなわち反応器の小型化とコストの低減、および発
電効率で0.2%の向上を計ることができる。
Description: BACKGROUND OF THE INVENTION The present invention relates to a composite power plant that utilizes reforming and decomposition of methanol to improve efficiency, reduce costs, and downsize a plant. [Prior art] Conventionally, when using sensible heat of exhaust gas from engines, gas turbines and the like as a heat source, and performing decomposition or steam reforming using methanol or a mixture of methanol and water as a raw material,
Methanol decomposition reaction using a specific catalyst,
Alternatively, only the methanol steam reforming reaction was performed. The methanol decomposition reaction is as shown in the following equations (1) and (2). CH 3 OH → CO + 2H 2 ΔH 25 ° C. = 21.7 kcal / mol (1) CH 3 OH + nH 2 O → (2 + n) H 2 + (1-n) CO + nCO 2 (2) where 0 <n <1 and The methanol steam reforming reaction is as shown in the following equation (3). CH 3 OH + H 2 O → CO 2 + 3H 2 ΔH 25 ° C. = 11.8 kcl / mol (3) [Problems to be Solved by the Invention] Conventionally, in a catalyst layer of a reactor, heat is transferred as the reaction proceeds. And at the same time the temperature level of the exhaust gas is reduced. This lowers the temperature of the catalyst layer with the decrease in temperature, and causes a drastic decrease in the reaction rate. FIG. 4 shows a schematic configuration of a conventional composite driving apparatus. The supplied fuel a mainly composed of methanol is preheated in a fuel preheater 8a, vaporized in a fuel evaporator 10a, decomposed in a methanol decomposition reactor 9b, burned together with the combustion air b, and is burned by the combustion energy. The gas turbine power generation system 2 is driven. The gas turbine power generation system 2 includes a gas turbine 2a, a generator 2b driven by the turbine output, and an air compressor 2c for the combustion air b to obtain a power generation output. Then, the high-temperature exhaust gas c of the gas turbine power generation system 2 is discharged through the exhaust main pipe 3a and the exhaust branch pipe 7 of the exhaust heat boiler system 3. Inside the exhaust main pipe 3a, there is a feed water preheater 3b for boiler steam.
And a steam generator 3c, and a fuel preheater 8a, a fuel evaporator 10a, and a methanol decomposition reactor 9 in the exhaust branch pipe 7.
b is provided to recover the thermal energy of the exhaust gas c to generate steam and decompose the fuel. The steam generated here is supplied to the steam turbine 4a of the steam turbine power generation system 4, and the generator 4b is driven to obtain a turbine output. The steam after driving the steam turbine 4a is supplied to a condenser 5, cooled and liquefied by cooling water d, and then supplied to a water supply preheater 3b via a cooling water pump 6. Further steam generator 3c
To produce high-pressure steam. On the other hand, the fuel decomposed in the decomposition reactor 9b is introduced into the combustor 1 and burns together with the combustion air b. However, since the temperature of the exhaust gas is not uniform in the exhaust branch pipe 7 and has a large temperature gradient, the temperature of the exhaust gas also has a large temperature gradient in the decomposition reactor 9b. In addition, there is a problem that the reaction is extremely slow in a low temperature portion near the exhaust gas outlet, and sufficient performance cannot be obtained. An object of the present invention is to solve the above-mentioned problems and to provide a combined driving apparatus capable of operating with high efficiency for a long time. [Means for Solving the Problems] The present inventors have conducted intensive experiments to solve the above problems,
As a result of repeated investigations, a methanol decomposition reactor was arranged on the high temperature side and a methanol steam reforming reactor was arranged on the low temperature side in this order according to the temperature gradient of the exhaust gas (heat medium), and a composite utilizing methanol decomposition and reforming It has been found that the prime mover can recover heat more effectively from exhaust heat and promote the reaction at a temperature suitable for the catalyst, compared to the conventional combined prime mover using one type of reactor. . The present invention is based on the above findings, and when recovering a part of the exhaust heat energy of a gas turbine through a heat medium,
It is an object of the present invention to provide a composite power plant having a reactor arranged in order from a high-temperature side methanol decomposition catalyst to a low-temperature side methanol steam reforming. That is, the present invention divides the exhaust heat boiler, which uses gas turbine exhaust gas as a heat source, into an exhaust main pipe and an exhaust branch pipe, and supplies the exhaust main pipe with a steam generator and a water supply from the inlet side of the gas turbine exhaust gas to the outlet side. A preheater is sequentially provided, and a methanol decomposition reactor, a methanol steam reforming reactor, and a preheater for a raw material gas supplied to these reactors are provided in the exhaust branch pipe from the inlet side of the gas turbine exhaust gas to the outlet side thereof. And a line for guiding steam generated by the steam generator to a steam turbine, and a line for guiding cracked gas generated by the methanol decomposition reactor to a combustor of the gas turbine. The present invention relates to a composite power plant utilizing the reforming and decomposition of methanol. [Operation] In the composite prime mover of the present invention, heat can be effectively recovered from exhaust heat, so that the reactor itself can be reduced in size, and the output of the exhaust gas boiler and the steam turbine can be increased. Can be improved. Further, the reaction can proceed at a speed suitable for the catalyst. [Examples] Figs. 1 to 3 show a reforming reactor on a low temperature side according to the present invention.
1 shows an example of the configuration of a combined reforming / decomposition motor having a decomposition reactor on the high temperature side. In FIGS. 1 to 3, the same parts as those in FIG. 4 are denoted by the same reference numerals. In the example of FIG. 1, the fuel f for steam reforming is a mixture of methanol and water, which is preheated by a fuel preheater 8b and vaporized by a fuel evaporator 10a.
It is steam reformed in a. On the other hand, the decomposition fuel a mainly composed of methanol is preheated in the fuel preheater 8a, vaporized in the fuel evaporator 10a, mixed with the steam reformed fuel, guided to the decomposition reactor 9b, and decomposed. After that, it is introduced into the combustor 1. In the example of FIG. 2, the fuel a is methanol and the fuel preheater
8a, after passing through the fuel evaporator 10a, a part of it passes through the steam generator 3
c is mixed with a part of the steam from the steam reforming reactor 9a
It is led to. The remaining fuel exiting the fuel evaporator 10a is mixed with the fuel exiting the steam reforming reactor 9a, decomposed in the decomposition reactor 9b, and led to the combustor. In the example of FIG. 3, the fuel a is methanol, and the fuel preheater
8a, after passing through the fuel evaporator 10a, a part of it is mixed with the steam extracted from the steam turbine 4a,
Guided to 9a. The remaining fuel exiting the fuel evaporator 10a is mixed with the fuel exiting the steam reforming reactor 9a to form a decomposition reactor 9b.
Is decomposed in and is led to the combustor. The performance of the combined reforming / decomposition motor shown in FIG. 1 is estimated using a computer simulation.
Compared to the conventional one in the figure, the amount of catalyst is reduced by 30% and the power generation efficiency is improved by 0.2%. Specifically the platinum catalyst 19 m 3 as a decomposition reactor 9b is nickel - used after filling a copper-based catalyst 19 m 3, as the steam reforming reactor copper - used as filled with zinc catalyst 19 m 3, 505 A test was conducted using a computer simulation by a composite driving apparatus shown in FIG. That is, methanol (410kmol / h) and steam (410
kmol / h) at 265 ° C and a steam reforming reactor 9
a to perform a steam reforming reaction, and the gas (H 2 6
1.3%, CO 3.1%, CO 2 18.3%, CH 3 OH 7.1%, H 2 O 10.2%
Gas composition). This gas has a fuel preheater 8a-1360
kmol / h of methanol was supplied at 265 ° C. and the decomposition reaction was carried out in the decomposition reactor 9b. As a result, 4700 kmol / h of gas (H 2 61.
7%, CO 19.0%, CO 2 8.0%, CH 3 OH 9.7%, H 2 O 1.2%). The methanol conversion was 90%. Further, when this gas is burned in the combustor 1 to turn the gas turbine 2a, a part of the waste heat is recovered in the waste heat boiler 3, and the steam turbine 4a is turned by the steam generated in the steam generator 3c. Gas turbine 2a output is 121600kw, steam turbine 4a output
It became 37400kw, and the power generation efficiency was 47.2%. On the other hand, when a composite prime mover using a catalyst packed with a platinum catalyst and a nickel-copper catalyst as the decomposition reactor 9b in FIG. 4 was tested by computer simulation,
Injecting methanol (1770kmol / h) and steam (170kmol / h) to achieve 90% methanol conversion, platinum catalyst
27 m 3 and 54 m 3 of a nickel-copper catalyst were required. Further, when the same calculation as above is performed, the output of the gas turbine 2a becomes
121920kw, steam turbine 4a output is 35200kw,
The power generation efficiency was 46.6%. 2 and 3, the same performance as that of FIG. 1 can be obtained. [Effects of the Invention] As is apparent from the above examples, the use of the composite prime mover of the present invention reduces the amount of catalyst by 30% as compared with the conventional case, that is, reduces the size and cost of the reactor and reduces power generation. Efficiency can be improved by 0.2%.

【図面の簡単な説明】 第1〜3図は本発明の実施例を示す概要図、第4図は従
来技術を説明するための概要図である。 2a……ガスタービン、2b……発電機、3a……排気本管、
3b……給水予熱器、3c……蒸気発生器、4a……蒸気ター
ビン、4b……発電機、7……排気分岐管、8a、8b……燃
料予熱器、9a……メタノール水蒸気改質反応器、9b……
メタノール分解反応器、10a,10b……燃料蒸発器
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are schematic diagrams showing an embodiment of the present invention, and FIG. 4 is a schematic diagram for explaining a conventional technique. 2a …… Gas turbine, 2b …… Generator, 3a …… Exhaust main pipe,
3b: Feed water preheater, 3c: Steam generator, 4a: Steam turbine, 4b: Generator, 7: Exhaust branch pipe, 8a, 8b: Fuel preheater, 9a: Methanol steam reforming reaction Container, 9b ……
Methanol decomposition reactor, 10a, 10b …… Fuel evaporator

Claims (1)

(57)【特許請求の範囲】 1.ガスタービン排ガスを熱源とする排熱ボイラ内を排
気本管と排気分岐管とに分け、排気本管に上記ガスター
ビン排ガスの入側から出側に向つて蒸気発生器及び給水
予熱器を順次連通して設け、排気分岐管に上記ガスター
ビン排ガスの入側から出側に向つてメタノール分解反応
器、メタノール水蒸気改質反応器及びこれら反応器へ供
給される原料ガスの予熱器を順次連通して設け、上記蒸
気発生器で発生する蒸気を蒸気タービンへ導くライン
と、上記メタノール分解反応器で生成する分解ガスを上
記ガスタービンの燃焼器へ導くラインとを設けることを
特徴とするメタノールの改質及び分解を利用する複合原
動装置。 2.原料ガス予熱器をメタノール水蒸気改質用原料の予
熱器とメタノール分解用原料の予熱器とに分け、メタノ
ール水蒸気改質用原料予熱器とメタノール水蒸気改質反
応器とを連結するラインに、メタノール分解用原料予熱
器出口ガスラインを連結することを特徴とする特許請求
の範囲(1)に記載の複合原動装置。 3.原料ガス予熱器出口を、メタノール水蒸気改質反応
器入口、及びメタノール水蒸気改質反応器出口とメタノ
ール分解反応器入口と連結するラインに、それぞれ連結
し、上記原料ガス予熱器出口とメタノール水蒸気改質反
応器入口とを連結するラインに、蒸気発生器出口と蒸気
タービンとを連結する蒸気ラインから分岐するラインを
連結することを特徴とする特許請求の範囲(1)に記載
の複合原動装置。 4.原料ガス予熱器出口を、メタノール水蒸気改質反応
器入口、及びメタノール水蒸気改質反応器出口とメタノ
ール分解反応器入口と連結するラインに、それぞれ連結
し、上記原料ガス予熱器出口とメタノール水蒸気改質反
応器入口とを連結するラインに蒸気タービンから抽気す
る蒸気を導入するラインを連結することを特徴とする特
許請求の範囲(1)に記載の複合原動装置。
(57) [Claims] The exhaust heat boiler using gas turbine exhaust gas as a heat source is divided into an exhaust main pipe and an exhaust branch pipe, and a steam generator and a feed water preheater are sequentially connected to the exhaust main pipe from the inlet side to the outlet side of the gas turbine exhaust gas. A methanol decomposition reactor, a methanol steam reforming reactor and a preheater for the raw material gas supplied to these reactors are sequentially communicated from the inlet side to the outlet side of the gas turbine exhaust gas to the exhaust branch pipe. A line for guiding steam generated by the steam generator to a steam turbine, and a line for guiding cracked gas generated by the methanol decomposition reactor to a combustor of the gas turbine. Combined prime mover that uses and disassembly. 2. The raw material gas preheater is divided into a preheater for the methanol steam reforming raw material and a preheater for the methanol cracking raw material, and the line connecting the methanol steam reforming raw material preheater and the methanol steam reforming reactor is connected to the methanol cracking line. The composite prime mover according to claim 1, wherein an exhaust gas line for a raw material preheater is connected. 3. The raw material gas preheater outlet is connected to a methanol steam reforming reactor inlet, and a line connecting the methanol steam reforming reactor outlet and the methanol decomposition reactor inlet, respectively. The combined prime mover according to claim 1, wherein a line branched from a steam line connecting the steam generator outlet and the steam turbine is connected to a line connecting the reactor inlet. 4. The raw material gas preheater outlet is connected to a methanol steam reforming reactor inlet, and a line connecting the methanol steam reforming reactor outlet and the methanol decomposition reactor inlet, respectively. The combined prime mover according to claim (1), wherein a line for introducing steam extracted from the steam turbine is connected to a line connecting to the reactor inlet.
JP61099476A 1986-05-01 1986-05-01 Combined prime mover Expired - Fee Related JP2706235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099476A JP2706235B2 (en) 1986-05-01 1986-05-01 Combined prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099476A JP2706235B2 (en) 1986-05-01 1986-05-01 Combined prime mover

Publications (2)

Publication Number Publication Date
JPS62258107A JPS62258107A (en) 1987-11-10
JP2706235B2 true JP2706235B2 (en) 1998-01-28

Family

ID=14248365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099476A Expired - Fee Related JP2706235B2 (en) 1986-05-01 1986-05-01 Combined prime mover

Country Status (1)

Country Link
JP (1) JP2706235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8166766B2 (en) 2010-09-23 2012-05-01 General Electric Company System and method to generate electricity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010779B1 (en) * 1978-03-04 1981-11-04 Metallgesellschaft Ag Process for preparing town gas from methanol
JPS59105909A (en) * 1982-12-09 1984-06-19 Mitsubishi Heavy Ind Ltd Compound electric power generating system by fuel cracking

Also Published As

Publication number Publication date
JPS62258107A (en) 1987-11-10

Similar Documents

Publication Publication Date Title
US5927063A (en) High efficiency reformed methanol gas turbine power plants
RU2467187C2 (en) Method of operating gas turbine unit
MX9805335A (en) Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid.
RU2561755C2 (en) Operating method and system of gas-turbine plant
US20050178125A1 (en) Method for the utilization of energy from cyclic thermochemical processes to produce mechanical energy and plant for this purpose
CN101540410B (en) Natural gas hydrogen production and proton-exchange film fuel cell integrated generation method and device thereof
JPH1068329A (en) Manufacture of synthesis gas and energy in combination
CN109181776B (en) Coal-based poly-generation system and method for integrated fuel cell power generation
EP2905433B1 (en) Method and system for producing liquid fuel and generating electric power
JPH01501877A (en) A method of tertiary recovery of oil from deep holes and use of the generated crude gas
JP2706235B2 (en) Combined prime mover
CN105745402B (en) The method that energy carrier in cyclic process by reclaiming heat engine carries out energy conversion
JP2000204965A (en) Gas turbine generation system using methane gas
CN102559269A (en) Method for combining coal gasification process and vapor turbine power generation process
JP3786759B2 (en) Gas generator
CN107829825A (en) The gas turbine engine systems of coproduction water and the method for gas turbine coproduction water
JP7474013B1 (en) E-fuel production system with power generation facility and e-fuel production method with power generation facility
RU2198156C2 (en) Method for production of liquid hydrocarbons via catalytic processing of hydrocarbon gases and installation
RU2626291C2 (en) Energy conversion method
RU43917U1 (en) GAS TURBINE INSTALLATION WITH THERMOCHEMICAL REACTOR AND VAPOR INJECTION
JPH04244035A (en) Production of methanol using nuclear heat
RU2050443C1 (en) Combined steam-gas power plant
US3394050A (en) Method of operating a neutronic reactor for reforming gas mixtures and producing heat for multi-purposes
JPH02206689A (en) Combustion process and combustion system substantially free from carbon dioxide in effluent
JP2002050387A (en) Energy generating device from solid organic substance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees