JP2702173B2 - Method for producing titanium disulfide - Google Patents
Method for producing titanium disulfideInfo
- Publication number
- JP2702173B2 JP2702173B2 JP63234522A JP23452288A JP2702173B2 JP 2702173 B2 JP2702173 B2 JP 2702173B2 JP 63234522 A JP63234522 A JP 63234522A JP 23452288 A JP23452288 A JP 23452288A JP 2702173 B2 JP2702173 B2 JP 2702173B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- sulfur
- disulfide
- titanium disulfide
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、リチウム二次電池用正極活物質である二
硫化チタンの製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing titanium disulfide, which is a positive electrode active material for a lithium secondary battery.
近年、各種電気機器が小型化されると共に、その主電
源や非常用電源として使用される電池の小型大容量化が
必要となっている。現在、各種電池の中で正極に二硫化
チタン(TiS2),負極にリチウム(Li)を使用した電池
が最も小型化に適した実用的な電池だと考えられている
が、二硫化チタンは天然に存在しないため合成に頼らざ
るを得ない。2. Description of the Related Art In recent years, various types of electric devices have been miniaturized, and batteries used as main power supplies and emergency power supplies have been required to be smaller and have higher capacities. At present, among various batteries, batteries using titanium disulfide (TiS 2 ) for the positive electrode and lithium (Li) for the negative electrode are considered to be the most practical batteries suitable for miniaturization. Because it does not exist in nature, you have to rely on synthesis.
従来の二硫化チタンの合成方法には: TiCl4+2H2S→TiS2+4HClで示される気相反応 Ti+S2→TiS2で示される固気相反応 TiS3→TiS2+Sで示される不均化反応 の何れかが用いられている。Conventional methods for synthesizing titanium disulfide include: a gas phase reaction represented by TiCl 4 + 2H 2 S → TiS 2 + 4HCl; a solid gas phase reaction represented by Ti + S 2 → TiS 2; a disproportionation represented by TiS 3 → TiS 2 + S Any of the reactions has been used.
従来の二硫化チタンの合成方法のうち、気相法は反応
速度が速く容易に二硫化チタンが得られるが、製品は電
極への充填率の悪い花弁状結晶となり、また、化学量論
的組成にすることが難しい。Among the conventional methods for synthesizing titanium disulfide, the vapor phase method has a high reaction rate and easily obtains titanium disulfide, but the product is a petal-like crystal with a poor filling rate to the electrode, and has a stoichiometric composition. Difficult to do.
一方、固気相反応及び不均化反応を利用した方法で
は、硫黄蒸気圧を微妙に制御することにより六角板状結
晶で化学量論的組成に近い極めて良好な二硫化チタンを
得ることが可能である。しかし、これらの方法では、チ
タンと硫黄を反応させる過程で急な昇温を行うと急激な
反応の進行による内部圧力の急上昇で爆発を生ずるおそ
れがある。従って、事故を防ぐためには徐々に昇温しな
ければならず、長時間(約1週間)の加熱を必要とする
ため生産性が悪く、しかも材料を真空封入するために高
価な石英アンプル管を用いなければならない。On the other hand, in the method using solid-gas phase reaction and disproportionation reaction, it is possible to obtain extremely good titanium disulfide with a stoichiometric composition close to the stoichiometric composition by finely controlling the sulfur vapor pressure. It is. However, in these methods, if the temperature is rapidly increased in the process of reacting titanium and sulfur, an explosion may occur due to a rapid increase in internal pressure due to a rapid reaction. Therefore, in order to prevent an accident, the temperature must be gradually increased, and heating for a long time (about one week) is required, so that productivity is poor, and an expensive quartz ampoule tube is used for vacuum-sealing the material. Must be used.
この発明は、リチウム二次電池用正極活物質として良
好な電池特性を得ることのできる、六角板状結晶で化学
量論的組成に近い良質の二硫化チタンを、短時間に低コ
ストで合成する方法を提供することを目的とする。The present invention synthesizes good-quality titanium disulfide having a stoichiometric composition close to a stoichiometric composition with hexagonal plate-like crystals, which can obtain good battery characteristics as a positive electrode active material for a lithium secondary battery, in a short time and at low cost. The aim is to provide a method.
この出願の特定発明では、金属チタンを、アルカリ金
属ハロゲン化物を微量に添加した硫黄の蒸気下で加熱反
応させることにより、関連発明では、金属チタンを、ハ
ロゲンガスを微量に混合した硫化水素気流中で加熱反応
させることにより、上記課題を解決する。In the specific invention of this application, the metal titanium is heated and reacted under the vapor of sulfur to which a small amount of an alkali metal halide is added, and in the related invention, the metal titanium is mixed in a hydrogen sulfide gas stream containing a small amount of a halogen gas. The above-mentioned problem is solved by causing a heating reaction at.
上記の方法により、チタンは硫黄と反応し、チタン表
面に二硫化チタンが生成される。アルカリ金属ハロゲン
化物は、加熱した蒸留硫黄中で分解され、例えば次式の
ようにアルカリ金属硫化物とハロゲンガスを生成する。According to the above method, titanium reacts with sulfur to form titanium disulfide on the titanium surface. The alkali metal halide is decomposed in the heated distilled sulfur to generate an alkali metal sulfide and a halogen gas, for example, as in the following formula.
2TiCl+XS→Li2SX+Cl2 チタンがハロゲンガスを微量に含んだ硫黄又は硫化水
素の雰囲気下で加熱されると、攻撃的アニオンであるCl
-,Br-,I-がチタン表面に形成された緻密なチタン硫化物
皮膜を破壊し、皮膜内へ侵入する。そこで下地金属のチ
タンは再び露出され硫化が促進される。2TiCl + XS → Li 2 S X + Cl 2 When titanium is heated in an atmosphere of sulfur or hydrogen sulfide containing a slight amount of halogen gas, Cl is an aggressive anion.
-, Br -, I - are destroyed the dense titanium sulfide film formed on the titanium surface, penetrates into the film. Then, the underlying metal titanium is exposed again, and sulfuration is promoted.
合成反応完了後のハロゲンガスは、硫黄ハロゲン化物
となり凝集する。二硫化チタン中に残留するハロゲンイ
オンはきわめて微量であり、電池特性に与える影響は全
くない。The halogen gas after the completion of the synthesis reaction becomes a sulfur halide and aggregates. The amount of halogen ions remaining in titanium disulfide is extremely small and has no effect on battery characteristics.
第1図は特定発明の実施例の二硫化チタンの製造方法
に使用される装置の説明図である。FIG. 1 is an explanatory view of an apparatus used in a method for producing titanium disulfide according to an embodiment of the present invention.
この製造装置は、石英管1を挿入するための炉心管2
と、この炉心管2上に設けられたチタン加熱用電気炉3
と、硫黄蒸気圧制御用電気炉4とで構成されている。石
英管1は、チタン装入部5,硫黄装入部6,及びチタン装入
部5と硫黄装入部6とを連絡するガス通路7とからな
り、チタン装入部5にはスポンジチタン,チタン粉末,
チタン板等の金属チタン材料8を、硫黄装入部6には蒸
留硫黄9をそれぞれ所定位置に入れ真空封入する。ここ
で、蒸留硫黄9には微量のアルカリ金属ハロゲン化物が
添加される。アルカリ金属ハロゲン化物はLiClが最も望
ましいが、LiBr,LiI,KCl,KBr,KI,NaCl,NaBr,NaI等も使
用可能である。This manufacturing apparatus includes a furnace tube 2 for inserting a quartz tube 1.
And an electric furnace 3 for heating titanium provided on the furnace tube 2.
And an electric furnace 4 for controlling sulfur vapor pressure. The quartz tube 1 includes a titanium charging section 5, a sulfur charging section 6, and a gas passage 7 connecting the titanium charging section 5 and the sulfur charging section 6. The titanium charging section 5 includes sponge titanium, Titanium powder,
A metal titanium material 8 such as a titanium plate and a distilled sulfur 9 are put in predetermined positions in the sulfur charging section 6 and sealed in a vacuum. Here, a small amount of an alkali metal halide is added to the distilled sulfur 9. The most preferred alkali metal halide is LiCl, but LiBr, LiI, KCl, KBr, KI, NaCl, NaBr, NaI, etc. can also be used.
金属チタン材料8の加熱温度は500℃〜1200℃の範囲
とするが、結晶成長を防止するためには、850℃以下が
良好である。The heating temperature of the metal titanium material 8 is in the range of 500 ° C. to 1200 ° C., but preferably 850 ° C. or less in order to prevent crystal growth.
硫黄蒸気圧は0.1〜2700Torrが望ましく、この時添加
するアルカリ金属ハロゲン化物は、化学輸送により二硫
化チタン結晶が低温部に析出するのを防ぐため、0.1mg
〜1000mgの範囲内とすることが望ましい。The sulfur vapor pressure is desirably 0.1 to 2700 Torr, and the alkali metal halide added at this time is 0.1 mg in order to prevent titanium disulfide crystals from being precipitated in a low temperature part by chemical transport.
It is desirable to be within the range of ~ 1000mg.
実施例1 第1図の装置を用いて50×30×0.08mmのチタン板と塩
化リチウム11.4mgを混合した蒸留硫黄5gを内容積176ml
の石英管1の規定位置に設置し、チタン加熱用電気炉3
を800℃,硫黄蒸気圧制御用電気炉4を445℃,即ち硫黄
蒸気圧を760Torrに設定した。この時、石英管1内に発
生するCl2の分圧は約31Torrである。チタン板は12時間
加熱硫化した後冷却した。Example 1 Using the apparatus shown in FIG. 1, 5 g of distilled sulfur obtained by mixing a titanium plate of 50 × 30 × 0.08 mm and 11.4 mg of lithium chloride was used in an inner volume of 176 ml.
Installed in a specified position of the quartz tube 1
Was set at 800 ° C., and the electric furnace 4 for sulfur vapor pressure control was set at 445 ° C., that is, the sulfur vapor pressure was set at 760 Torr. At this time, the partial pressure of Cl 2 generated in the quartz tube 1 is about 31 Torr. The titanium plate was heated and sulfurized for 12 hours and then cooled.
得られたチタン硫化物層は、第2図に示すように中心
より350μmの厚さに形成され、塩化リチウムを添加し
ない時の6倍の速さで硫化が進行し、中心部に残留チタ
ンは認められなかった。また、X線回折の結果このチタ
ン硫化物はTiS2であることが確認された。The resulting titanium sulfide layer is formed to a thickness of 350 μm from the center as shown in FIG. 2, and sulfuration proceeds at a speed six times faster than when lithium chloride is not added. I was not able to admit. X-ray diffraction confirmed that the titanium sulfide was TiS 2 .
次にこの二硫化チタンにカーボンブラックとテトラフ
ルオロエチレン粉末を混合し、この混合物の40mgを10mm
×10mmのSUS網に圧粉し正極とした。正極は、ポリプロ
ピレン製セパレータとSUS網に圧着したLi負極を重ね合
わせ、2−メチルテトラヒドロフランに電解質であるLi
BF4を溶解した電解液に浸漬することによってLi二次電
池を構成した。この電池の1mA/cm2で放電したときの放
電特性は、第3図に示すように分極が小さく、平均2.2V
が得られ、Li電池用正極として何ら支障のない事が確か
められた。Next, carbon black and tetrafluoroethylene powder were mixed with the titanium disulfide, and 40 mg of this mixture was added to 10 mm
A 10 mm SUS net was pressed into a positive electrode. For the positive electrode, a polypropylene separator and a Li negative electrode press-bonded to a SUS net are superimposed, and Li
A Li secondary battery was constructed by immersion in an electrolyte solution in which BF 4 was dissolved. The discharge characteristics of this battery when discharged at 1 mA / cm 2 were as shown in FIG.
It was confirmed that there was no problem as a positive electrode for a Li battery.
実施例2 第1図の装置を用いて50×30×0.15mmのチタン板と塩
化リチウム11.4mgを混合した蒸留硫黄5gを内容積129ml
の石英管1の規定位置に設置し、チタン加熱用電気炉3
を800℃,硫黄蒸気圧を760Torrに設定した。この時、石
英管1内に発生するCl2の分圧は約41Torrである。チタ
ン板は12時間加熱硫化した後冷却した。得られたチタン
硫化物層は、第2図に示すように中心より780μmの厚
さに形成され、塩化リチウムを添加しない時の16倍の速
さで硫化が進行し、未反応チタンは認められなかった。
また、X線回折の結果このチタン硫化物はTiS2単一層で
あることが確認された。Example 2 Using the apparatus shown in FIG. 1, 5 g of distilled sulfur obtained by mixing a titanium plate of 50 × 30 × 0.15 mm and 11.4 mg of lithium chloride was used in an inner volume of 129 ml.
Installed in a specified position of the quartz tube 1
Was set to 800 ° C. and the sulfur vapor pressure was set to 760 Torr. At this time, the partial pressure of Cl 2 generated in the quartz tube 1 is about 41 Torr. The titanium plate was heated and sulfurized for 12 hours and then cooled. The resulting titanium sulfide layer was formed at a thickness of 780 μm from the center as shown in FIG. 2, and the sulfuration proceeded 16 times faster than when lithium chloride was not added. Did not.
X-ray diffraction confirmed that the titanium sulfide was a single layer of TiS 2 .
さらに、実施例1と同様の電池を作成したところ、全
く同一の放電特性が得られた。Furthermore, when a battery similar to that of Example 1 was prepared, completely the same discharge characteristics were obtained.
一方、硫化水素気流中で加熱硫化を行う関連発明の場
合には、0.1〜2000Torrの硫化水素雰囲気にハロゲンガ
スを0.01〜2000Torrの範囲で混合することが望ましい。
ハロゲンガスは室温で気体である塩素が好ましいが他の
ものでもよい。On the other hand, in the case of a related invention in which heating and sulfuration is performed in a hydrogen sulfide gas stream, it is desirable to mix a halogen gas in a hydrogen sulfide atmosphere of 0.1 to 2000 Torr in a range of 0.01 to 2000 Torr.
The halogen gas is preferably chlorine, which is a gas at room temperature, but other gases may be used.
実施例3 50×30×0.05mmのチタン板を硫化水素ガス分圧742.5T
orrとClガス分圧17.5Torrの混合ガス250ml/min雰囲気下
800℃で12時間加熱硫化を行った後、冷却した。得られ
たチタン硫化物層は、第2図に示すように中心より96μ
mの厚さに形成され塩素ガスを添加しない時の約2倍の
速さで硫化が進行し、未反応チタンは認められなかっ
た。また、X線回折の結果このチタン硫化物はTiS2単一
層であることが確認された。Example 3 A 50 × 30 × 0.05 mm titanium plate was subjected to hydrogen sulfide gas partial pressure of 742.5 T
In a mixed gas of orr and Cl gas at a partial pressure of 17.5 Torr, 250 ml / min
After heating at 800 ° C. for 12 hours, the mixture was cooled. The obtained titanium sulfide layer was 96 μm from the center as shown in FIG.
The sulfuration proceeded about twice as fast as when no chlorine gas was added, and no unreacted titanium was observed. X-ray diffraction confirmed that the titanium sulfide was a single layer of TiS 2 .
この発明の二硫化チタンの製造方法によれば、リチウ
ム二次電池用正極活物質として最も良好な電池特性を得
ることのできる、六角板状結晶で化学量論的組成に近い
良質の二硫化チタンを、短時間で合成でき、生産性が向
上しコスト低減が可能となる。According to the method for producing titanium disulfide of the present invention, good quality titanium disulfide having a hexagonal plate-like crystal and close to the stoichiometric composition can obtain the best battery characteristics as a positive electrode active material for lithium secondary batteries. Can be synthesized in a short time, productivity can be improved, and cost can be reduced.
第1図は特定発明の実施例の二硫化チタンの製造方法に
使用される装置の説明図、第2図は反応ガス中のCl2濃
度とTiS2層厚さの関係を示すグラフ、第3図はTiS2電極
の放電特性を示すグラフである。 図中、1は石英管、2は炉心管、3はチタン加熱用電気
炉、4は硫黄蒸気圧制御用電気炉、5はチタン装入部、
6は硫黄装入部、7はガス通路、8は金属チタン材料、
9は蒸留硫黄である。FIG. 1 is an explanatory view of an apparatus used for a method for producing titanium disulfide according to an embodiment of the specific invention. FIG. 2 is a graph showing the relationship between the Cl 2 concentration in the reaction gas and the thickness of the TiS 2 layer. The figure is a graph showing the discharge characteristics of the TiS 2 electrode. In the figure, 1 is a quartz tube, 2 is a furnace tube, 3 is an electric furnace for heating titanium, 4 is an electric furnace for controlling sulfur vapor pressure, 5 is a titanium charging section,
6 is a sulfur charging section, 7 is a gas passage, 8 is a metal titanium material,
9 is distilled sulfur.
Claims (2)
を微量に添加した硫黄の蒸気下で加熱反応させることを
特徴とする二硫化チタンの製造方法。1. A method for producing titanium disulfide, wherein a metal titanium is heated and reacted under a vapor of sulfur to which a small amount of an alkali metal halide is added.
した硫化水素気流中で加熱反応させることを特徴とする
二硫化チタンの製造方法。2. A method for producing titanium disulfide, wherein metal titanium is heated and reacted in a hydrogen sulfide gas stream containing a small amount of halogen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63234522A JP2702173B2 (en) | 1988-09-19 | 1988-09-19 | Method for producing titanium disulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63234522A JP2702173B2 (en) | 1988-09-19 | 1988-09-19 | Method for producing titanium disulfide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0283215A JPH0283215A (en) | 1990-03-23 |
JP2702173B2 true JP2702173B2 (en) | 1998-01-21 |
Family
ID=16972345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63234522A Expired - Fee Related JP2702173B2 (en) | 1988-09-19 | 1988-09-19 | Method for producing titanium disulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2702173B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100614680B1 (en) * | 2004-06-07 | 2006-08-22 | 경상대학교산학협력단 | Hybrid metal-metal sulfide materials for current collector and anode of battery |
CN103991900B (en) * | 2014-05-28 | 2015-11-04 | 南京理工大学 | A kind of preparation method of titanium disulfide nanometer sheet of high-purity and high-crystallinity |
-
1988
- 1988-09-19 JP JP63234522A patent/JP2702173B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0283215A (en) | 1990-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4007055A (en) | Preparation of stoichiometric titanium disulfide | |
JP2011184292A (en) | Method for preparing insertion compound of alkali metal, insertion compound of alkali metal, electrode active material, anode, battery and electrochromic device | |
JPS63902B2 (en) | ||
JP2003192327A (en) | Method of and device for producing metallic element- doped silicon oxide powder | |
JP2010100475A (en) | Method for producing lithium iron sulfide and method for producing lithium transition metal sulfide | |
EP1341724B1 (en) | Synthesis of lithium transition metal sulphides | |
JPH0733443A (en) | Lithium-containing metal-halogen oxide and its production | |
JPH0656413A (en) | Production of hexafluorophosphate salt | |
JP3101709B2 (en) | Method for producing lithium manganese oxide thin film | |
JP2022549731A (en) | Sulfide solid electrolyte and its precursor II | |
JPS6024052B2 (en) | Industrial method for producing sulfides from transition metal halides | |
JPH09245828A (en) | Lithium ion conductive solid electrolyte and totally solid lithium secondary battery | |
JP2702173B2 (en) | Method for producing titanium disulfide | |
KR20230121102A (en) | Methods for synthesizing solid-state electrolytes, solid-state electrolyte compositions, and electrochemical cells | |
KR20220069204A (en) | Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof | |
JP3494344B2 (en) | Method for producing lithium hexafluorophosphate | |
JPH08241716A (en) | Manufacture of positive electrode active material for nonaqueous electrolytic secondary battery | |
US4965150A (en) | Preparation of VO2 (B) and a non-aqueous secondary cell using VO2 | |
WO2023008250A1 (en) | Method for producing lithium sulfide | |
JPS59173958A (en) | Manufacture of positive active material for organic electrolyte battery | |
Zahurak et al. | A method for controlled stoichiometry intercalation of alkali metals in layered metal dichalcogenide crystals | |
WO2024214614A1 (en) | Method for producing lithium sulfide | |
JPH0536410A (en) | Manufacture of positive electrode active material for organic electrolyte battery | |
JP2024088304A (en) | Production method of lithium sulfide | |
JP2000082474A (en) | Manufacture of electrolyte for lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |