JP2698586B2 - Manufacturing method of heat resistant magnetic scale - Google Patents

Manufacturing method of heat resistant magnetic scale

Info

Publication number
JP2698586B2
JP2698586B2 JP62217315A JP21731587A JP2698586B2 JP 2698586 B2 JP2698586 B2 JP 2698586B2 JP 62217315 A JP62217315 A JP 62217315A JP 21731587 A JP21731587 A JP 21731587A JP 2698586 B2 JP2698586 B2 JP 2698586B2
Authority
JP
Japan
Prior art keywords
heat
magnetic
resistant
magnetic scale
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62217315A
Other languages
Japanese (ja)
Other versions
JPS6459122A (en
Inventor
克之 荒
秀之 八木
英男 池田
俊次 大村
恩 大峯
雅治 森安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62217315A priority Critical patent/JP2698586B2/en
Priority to FR888811336A priority patent/FR2619931B1/en
Priority to US07/237,384 priority patent/US4935070A/en
Publication of JPS6459122A publication Critical patent/JPS6459122A/en
Priority to US07/513,967 priority patent/US5076862A/en
Application granted granted Critical
Publication of JP2698586B2 publication Critical patent/JP2698586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,高温度域で使用する耐熱性磁気スケール
の製造方法に関するものである。 〔従来の技術〕 第7図は例えば特公昭48−10655号公報に示された従
来の磁気スケールを示す断面図であり,図において,
(6)は鉄またはエンリバー(商品名)のごとき鉄合金
よりなる断面円形の棒状の基体,(7)は基体(6)の
表面にメツキまたはクラツドで被着形成された銅または
アルミニウムのごとき非磁性金属層,(8)は非磁性金
属層(7)の上に被着形成されたコバルト−ニツケルの
ごとき磁性層である。 〔発明が解決しようとする問題点〕 従来の磁気スケールは以上のように構成されており,
例えば金属データブツク(日本金属学会編,昭和49年)
の表1・2・6および表6・6・4に示されているよう
に,鉄またはエンリバー(商品名)のごとき鉄合金の熱
膨張係数はそれぞれ12.1×10-6および8.0×10-6であ
り,銅およびアルミニウムの熱膨張係数はそれぞれ17.0
×10-6および23.5×10-6であり,また例えば耐熱鋼デー
タ集(特殊鋼倶楽部編,昭和40年)の表6(その2)に
示されているようにコバルト−ニツケルの熱膨張係数は
例えばS−816(AISI No.671)では11.9×10-6(AISI21
〜316℃)である。第7図に示すような構成では,磁気
スケールの熱膨張係数は基体の熱膨張係数でほとんど決
るが,100〜300℃の高温度領域でかかる磁気スケールを
使用した場合,基体,非磁性金属層および磁性層の熱膨
張係数がそれぞれ異なるため,基体,非磁性金属層およ
び磁性層の膨張の量が異なり,基体から非磁性金属層や
磁性層が剥離する恐れがあつた。 更に,剥離しない場合でも基体,非磁性金属層および
磁性層の熱膨張係数がそれぞれ異なるためかかる磁気ス
ケールを高温度領域で使用した場合,基体,非磁性金属
層および磁性層の膨張の量が異なるため,基体,非磁性
金属層および磁性層のそれぞれに熱膨張に伴う応力が加
わり,磁性層の磁気特性が劣化し,磁気スケールの感度
が低下するという問題点があつた。 また,磁気テープ等を磁気スケールに用いるものがあ
るが,この場合は熱により消磁されてしまい,例えば50
℃ぐらいまでしか使えないという問題点があつた。 この発明は上記のような問題点を解決するためになさ
れたもので,100℃以上でも消磁せず,温度変化に対して
も剥離が生じず,安定かつ測定精度が高い耐熱性磁気ス
ケールを製造する方法を提供することを目的とする。 〔問題点を解決するための手段〕 この発明に係る耐熱性磁気スケールの製造方法は,非
磁性体である耐熱性基材にこれと異なる材質の原料を載
置し,上記原料と共に上記基材に所望間隔に熱を加えて
上記基材中に上記原料を溶融させて固体化し、溶融固体
化部分の磁気特性を変化させたものであり,上記基材中
にキュリー点が100℃以上の磁性層を形成したものであ
る。 また、この発明の第2の発明に係る磁気スケールの製
造方法は、非磁性体からなる耐熱性基材にこれと異なる
非磁性の金属を載置し、上記基材に所望間隔に熱を加
え、上記基材中に上記金属を溶融させて固体化し、上記
基材中にキュリー点が100℃以上の強磁性体層を形成す
るものである。 〔作 用〕 この発明における耐熱性磁気スケールは非磁性体であ
る耐熱性基材にこれと異なる材質の原料を載置し、上記
原料と共に上記基材に所望間隔に熱を加えて上記基材に
上記原料を混入させ、加熱部分の磁気特性を変化させ
て、基材中にキュリー点が100℃以上の磁性層を形成し
ているので、剥離等の恐れがなく、また耐熱性もある。
さらに磁性層は基材中に形成されるため、磁気スケール
の表面は平坦かつ平面度の良い状態となり、センサを磁
気スケールに近接させることができるので、検出感度が
極めて高くなる。また、非磁性の基材中に磁性層を形成
し、この磁性層を磁気的に検出するので感度がよく、精
度の高い磁気スケールを実現することができる。 〔実施例〕 以下,この発明の一実施例を図について説明する。第
1図はこの発明の一実施例による耐熱性磁気スケールの
製造方法を説明する斜視図である。図において(1)は
板状の耐熱性基材であり,オーステナイト系ステンレス
鋼板(例えばJISのSUS304)よりなる非磁性体である。
(2)は基材(1)と異る材質の原料で,軟磁性体の微
小材料,例えば鉄粉である。(3)はレーザビーム等に
より加熱された加熱部分であり,基材(1)に原料
(2)が混入されて磁気特性が変化した部分である。こ
の場合は磁性層を形成しており,基板(1)に所定間隔
で形成される。第2図はこの発明の一実施例に係る耐熱
性磁気スケールを着磁している様子を示す側面構成図で
あり,図において(10)は耐熱性磁気スケール,(4)
は着磁用の電磁石である。第3図は第2図に示す方法に
よつて着磁した磁気スケールを用いて変位量を検出して
いる様子を示す斜視図であり,図において,(5)は磁
気スケールに残留している磁化を検出する例えばホール
素子のようなセンサーである。第4図は第3図の方法で
検出された磁気量を示す関係図であり,横軸に変位量,
縦軸に磁化量をとつている。 第1図において,板状の非磁性ステンレスSUS304の基
材(1)の上に軟磁性体の粉末例えば鉄粉を塗布した後
レーザビームを照射すると,レーザビームを照射された
部分は急激に加熱溶融され,鉄粉はステンレス基材中に
溶融する。続いて,レーザビームを移動すると,いまま
でレーザビームを照射されていた部分は今度は急激に冷
却固体化される。そのため,レーザビームを掃引した部
分は線状あるいは面状に急激な加熱冷却作用を受け,ス
テンレス基材中に溶融した鉄粉は拡散することなく固体
化する。そのため、レーザビームの照射により板状の非
磁性ステンレスSUS304の基材中に鉄粉を溶融固体化した
ので基体の表面あるいは内部に線状あるいは面状の磁性
層,即ち磁気格子が形成される。 上述のように形成された磁気格子は,急激な冷却作用
を受けているので極度の残留応力を生じており保磁力が
大きく第2図に示す方法で着磁すると,大きな残留磁化
が発生する。従つて,レーザビームを照射する間隔を任
意に選び,第3図のように残留磁化量を検出する素子例
えばホール素子などを用いることにより,第4図に示す
ような変位量と残留磁化量の関係図が得られ,変位の検
出が可能となる。また,この発明では非磁性の基材の表
面あるいは内部の一方あるいは両方に線状あるいは面状
にある間隔でレーザビームで急激に溶融固定化してビー
ム幅相当の非常に幅の狭い磁性体をそれぞれ独立して形
成したので,残留磁化が第4図に示すようにパルス的に
検出され,従来の方法に比べ安定でかつ非常に検出感度
が高くなる。 さらに,加熱部分,即ち磁気層(3)は非磁性の基材
(1)中に磁性材を溶融させて形成されたものであるの
で,100℃以上のキユリー点を有し,高温にさらされても
磁性を失うことはなく,耐熱性がある。 なお,この実施例では基材となる非磁性材料として,S
US304について述べたが,他の非磁性ステンシル鋼,例
えば,SUS316,SUS309,SUS310などであつてもよく,ま
た,銅や亜鉛,鉄,クロム,ニツケル,マンガン,アル
ミニウムおよびその合金などの非磁性材料であつてもよ
い。また,セラミツクなどであつてもよい。 また,上記実施例ではレーザビームにより加熱した
が,他の熱的方法,例えば電子ビーム・プラズマ等によ
つて加熱してもよい。さらに,上記実施例では軟磁性体
の微小粉末(2)として鉄粉を用いたが,Ni,Co等の粉末
であつてもよい。 さらに基材(1)に載置する原料としては,上記のよ
うな微小粉末を塗布する他,例えば第5図に示すよう
に,メツキあるいは蒸着により基材(1)表面に薄膜
(2)を被着するようにしてもよい。即ち,第5図にお
いて,板状の非磁性の鋼−亜鉛合金からなる基材の表面
にメツキなどにより被着したニツケルの膜(2)にレー
ザビームを照射すると,レーザビームを照射された部分
は急激に加熱溶融され,基材中に軟磁性体のニツケルが
溶け込む。続いて,レーザビームを移動すると,いまま
でレーザビームを照射されていた部分は今度は急激に冷
却固体化される。そのため,レーザビームを掃引した部
分は線状あるいは面状に急激な加熱冷却作用を受け,極
度の残留応力が発生する。また,このように,板状の非
磁性の銅−亜鉛合金からなる基材の表面にメツキなどの
方法で被着した軟磁性体のニツケルにレーザビームを照
射したので基材の表面あるいは内部に線状あるいは面状
にニツケルが溶け込み非磁性の鋼−亜鉛合金からなる基
材の表面あるいは内部に線状あるいは面状に軟磁性体の
ニツケルの磁性層,即ち磁気格子が形成される。上述の
ように形成された磁気格子は,極度の応力を受けている
ため保磁力が大きく前記実施例と同様,第2図に示す方
法で着磁すると,大きな残留磁化が発生する。従つて,
レーザビームを照射する間隔を任意に選び,第3図のよ
うに残留磁化量を検出する素子例えばホール素子などを
用いることにより,第4図に示すような変位量と残留磁
化量の関係図が得られ,変位量の検出が可能となる。ま
た,銅−亜鉛合金からなる基材の表面に耐食性の優れた
ニツケルを被着したので高温度まで使用可能な耐熱性磁
気スケールができる。 なお,この実施例では基材となる非磁性材料として,
銅−亜鉛合金について述べたが,他の非磁性合金であつ
てもよく,また,熱的方法としてレーザビームによる方
法について述べたが,他の熱的方法例えば電子ビームで
あつても同様の効果が得られる。更に,この実施例では
ニツケルの軟磁性膜が被着したままであるが、研磨など
の方法により軟磁性膜を除去してもよい。また,この実
施例では,軟磁性膜としてニツケルについて述べたが,
鉄,コバルト,ニツケルなどの合金で耐食性を有する他
の被膜であつてもよい。さらに,第5図に示される薄膜
(2)としては,上記のような軟磁性膜の他,クロム,
モリブデン等の非磁性膜であつてもよい。 即ち,例えば第5図において,板状の非磁性のオース
テナイト系ステンレスSUS304の基材の表面にメツキなど
により被着したクロムの膜にレーザビームを照射する
と,レーザビームを照射された部分は急激に加熱溶融さ
れ,基材中に非磁性体のクロムが溶け込む。続いて,レ
ーザビームを移動すると,いままでレーザビームを照射
されていた部分は今度は急激に冷却固体化される。その
ため,レーザビームを掃引した部分は線状あるいは面状
に急激な加熱冷却作用を受け,極度の残留応力が発生す
る。またこのように,板状の非磁性ステンレスSUS304の
基材の表面にメツキなどの方法で被着した非磁性体のク
ロムにレーザビームを照射したので,基材の表面あるい
は内部に線状あるいは面状にクロムが溶け込み,非磁性
のオーステナイト系ステンレスの基材の表面あるいは内
部に線状あるいは面状に軟磁性体のフエライト系ステン
レスの磁性層,即ち磁気格子が形成される。 上述のように形成された磁気格子は,極度の応力を受
けているため保磁力が大きく前記実施例と同様第2図に
示す方法で着磁すると,大きな残留磁化が発生する。従
つて,レーザビームを照射する間隔を任意に選び,第3
図のように残留磁化量を検出する素子例えばホール素子
などを用いることにより,第4図に示すような変位量と
残留磁化量の関係図が得られ,変位の検出が可能とな
る。 さらに,上記実施例では基材及び加熱部分の少なくと
もいずれか一方を着磁して残留磁化量を検出するように
したが,あらかじめ着磁せずに,検出時に第6図に示す
ように,励磁用磁石(4)と磁束量を検出する素子,例
えばホール素子(5)などを用いて,第4図と同様の変
位量と検出磁束量の関係が得られ,変位の検出が可能と
なる。 また,このような励磁式の磁気検出器を用いれば,3〜
4百℃の高温にさらされるような環境下でも使用するこ
とができる。 〔発明の効果〕 以上のように,この発明によれば非磁性体である耐熱
性基材にこれと異なる材質の原料を載置し,上記原料と
共に上記基材に所望間隔に熱を加えて上記基材中に上記
原料を溶融させて固体化し、溶融固体化部分の磁気特性
を変化させ,上記基材中にキュリー点が100℃以上の磁
性層を形成したので,高温でも消磁せず耐熱性のある磁
気スケールが得られる。また,温度変化に対して,剥離
等の恐れがなく,安定かつ測定精度の高いものが製造で
きる効果がある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a heat-resistant magnetic scale used in a high temperature range. [Prior Art] FIG. 7 is a sectional view showing a conventional magnetic scale disclosed in Japanese Patent Publication No. 48-10655, for example.
(6) is a rod-shaped base made of iron or an iron alloy such as Enriver (trade name) having a circular cross section, and (7) is a non-metal such as copper or aluminum formed by plating or cladding on the surface of the base (6). The magnetic metal layer (8) is a magnetic layer such as cobalt nickel formed on the non-magnetic metal layer (7). [Problems to be solved by the invention] The conventional magnetic scale is configured as described above.
For example, Metal Data Book (edited by The Japan Institute of Metals, 1974)
As shown in Tables 1, 2, and 6 and Tables 6, 6, and 4, the thermal expansion coefficients of iron and iron alloys such as Enriver (trade name) are 12.1 × 10 -6 and 8.0 × 10 -6, respectively. And the thermal expansion coefficients of copper and aluminum are 17.0, respectively.
× 10 -6 and 23.5 × 10 -6. For example, as shown in Table 6 (Part 2) of the heat-resistant steel data collection (edited by Tokushu Steel Club, 1965), the thermal expansion coefficient of cobalt-nickel For example, in S-816 (AISI No.671), 11.9 × 10 −6 (AISI21
316 ° C). In the configuration shown in Fig. 7, the coefficient of thermal expansion of the magnetic scale is almost determined by the coefficient of thermal expansion of the base. However, when such a magnetic scale is used in a high temperature range of 100 to 300 ° C, the base and the nonmagnetic metal layer Since the thermal expansion coefficients of the magnetic layer and the magnetic layer are different from each other, the amounts of expansion of the base, the nonmagnetic metal layer and the magnetic layer are different, and the nonmagnetic metal layer and the magnetic layer may be separated from the base. Furthermore, even when the magnetic scale is not peeled off, the thermal expansion coefficients of the base, the non-magnetic metal layer and the magnetic layer are different from each other. Therefore, when such a magnetic scale is used in a high temperature range, the expansion amounts of the base, the non-magnetic metal layer and the magnetic layer are different. For this reason, stress accompanying thermal expansion is applied to each of the base, the non-magnetic metal layer, and the magnetic layer, deteriorating the magnetic properties of the magnetic layer, and lowering the sensitivity of the magnetic scale. Some magnetic tapes are used for the magnetic scale. In this case, the magnetic scale is demagnetized by heat, for example, 50%.
There was a problem that it could only be used up to about ° C. The present invention has been made in order to solve the above-mentioned problems, and it is possible to manufacture a heat-resistant magnetic scale that is stable and has high measurement accuracy without demagnetizing even at a temperature of 100 ° C. or more, without delamination even when the temperature changes. The purpose is to provide a way to: [Means for Solving the Problems] In the method for producing a heat-resistant magnetic scale according to the present invention, a raw material of a different material is placed on a non-magnetic heat-resistant base material, The material is melted and solidified by applying heat at a desired interval to the base material, and the magnetic properties of the molten and solidified portion are changed. A layer is formed. In the method for manufacturing a magnetic scale according to the second aspect of the present invention, a non-magnetic metal different from the non-magnetic metal is placed on a heat-resistant base made of a non-magnetic material, and heat is applied to the base at a desired interval. And melting the metal in the base material to solidify it, and forming a ferromagnetic layer having a Curie point of 100 ° C. or higher in the base material. [Operation] The heat-resistant magnetic scale according to the present invention is obtained by placing a raw material of a different material on a heat-resistant base material that is a non-magnetic material and applying heat to the base material at a desired interval together with the raw material. Since the magnetic material having a Curie point of 100 ° C. or higher is formed in the base material by mixing the above raw materials and changing the magnetic characteristics of the heated portion, there is no fear of peeling and the like, and there is also heat resistance.
Further, since the magnetic layer is formed in the substrate, the surface of the magnetic scale is flat and has good flatness, and the sensor can be brought close to the magnetic scale, so that the detection sensitivity is extremely high. In addition, since a magnetic layer is formed in a non-magnetic base material and this magnetic layer is detected magnetically, a magnetic scale with good sensitivity and high accuracy can be realized. Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view for explaining a method of manufacturing a heat-resistant magnetic scale according to one embodiment of the present invention. In the figure, (1) is a plate-like heat-resistant base material, which is a non-magnetic material made of an austenitic stainless steel plate (for example, JIS SUS304).
(2) is a raw material of a material different from that of the substrate (1), which is a soft magnetic fine material, for example, iron powder. (3) is a heated portion heated by a laser beam or the like, and is a portion in which the magnetic properties are changed by mixing the raw material (2) into the base material (1). In this case, a magnetic layer is formed and is formed on the substrate (1) at predetermined intervals. FIG. 2 is a side view showing a state in which a heat-resistant magnetic scale according to one embodiment of the present invention is magnetized. In FIG.
Is a magnetizing electromagnet. FIG. 3 is a perspective view showing how a displacement is detected using a magnetic scale magnetized by the method shown in FIG. 2, in which (5) is left on the magnetic scale. It is a sensor for detecting magnetization, such as a Hall element. FIG. 4 is a relationship diagram showing the magnetic quantity detected by the method of FIG.
The vertical axis indicates the amount of magnetization. In FIG. 1, when a soft magnetic material powder, for example, iron powder is applied to a plate-shaped non-magnetic stainless steel SUS304 substrate (1) and then irradiated with a laser beam, the portion irradiated with the laser beam is rapidly heated. The iron powder melts into the stainless steel substrate. Subsequently, when the laser beam is moved, the portion that has been irradiated with the laser beam is rapidly cooled and solidified. Therefore, the portion swept by the laser beam is subjected to a rapid heating or cooling action in a linear or planar manner, and the iron powder melted in the stainless steel base is solidified without being diffused. Therefore, since the iron powder is melted and solidified in the plate-shaped non-magnetic stainless steel SUS304 base by the laser beam irradiation, a linear or planar magnetic layer, that is, a magnetic lattice is formed on or in the base. Since the magnetic lattice formed as described above is subjected to a sudden cooling action, it generates an extreme residual stress and has a large coercive force, and when magnetized by the method shown in FIG. 2, a large residual magnetization is generated. Therefore, the interval of laser beam irradiation is arbitrarily selected, and an element for detecting the amount of residual magnetization, such as a Hall element, is used as shown in FIG. A relationship diagram is obtained, and displacement can be detected. Further, in the present invention, a very narrow magnetic material equivalent to the beam width is fixed by rapidly melting and fixing with a laser beam at a linear or planar interval on one or both of the surface and the inside of the nonmagnetic substrate. Since they are formed independently, the remanent magnetization is detected in a pulsed manner as shown in FIG. 4, and the detection sensitivity is stable and extremely high as compared with the conventional method. Further, since the heated portion, that is, the magnetic layer (3) is formed by melting a magnetic material in the non-magnetic substrate (1), it has a Curie point of 100 ° C or more and is exposed to high temperatures. Even though it does not lose magnetism, it has heat resistance. In this example, the nonmagnetic material used as the base material was S
Although US304 has been described, other nonmagnetic stencil steels such as SUS316, SUS309, SUS310 may be used, and nonmagnetic materials such as copper, zinc, iron, chromium, nickel, manganese, aluminum and alloys thereof. May be used. Further, it may be a ceramic or the like. Further, in the above embodiment, the heating is performed by the laser beam, but the heating may be performed by another thermal method, for example, by electron beam plasma. Further, in the above embodiment, iron powder is used as the fine powder (2) of the soft magnetic material, but powder of Ni, Co, etc. may be used. Further, as a raw material to be placed on the substrate (1), in addition to applying the fine powder as described above, for example, as shown in FIG. 5, a thin film (2) is applied to the surface of the substrate (1) by plating or vapor deposition. You may make it adhere. That is, in FIG. 5, when a laser beam is applied to a nickel film (2) applied to the surface of a plate-shaped base made of non-magnetic steel-zinc alloy by plating or the like, a portion irradiated with the laser beam is obtained. Is rapidly heated and melted, and the nickel of the soft magnetic material dissolves into the base material. Subsequently, when the laser beam is moved, the portion that has been irradiated with the laser beam is rapidly cooled and solidified. Therefore, the portion where the laser beam is swept is subjected to a rapid heating or cooling action linearly or planarly, and an extreme residual stress is generated. In addition, as described above, the laser beam was applied to the nickel of the soft magnetic material adhered to the surface of the base material made of a plate-shaped non-magnetic copper-zinc alloy by a method such as plating. Nickel is melted linearly or planarly, and a nickel or magnetic layer of a soft magnetic material, that is, a magnetic lattice is formed linearly or planarly on the surface or inside of a substrate made of a nonmagnetic steel-zinc alloy. Since the magnetic lattice formed as described above is subjected to extreme stress, it has a large coercive force, and when magnetized by the method shown in FIG. Therefore,
By arbitrarily selecting the laser beam irradiation interval and using an element for detecting the residual magnetization amount, for example, a Hall element as shown in FIG. 3, the relationship between the displacement amount and the residual magnetization amount as shown in FIG. Thus, the displacement can be detected. In addition, since nickel having excellent corrosion resistance is applied to the surface of the substrate made of a copper-zinc alloy, a heat-resistant magnetic scale that can be used up to high temperatures can be obtained. In this embodiment, as the non-magnetic material serving as the base material,
Although a copper-zinc alloy has been described, other non-magnetic alloys may be used, and a laser beam method has been described as a thermal method. However, the same effect can be obtained by using another thermal method such as an electron beam. Is obtained. Further, in this embodiment, the nickel soft magnetic film remains adhered, but the soft magnetic film may be removed by a method such as polishing. In this embodiment, nickel was described as the soft magnetic film.
Other films having corrosion resistance made of an alloy such as iron, cobalt, and nickel may be used. Further, the thin film (2) shown in FIG.
A non-magnetic film such as molybdenum may be used. That is, for example, in FIG. 5, when a laser beam is applied to a chromium film adhered to the surface of a plate-shaped non-magnetic austenitic stainless steel SUS304 substrate by plating or the like, the portion irradiated with the laser beam sharply rises. The material is heated and melted, and the nonmagnetic chromium dissolves into the substrate. Subsequently, when the laser beam is moved, the portion that has been irradiated with the laser beam is rapidly cooled and solidified. Therefore, the portion where the laser beam is swept is subjected to a rapid heating or cooling action linearly or planarly, and an extreme residual stress is generated. In addition, since the laser beam was applied to the chromium of the non-magnetic material adhered to the surface of the plate-shaped non-magnetic stainless steel SUS304 by a method such as plating, a linear or surface The chromium melts into a shape, and a magnetic layer of a soft magnetic ferrite-based stainless steel, that is, a magnetic lattice, is formed on the surface or inside of the nonmagnetic austenitic stainless-steel base material. Since the magnetic lattice formed as described above is subjected to extreme stress, it has a large coercive force, and when magnetized by the method shown in FIG. Therefore, the interval of laser beam irradiation is arbitrarily selected,
By using an element for detecting the amount of residual magnetization, for example, a Hall element, as shown in the figure, a relationship diagram between the amount of displacement and the amount of residual magnetization as shown in FIG. 4 can be obtained, and the displacement can be detected. Further, in the above embodiment, at least one of the base material and the heated portion is magnetized to detect the residual magnetization amount. However, the magnetized material is not magnetized in advance, and as shown in FIG. By using the magnet for use (4) and an element for detecting the amount of magnetic flux, for example, a Hall element (5), the same relationship between the amount of displacement and the amount of detected magnetic flux as in FIG. 4 can be obtained, and the displacement can be detected. Also, if such an excitation type magnetic detector is used,
It can be used even in an environment exposed to a high temperature of 400 ° C. [Effects of the Invention] As described above, according to the present invention, a raw material of a different material is placed on a non-magnetic heat-resistant base material, and heat is applied to the base material together with the raw material at a desired interval. The raw material is melted and solidified in the base material, and the magnetic properties of the molten and solidified part are changed. A magnetic layer with a Curie point of 100 ° C or higher is formed in the base material. A magnetic scale with good properties is obtained. In addition, there is an effect that a stable and high-measurement product can be manufactured without fear of peeling or the like in response to a temperature change.

【図面の簡単な説明】 第1図はこの発明の一実施例による耐熱性磁気スケール
の製造方法を説明する斜視図,第2図はこの発明の一実
施例に係る耐熱性磁気スケールを着磁している様子を示
す側面構成図,第3図はこの発明に係る耐熱性磁気スケ
ールを用いて変位量を検出する様子を示す斜視図,第4
図は第3図の方法で検出された磁化量と変位量の関係を
示す関係図,第5図はこの発明の他の実施例による耐熱
性磁気スケールの製造方法を説明する斜視図,第6図は
この発明の他の実施例に係る耐熱性磁気スケールを用い
て変位量を検出する様子を示す斜視図,及び第7図は従
来の磁気スケールを示す断面図である。 (1)……耐熱性基材,(2)……原料,(3)……加
熱部分,(4)電磁石,(5)……ホール素子,(10)
……耐熱性磁気スケール なお,図中同一符号は同一又は相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view for explaining a method of manufacturing a heat-resistant magnetic scale according to one embodiment of the present invention, and FIG. 2 is a magnetized heat-resistant magnetic scale according to one embodiment of the present invention. FIG. 3 is a perspective view showing how a displacement amount is detected using the heat-resistant magnetic scale according to the present invention, and FIG.
FIG. 5 is a relationship diagram showing the relationship between the amount of magnetization and the amount of displacement detected by the method of FIG. 3, FIG. 5 is a perspective view illustrating a method of manufacturing a heat-resistant magnetic scale according to another embodiment of the present invention, and FIG. FIG. 7 is a perspective view showing how a displacement amount is detected using a heat-resistant magnetic scale according to another embodiment of the present invention, and FIG. 7 is a sectional view showing a conventional magnetic scale. (1) ... heat-resistant base material, (2) ... raw material, (3) ... heated part, (4) electromagnet, (5) ... Hall element, (10)
... Heat resistant magnetic scale In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 英男 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社材料研究所内 (72)発明者 大村 俊次 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社材料研究所内 (72)発明者 大峯 恩 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社生産技術研究所内 (72)発明者 森安 雅治 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社生産技術研究所内 (56)参考文献 特開 昭61−269004(JP,A) 特開 昭61−134604(JP,A) 特開 昭62−42003(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hideo Ikeda               8-1-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture               Mitsubishi Electric Corporation Materials Research Laboratory (72) Inventor Shunji Omura               8-1-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture               Mitsubishi Electric Corporation Materials Research Laboratory (72) Inventor Omine               8-1-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture               Mitsubishi Electric Corporation (72) Inventor Masaharu Moriyasu               8-1-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture               Mitsubishi Electric Corporation                (56) References JP-A-61-269004 (JP, A)                 JP-A-61-134604 (JP, A)                 JP-A-64-22003 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.非磁性体である耐熱性基材にこれと異なる材質の原
料を載置し、上記原料と共に上記基材に所望間隔に熱を
加え、上記基材中に上記原料を溶融させて固体化し、溶
融固体化部分の磁気特性を変化させて、上記基材中にキ
ュリー点が100℃以上の磁性層を形成する耐熱性磁気ス
ケールの製造方法。 2.耐熱性基材はオーステナイト系ステンレス鋼板であ
る特許請求の範囲第1項記載の耐熱性磁気スケールの製
造方法。 3.耐熱性基材は銅、亜鉛、アルミニウム、鉄、クロ
ム、ニッケル、マンガンのいずれかよりなる耐熱性合金
である特許請求の範囲第1項記載の耐熱性磁気スケール
の製造方法。 4.原料は磁性体の微小材料である特許請求の範囲第1
項ないし第3項のいずれかに記載の耐熱性磁気スケール
の製造方法。 5.磁性体の微小材料は鉄、ニッケル、コバルトのいず
れかを含有する強磁性体の粉末である特許請求の範囲第
4項記載の耐熱性磁気スケールの製造方法。 6.原料はメッキあるいは蒸着により基材表面に被着さ
れた薄膜である特許請求の範囲第1項ないし第3項のい
ずれかに記載の耐熱性磁気スケールの製造方法。 7.薄膜は鉄、ニッケル、コバルトのいずれかよりなる
強磁性膜である特許請求の範囲第6記載の耐熱性磁気ス
ケールの製造方法。 8.薄膜はクロム、モリブデンのいずれかよりなる非磁
性膜である特許請求の範囲第6記載の耐熱性磁気スケー
ルの製造方法。 9.加熱部分を着磁した特許請求の範囲第1項ないし第
8項のいずれかに記載の耐熱性磁気スケールの製造方
法。 10.非磁性体からなる耐熱性基材にこれと異なる非磁
性の金属を載置し、上記基材に所望間隔に熱を加え、上
記基材中に上記金属を溶融させて固体化し、上記基材中
にキュリー点が100℃以上の強磁性体層を形成する耐熱
性磁気スケールの製造方法。
(57) [Claims] A raw material of a different material is placed on a heat-resistant base material that is a nonmagnetic material, and heat is applied to the base material together with the raw material at a desired interval, and the raw material is melted and solidified in the base material. A method for producing a heat-resistant magnetic scale, wherein a magnetic layer having a Curie point of 100 ° C. or more is formed in the substrate by changing the magnetic properties of a solidified portion. 2. The method for producing a heat-resistant magnetic scale according to claim 1, wherein the heat-resistant substrate is an austenitic stainless steel sheet. 3. The method for producing a heat-resistant magnetic scale according to claim 1, wherein the heat-resistant substrate is a heat-resistant alloy made of any of copper, zinc, aluminum, iron, chromium, nickel, and manganese. 4. The raw material is a magnetic fine material.
Item 4. The method for producing a heat-resistant magnetic scale according to any one of Items 3 to 3. 5. 5. The method for producing a heat-resistant magnetic scale according to claim 4, wherein the fine material of the magnetic material is a powder of a ferromagnetic material containing any of iron, nickel and cobalt. 6. 4. The method for producing a heat-resistant magnetic scale according to claim 1, wherein the raw material is a thin film deposited on the surface of the base material by plating or vapor deposition. 7. 7. The method for manufacturing a heat-resistant magnetic scale according to claim 6, wherein the thin film is a ferromagnetic film made of any of iron, nickel, and cobalt. 8. 7. The method for manufacturing a heat-resistant magnetic scale according to claim 6, wherein the thin film is a non-magnetic film made of one of chromium and molybdenum. 9. The method for producing a heat-resistant magnetic scale according to any one of claims 1 to 8, wherein the heated portion is magnetized. 10. A non-magnetic metal different from this is placed on a heat-resistant base made of a non-magnetic material, heat is applied to the base at a desired interval, and the metal is solidified by melting the metal in the base. A method for producing a heat-resistant magnetic scale in which a ferromagnetic layer having a Curie point of 100 ° C. or higher is formed.
JP62217315A 1987-08-31 1987-08-31 Manufacturing method of heat resistant magnetic scale Expired - Lifetime JP2698586B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62217315A JP2698586B2 (en) 1987-08-31 1987-08-31 Manufacturing method of heat resistant magnetic scale
FR888811336A FR2619931B1 (en) 1987-08-31 1988-08-29 METHOD FOR MANUFACTURING A HEAT-RESISTANT MAGNETIC SENSOR, AND SENSING MEMBER THUS OBTAINED
US07/237,384 US4935070A (en) 1987-08-31 1988-08-29 Method of manufacturing heat resisting magnetic scale
US07/513,967 US5076862A (en) 1987-08-31 1990-04-24 Method of manufacturing heat resisting magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62217315A JP2698586B2 (en) 1987-08-31 1987-08-31 Manufacturing method of heat resistant magnetic scale

Publications (2)

Publication Number Publication Date
JPS6459122A JPS6459122A (en) 1989-03-06
JP2698586B2 true JP2698586B2 (en) 1998-01-19

Family

ID=16702238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62217315A Expired - Lifetime JP2698586B2 (en) 1987-08-31 1987-08-31 Manufacturing method of heat resistant magnetic scale

Country Status (1)

Country Link
JP (1) JP2698586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823501B2 (en) * 1989-07-10 1996-03-06 三菱電機株式会社 Heat resistant magnetic scale and method for producing the same
JPH03227705A (en) * 1990-02-01 1991-10-08 Sumitomo Rubber Ind Ltd Radial tire for high load
JP2011006741A (en) * 2009-06-25 2011-01-13 Denso Corp Method for forming area with improved magnetic characteristics on steel material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134604A (en) * 1984-12-06 1986-06-21 Inoue Japax Res Inc Magnetic scale
JPH0676894B2 (en) * 1985-08-19 1994-09-28 東芝機械株式会社 Magnetic scale

Also Published As

Publication number Publication date
JPS6459122A (en) 1989-03-06

Similar Documents

Publication Publication Date Title
EP0295028B1 (en) Magnetic devices
US4537517A (en) Temperature sensitive amorphous magnetic alloy
US3110613A (en) Magnetic material
JP6298589B2 (en) Encoder and scale and method for manufacturing the scale
JP2698586B2 (en) Manufacturing method of heat resistant magnetic scale
JP2018113313A (en) Magnetic shield member, manufacturing method of magnetic shield member, and magnetic shield panel
Aboaf et al. Properties of transition metal-metalloid ferromagnetic thin films
Miura et al. Annealing behavior of magnetic anisotropy in CoNbZr films
JP2544456B2 (en) Method of manufacturing magnetic scale
US4935070A (en) Method of manufacturing heat resisting magnetic scale
Gambino et al. Plasma-sprayed thick-film anisotropic magnetoresistive (AMR) sensors
EP0441581A2 (en) Method for producing magnetic structure
JP2588916B2 (en) Manufacturing method of heat resistant and corrosion resistant magnetic scale
JPH0288715A (en) Production of heat resistant magnetic scale
JP2886131B2 (en) Manufacturing method of heat resistant magnetic scale
US5100692A (en) Method of forming a magnetically modified portion
Kim et al. Design of amorphous magnetic materials for high frequency sensors based upon permalloy characteristics
JPH0823501B2 (en) Heat resistant magnetic scale and method for producing the same
JPH0312047A (en) Steel plate for information recording and recording method using the same
JPS61165604A (en) Magnetic scale
JP2578949B2 (en) Magnetic information reading method
JP2005098804A (en) Magnetic probe for magnetic force microscope and its manufacturing method
Ye et al. Fabrication and characterization of CoZrGd Hall sensors
KR100265984B1 (en) Magnetic impedance effect element and magnetic head, electronic compass and autocanceller using the same
JPH01223582A (en) Manufacture of thermal resistant magnetic type marking