JP2699725B2 - Transmission power control method for multiple transponders - Google Patents

Transmission power control method for multiple transponders

Info

Publication number
JP2699725B2
JP2699725B2 JP3299592A JP29959291A JP2699725B2 JP 2699725 B2 JP2699725 B2 JP 2699725B2 JP 3299592 A JP3299592 A JP 3299592A JP 29959291 A JP29959291 A JP 29959291A JP 2699725 B2 JP2699725 B2 JP 2699725B2
Authority
JP
Japan
Prior art keywords
transponder
transmission power
power control
correction value
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3299592A
Other languages
Japanese (ja)
Other versions
JPH05114878A (en
Inventor
宏志 風間
勉 坂井
修三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3299592A priority Critical patent/JP2699725B2/en
Publication of JPH05114878A publication Critical patent/JPH05114878A/en
Application granted granted Critical
Publication of JP2699725B2 publication Critical patent/JP2699725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複数トランスポンダを
用いた送信電力制御方法において、トランスポンダ毎の
動作特性差を地球局の送信側で補正し、各トランスポン
ダを最適点で動作させる技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission power control method using a plurality of transponders, in which a difference in operation characteristics between the transponders is corrected on the transmitting side of an earth station, and each transponder is operated at an optimum point. is there.

【0002】[0002]

【従来の技術】送信電力制御方法は、アップリンクにお
ける降雨減衰量を補償してトランスポンダへの到達電力
を降雨減衰量に依らず一定とするもので、干渉の軽減、
回線品質の改善に有効であることが知られている。従来
の送信電力制御方法をTDMA通信に適用した場合の構
成例を図5に示す。
2. Description of the Related Art A transmission power control method compensates rain attenuation in an uplink to make the power reaching a transponder constant irrespective of the rain attenuation.
It is known that it is effective for improving the line quality. FIG. 5 shows a configuration example when a conventional transmission power control method is applied to TDMA communication.

【0003】基準局1では、図6に示すような受信同期
トランスポンダ(T1)のキャリア(F1)を介した基
準局同期(R)バーストを用いた自局クローズドループ
により、減衰量検出部2でアップリンクにおける降雨減
衰量を推定し送信電力制御量3を算出し、該制御量に基
づき送信電力制御部4で自局送信電力を制御する。受信
同期トランスポンダ以外のトランスポンダ(T2〜T
3)についても受信同期トランスポンダと同様の送信電
力制御量3に基づき送信電力制御部4で自局送信電力を
制御する。
[0003] In the reference station 1, the attenuation detection unit 2 performs an uplink detection by a closed loop using the reference station synchronization (R) burst through the carrier (F 1) of the reception synchronization transponder (T 1) as shown in FIG. , The transmission power control amount 3 is calculated, and the transmission power control unit 4 controls the local station transmission power based on the control amount. Transponders other than the reception synchronous transponder (T2 to T
For 3), the transmission power control unit 4 controls the transmission power of the own station based on the transmission power control amount 3 similar to that of the reception synchronous transponder.

【0004】また、基準局1では、各従局の送出した従
局同期(N)バーストを監視し、減衰量検出部2でアッ
プリンクにおける降雨減衰量を推定し送信電力制御量3
を算出し、該制御量を制御回線で全従局へ送る。従局1
1では、制御回線で送られた制御量13に基づいて送信
電力制御部14で送信電力を制御する。自局の従局同期
(N)バーストを送出していないトランスポンダ(T2
〜T3)についても自局の従局同期(N)バーストを送
出しているトランスポンダと同様の送信電力制御量によ
り送信電力制御部14で送信電力を制御する。
The reference station 1 monitors the slave synchronization (N) burst transmitted from each slave station, and the attenuation detector 2 estimates the amount of rain attenuation in the uplink and controls the transmission power control amount 3
Is calculated, and the control amount is sent to all slave stations via the control line. Slave station 1
In 1, the transmission power is controlled by the transmission power control unit 14 based on the control amount 13 sent on the control line. A transponder (T2) that has not sent its slave synchronization (N) burst
Also for T3), the transmission power control unit 14 controls the transmission power by the same transmission power control amount as that of the transponder that transmits the slave synchronization (N) burst of the own station.

【0005】[0005]

【発明が解決しようとする課題】この方法では、送信電
力制御量を算出しているトランスポンダに対しては、最
適点で動作しているが、図7に示すように各トランスポ
ンダで動作特性が異なる場合には、他のトランスポンダ
では最適動作点とはならない欠点がある。図7で最適入
力Iと飽和入力Iとは、各トランスポンダ毎に相違
する。
In this method, the transponder for which the transmission power control amount is calculated operates at the optimum point, but as shown in FIG. 7, the operation characteristics are different for each transponder. In some cases, there is a disadvantage that other transponders do not provide the optimum operating point. The optimum input I o and the saturation input I s in Figure 7, different for each transponder.

【0006】本発明の目的は、複数トランスポンダを用
いた送信電力制御方法において、トランスポンダ間の動
作点の差を地球局の送信側で補正し、全てのトランスポ
ンダを最適動作点で動作させることである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a transmission power control method using a plurality of transponders, in which a difference between operating points between transponders is corrected on a transmitting side of an earth station, and all transponders are operated at optimal operating points. .

【0007】[0007]

【課題を解決するための手段】本発明の特徴は、複数地
球局から複数トランスポンダを介して複数のキャリアを
用いた通信を行う衛星通信方法で、アップリンクにおけ
る降雨減衰量を補償してトランスポンダへの到達電力を
降雨減衰量に依らず一定とする送信電力制御方法におい
て、各地球局で各トランスポンダの入出力特性を測定
し、特定のトランスポンダの動作点とそれに対応する他
のトランスポンダの動作点の差をトランスポンダ間補正
値として求め、前記特定トランスポンダを用いた自局の
送信電力制御量を求め、該送信電力制御量に前記トラン
スポンダ間補正値を加え、各トランスポンダの送信電力
制御値とし、トランスポンダ毎に地球局から衛星への送
信電力を制御する複数トランスポンダの送信電力制御方
法にある。
A feature of the present invention is a satellite communication method for performing communication using a plurality of carriers from a plurality of earth stations via a plurality of transponders, and compensating rain attenuation in an uplink to a transponder. In the transmission power control method that makes the arrival power of the transponder constant regardless of the amount of rain attenuation, the input / output characteristics of each transponder are measured at each earth station, and the operating point of the specific transponder and the operating point of the other transponder corresponding to it are determined. The difference is obtained as a transponder correction value, the transmission power control amount of the own station using the specific transponder is obtained, the transponder correction value is added to the transmission power control amount, and the transmission power control value of each transponder is obtained. And a transmission power control method for a plurality of transponders for controlling transmission power from an earth station to a satellite.

【0008】[0008]

【作用】本発明は、地球局で、各トランスポンダの動作
点を測定し、トランスポンダ毎の動作特性の差を地球局
の送信側で補正する。従来の技術に比べ、各トランスポ
ンダを最適点で動作させることが可能であり、干渉の軽
減、回線品質の改善ができる。
According to the present invention, the operating point of each transponder is measured at the earth station, and the difference in operating characteristics of each transponder is corrected on the transmitting side of the earth station. Compared with the conventional technology, each transponder can be operated at an optimum point, so that interference can be reduced and line quality can be improved.

【0009】[0009]

【実施例1】図1は、本発明の第1の実施例であり、次
のように動作する。
Embodiment 1 FIG. 1 shows a first embodiment of the present invention, and operates as follows.

【0010】晴天時にトランスポンダの動作特性を測定
する。動作点測定部6から送信電力制御部4への指示に
より送信電力を変化させ衛星20への入力電力を変化さ
せる。衛星20で折り返された自局クローズドループ信
号を受信し、受信信号の受信電力を動作点測定部6で測
定し、図2に示す様な送信電力対受信電力のトランスポ
ンダの動作特性(入出力特性)をとる。該動作特性よ
り、受信電力(即ち、トランスポンダの出力電力)の飽
和点から所定のバックオフをとり最適出力電力を決め、
該最適出力電力より最適入力電力(即ち、最適動作点)
を求める。送信電力を有効に使用しかつ歪等の回線品質
を所望値にするには、飽和出力から一定値だけ下げた点
での動作(バックオフ)が必要である。上記測定を全て
のトランスポンダについて行い、受信同期トランスポン
ダとの最適動作点の差をトランスポンダ間補正値とす
る。本補正値の較正は定期的に行う。
The operation characteristics of the transponder are measured in fine weather. The transmission power is changed by an instruction from the operating point measurement unit 6 to the transmission power control unit 4 to change the input power to the satellite 20. The own-station closed-loop signal returned by the satellite 20 is received, the received power of the received signal is measured by the operating point measuring unit 6, and the transmission power versus reception power transponder operating characteristics (input / output characteristics) as shown in FIG. Take). From the operating characteristics, a predetermined back-off is performed from the saturation point of the received power (that is, the output power of the transponder) to determine the optimum output power,
Optimal input power (ie, optimal operating point) over the optimal output power
Ask for. In order to effectively use the transmission power and set the line quality such as distortion to a desired value, an operation (back-off) at a point lower than the saturation output by a certain value is required. The above measurement is performed for all transponders, and the difference between the optimum operating point and the reception synchronous transponder is used as a transponder correction value. Calibration of this correction value is performed periodically.

【0011】受信同期トランスポンダのキャリア(例え
ば、図7のT1のF1キャリア)を介した自局バースト
を用いた自局クローズドループにより、減衰量検出部2
でアップリンクにおける降雨減衰量を推定し送信電力制
御量3を算出する。該制御量に上記測定により求めたト
ランスポンダ間補正値を加え送信電力制御値とし、該送
信電力制御値により送信電力制御部4で自局送信電力を
制御する。本方法によれば、基準となるトランスポンダ
である受信同期トランスポンダ以外のトランスポンダ
(T2〜T3)についても、トランスポンダ間補正値を
加えることにより最適動作点で動作することが可能であ
る。
The own-station closed-loop using the own-station burst via the carrier of the reception synchronous transponder (for example, the F1 carrier of T1 in FIG. 7) causes the attenuation detector 2 to
To estimate the amount of rain attenuation in the uplink and calculate the transmission power control amount 3. The inter-transponder correction value obtained by the above measurement is added to the control amount to obtain a transmission power control value. According to this method, it is possible to operate the transponders (T2 to T3) other than the reception synchronous transponder that is the reference transponder at the optimum operating point by adding the inter-transponder correction value.

【0012】[0012]

【実施例2】図3は、本発明の第2の実施例であり、次
のように動作する。
Embodiment 2 FIG. 3 shows a second embodiment of the present invention, and operates as follows.

【0013】基準局1において、前記実施例1と同様に
動作点測定部でトランスポンダ間補正値を求める。該ト
ランスポンダ間補正値を制御回線を介して全従局に送出
する。
In the reference station 1, the inter-transponder correction value is obtained by the operating point measuring unit in the same manner as in the first embodiment. The inter-transponder correction value is transmitted to all slave stations via the control line.

【0014】各従局11では、自局の従局同期(N)バ
ーストを送出しているトランスポンダ(例えば、図7の
T2)の補正値と他のトランスポンダ補正値との偏差を
改めてトランスポンダ間補正値16とする。また、自局
の送出した従局同期(N)バーストを用いた自局クロー
ズドループにより、減衰量検出部15でアップリンクに
おける降雨減衰量を推定し送信電力制御量13を算出す
る。該制御量13に上記トランスポンダ間補正値16を
加え送信電力制御値とし、該送信電力制御値に基づき送
信電力制御部14で自局送信電力を制御する。本方法に
よれば、自局の従局同期(N)バーストを送出している
トランスポンダ以外のトランスポンダ(T1、T3)に
ついても、トランスポンダ間補正値を加えることにより
最適動作点で動作することが可能である。
Each slave station 11 recalculates the deviation between the correction value of the transponder (for example, T2 in FIG. 7) transmitting its own slave synchronization (N) burst and another transponder correction value, and calculates the inter-transponder correction value 16 again. And In addition, the attenuation detector 15 estimates the amount of rainfall attenuation in the uplink and calculates the transmission power control amount 13 by the closed loop using the slave synchronization (N) burst transmitted by the own station. The inter-transponder correction value 16 is added to the control amount 13 to obtain a transmission power control value, and the transmission power control unit 14 controls the transmission power of the own station based on the transmission power control value. According to this method, the transponders (T1, T3) other than the transponder transmitting the slave synchronization (N) burst of the own station can operate at the optimum operating point by adding the inter-transponder correction value. is there.

【0015】[0015]

【実施例3】図4は、本発明の第3の実施例であり、次
のように動作する。
Embodiment 3 FIG. 4 shows a third embodiment of the present invention, and operates as follows.

【0016】基準局1において、実施例1と同様に動作
点測定部でトランスポンダ間補正値を求める。該トラン
スポンダ間補正値を制御回線を介して全従局に送出す
る。また、各従局の送出した従局同期(N)バーストを
監視し、減衰量検出部2で従局毎のアップリンクにおけ
る降雨減衰量を推定し送信電力制御量3を算出し、該制
御量を制御回線を介して全従局へ送出する。
In the reference station 1, an inter-transponder correction value is obtained by an operating point measuring unit as in the first embodiment. The inter-transponder correction value is transmitted to all slave stations via the control line. Also, the slave synchronization (N) burst transmitted by each slave station is monitored, the attenuation detector 2 estimates the rain attenuation in the uplink for each slave station, calculates the transmission power control amount 3, and uses the control amount as a control line. To all slave stations via

【0017】従局11では、自局の従局同期(N)バー
ストを送出しているトランスポンダ(例えば、T2)の
補正値と他のトランスポンダ補正値との偏差を改めてト
ランスポンダ間補正値16とする。制御回線で送られた
制御量13に上記トランスポンダ間補正値16を加え送
信電力制御値とし、該送信電力制御値に基づき送信電力
制御部14で自局送信電力を制御する。本方法によれ
ば、自局の従局同期(N)バーストを送出しているトラ
ンスポンダ以外のトランスポンダ(T1、T3)につい
ても、トランスポンダ間補正値を加えることにより最適
動作点で動作することが可能である。
In the slave station 11, the deviation between the correction value of the transponder (for example, T2) transmitting its own slave synchronization (N) burst and another transponder correction value is set as the inter-transponder correction value 16 again. The inter-transponder correction value 16 is added to the control amount 13 sent by the control line to obtain a transmission power control value, and the transmission power control unit 14 controls the transmission power of the own station based on the transmission power control value. According to this method, the transponders (T1, T3) other than the transponder transmitting the slave synchronization (N) burst of the own station can operate at the optimum operating point by adding the inter-transponder correction value. is there.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、複
数トランスポンダを用いた送信電力制御においても、特
定地球局(基準局)で、各トランスポンダの動作点を測
定し、トランスポンダ毎の動作特性差を地球局の送信側
で補正することにより、全てのトランスポンダを最適動
作点で動作させることが可能であり、干渉の軽減、回線
品質の改善ができる。
As described above, according to the present invention, even in transmission power control using a plurality of transponders, the operating point of each transponder is measured at a specific earth station (reference station), and the operating characteristic difference for each transponder is measured. Is corrected on the transmitting side of the earth station, all the transponders can be operated at the optimum operating point, and interference can be reduced and the line quality can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す。FIG. 1 shows a first embodiment of the present invention.

【図2】トランスポンダの動作特性を示す。FIG. 2 shows operating characteristics of a transponder.

【図3】本発明の第2の実施例を示す。FIG. 3 shows a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す。FIG. 4 shows a third embodiment of the present invention.

【図5】従来の送信電力制御方法を示す。FIG. 5 shows a conventional transmission power control method.

【図6】複数トランスポンダを用いた場合のTDMAフ
レーム構成を示す。
FIG. 6 shows a TDMA frame configuration when a plurality of transponders are used.

【図7】トランスポンダの動作特性の相違を示す。FIG. 7 shows a difference in operation characteristics of the transponder.

【符号の説明】[Explanation of symbols]

1 基準局 2 減衰量演算部 3 制御量 4 送信電力制御部 5 合成部 6 動作点測定部 7 補正値 11 従局 12 分離部 13 制御量 14 送信電力制御部 15 減衰量検出部 16 補正値 20 衛星 T1、T2、T3 トランスポンダ番号 F1〜F6 キャリア番号 R 基準局同期バースト N 従局同期バースト D データバースト DESCRIPTION OF SYMBOLS 1 Reference station 2 Attenuation calculation part 3 Control amount 4 Transmission power control part 5 Synthesis part 6 Operating point measurement part 7 Correction value 11 Slave station 12 Separation part 13 Control amount 14 Transmission power control part 15 Attenuation detection part 16 Correction value 20 Satellite T1 , T2, T3 Transponder number F1 to F6 Carrier number R Reference station synchronization burst N Slave station synchronization burst D Data burst

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数地球局から複数トランスポンダを介
して複数のキャリアを用いた通信を行う衛星通信方法
で、アップリンクにおける降雨減衰量を補償してトラン
スポンダへの到達電力を降雨減衰量に依らず一定とする
送信電力制御方法において、 各地球局で各トランスポンダの入出力特性を測定し、特
定のトランスポンダの動作点とそれに対応する他のトラ
ンスポンダの動作点の差をトランスポンダ間補正値とし
て求め、前記特定トランスポンダを用いた自局の送信電
力制御量を求め、該送信電力制御量に前記トランスポン
ダ間補正値を加え、各トランスポンダの送信電力制御値
とし、トランスポンダ毎に地球局から衛星への送信電力
を制御することを特徴とする複数トランスポンダの送信
電力制御方法。
1. A satellite communication method for performing communication using a plurality of carriers from a plurality of earth stations via a plurality of transponders, wherein a rain attenuation amount in an uplink is compensated, and a power reaching a transponder is independent of the rain attenuation amount. In the transmission power control method to be constant, the input / output characteristics of each transponder are measured at each earth station, and the difference between the operating point of a specific transponder and the operating point of another corresponding transponder is determined as a transponder correction value, The transmission power control amount of the own station using the specific transponder is obtained, the inter-transponder correction value is added to the transmission power control amount, the transmission power control value of each transponder is obtained, and the transmission power from the earth station to the satellite is determined for each transponder. A transmission power control method for a plurality of transponders, comprising:
【請求項2】 特定地球局でトランスポンダ間補正値を
求め、該トランスポンダ間補正値を全地球局に定期的に
送出し、各地球局では、自局で求めた送信電力制御量に
前記トランスポンダ間補正値を加え、各トランスポンダ
の送信電力制御値とし、トランスポンダ毎の送信電力を
制御することを特徴とする請求項1記載の複数トランス
ポンダの送信電力制御方法。
2. An inter-transponder correction value is calculated at a specific earth station, and the inter-transponder correction value is periodically transmitted to all earth stations. Each earth station transmits the transmission power control amount obtained by its own station to the transponder correction value. The transmission power control method for a plurality of transponders according to claim 1, wherein a transmission power control value of each transponder is controlled by adding a correction value to the transmission power control value of each transponder.
【請求項3】 特定地球局でトランスポンダ間補正値と
各地球局の送信電力制御量を求め、該トランスポンダ間
補正値と各地球局毎の送信電力制御量を全地球局に送出
し、各地球局では、前記送信電力制御量に前記トランス
ポンダ間補正値を加え、各トランスポンダの送信電力制
御値とし、トランスポンダ毎の送信電力を制御すること
を特徴とする請求項1記載の複数トランスポンダの送信
電力制御方法。
3. A specific earth station obtains a transponder correction value and a transmission power control amount of each earth station, and transmits the transponder correction value and a transmission power control amount of each earth station to all the earth stations. 2. The transmission power control according to claim 1, wherein the station controls the transmission power for each transponder by adding the inter-transponder correction value to the transmission power control amount to obtain a transmission power control value for each transponder. Method.
JP3299592A 1991-10-21 1991-10-21 Transmission power control method for multiple transponders Expired - Fee Related JP2699725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3299592A JP2699725B2 (en) 1991-10-21 1991-10-21 Transmission power control method for multiple transponders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3299592A JP2699725B2 (en) 1991-10-21 1991-10-21 Transmission power control method for multiple transponders

Publications (2)

Publication Number Publication Date
JPH05114878A JPH05114878A (en) 1993-05-07
JP2699725B2 true JP2699725B2 (en) 1998-01-19

Family

ID=17874634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3299592A Expired - Fee Related JP2699725B2 (en) 1991-10-21 1991-10-21 Transmission power control method for multiple transponders

Country Status (1)

Country Link
JP (1) JP2699725B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787336A (en) * 1994-11-08 1998-07-28 Space Systems/Loral, Inc. Satellite communication power management system

Also Published As

Publication number Publication date
JPH05114878A (en) 1993-05-07

Similar Documents

Publication Publication Date Title
USRE37870E1 (en) CDMA/TDD radio communication system
RU2221340C2 (en) Method and device for controlling transmission power in communication system
EP1042932B1 (en) A method for uplink power control for distributed satellite networks to compensate for rain fade
US20020016177A1 (en) Transmission power control apparatus and radio communication apparatus
KR101123191B1 (en) A radio communication system, a radio station, and a method of transmitting data
JPH1013922A (en) Reverse channel transmitting power control method
US20090186590A1 (en) Method for Channel Calibration
EP1348268B1 (en) Sir estimation using delay time of power control commands
JP2699725B2 (en) Transmission power control method for multiple transponders
US5828335A (en) Spacecraft communication channel power control system
EP1085676B1 (en) Method of controlling power in a point to multipoint communication network and system for carrying out said method
JP2795055B2 (en) Transmission power control method
US20110009064A1 (en) Wireless communication apparatus and wireless communication method
JPS583613B2 (en) Satellite communication method
JP2562858B2 (en) Transmission power control device
JP3039365B2 (en) Receive synchronization position control method
JPH1174804A (en) Transmitter for satellite communication
JPH05218924A (en) Transmission power control system
US20010012765A1 (en) Method and arrangement for controlling transmitted power in a telecommunication system
JP3250128B2 (en) Frame phase synchronization between base stations
JPH0612885B2 (en) TDMA transmission synchronization control method
JPH0955698A (en) Phase compensation system for multiple address transmission system
JPH025631A (en) Transmission power control system for satellite communication
JPS62261231A (en) Transmission power controller
JPH01293021A (en) System for controlling transmitting power by numerous pilots

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees