JP2544456B2 - Method of manufacturing magnetic scale - Google Patents

Method of manufacturing magnetic scale

Info

Publication number
JP2544456B2
JP2544456B2 JP63240371A JP24037188A JP2544456B2 JP 2544456 B2 JP2544456 B2 JP 2544456B2 JP 63240371 A JP63240371 A JP 63240371A JP 24037188 A JP24037188 A JP 24037188A JP 2544456 B2 JP2544456 B2 JP 2544456B2
Authority
JP
Japan
Prior art keywords
magnetic
steel
stainless steel
austenitic stainless
magnetic scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63240371A
Other languages
Japanese (ja)
Other versions
JPH0287014A (en
Inventor
克之 荒
秀之 八木
雅治 森安
雅之 金子
誠剛 平本
英男 池田
俊次 大村
良浩 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GENSHIRYOKU KENKYUSHO
Mitsubishi Electric Corp
Original Assignee
NIPPON GENSHIRYOKU KENKYUSHO
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GENSHIRYOKU KENKYUSHO, Mitsubishi Electric Corp filed Critical NIPPON GENSHIRYOKU KENKYUSHO
Priority to JP63240371A priority Critical patent/JP2544456B2/en
Publication of JPH0287014A publication Critical patent/JPH0287014A/en
Application granted granted Critical
Publication of JP2544456B2 publication Critical patent/JP2544456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Laser Beam Processing (AREA)
  • Hard Magnetic Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高温環境で使用できる磁気スケールの製
造方法に関するものである。
The present invention relates to a method for producing a magnetic scale that can be used in a high temperature environment.

[従来の技術] 第6図は例えば特公昭48−10655号公報「磁気スケー
ル」に示された従来の磁気スケールを示す断面図であ
る。図において、(6)は鉄またはエリンバー(商品
名)のような鉄合金よりなる棒状の基体、(7)は基体
(6)の表面にメッキまたはクラッドで被着形成された
鋼またはアルミニウムのような非磁性金属層、(8)は
非磁性金属層(7)の上に形成されたコバルト・ニッケ
ルのような磁性層である。
[Prior Art] FIG. 6 is a sectional view showing a conventional magnetic scale disclosed in, for example, Japanese Patent Publication No. 48-10655, "Magnetic Scale". In the figure, (6) is a rod-shaped base made of iron or an iron alloy such as Elinvar (trade name), and (7) is steel or aluminum formed by plating or clad on the surface of the base (6). A non-magnetic metal layer (8) is a magnetic layer such as cobalt-nickel formed on the non-magnetic metal layer (7).

[発明が解決しようとする課題] 上記のような従来の磁気スケールは以上のように構成
されており、例えば金属データブック;日本金属学会
編、丸善(1974)に示されているように鉄およびエリン
バーの熱膨張係数はそれぞれ12.1×10-6及び8.0×10-6
であり、鋼およびアルミニウムの熱膨張係数はそれぞれ
17.0×10-6及び23.5×10-6である。また、コバルト・ニ
ッケルの熱膨張係数は例えば耐熱鋼データ集;特殊鋼ク
ラブ(1965)に示されているように、S−816(AISI 67
1)では11.9×10-6である。
[Problems to be Solved by the Invention] The conventional magnetic scale as described above is configured as described above. For example, as shown in Maruzen (1974), Metal Data Book; The coefficient of thermal expansion of Elinvar is 12.1 × 10 -6 and 8.0 × 10 -6, respectively.
And the coefficients of thermal expansion of steel and aluminum are
17.0 × 10 -6 and 23.5 × 10 -6 . The coefficient of thermal expansion of cobalt-nickel is, for example, S-816 (AISI 67) as shown in Heat Resistant Steel Data Book; Special Steel Club (1965).
In 1), it is 11.9 × 10 -6 .

第6図に示すような構成では、100℃以上の高温にな
ると、基体(6)、非磁性金属層(7)、磁性層(8)
の熱膨張量が異なるため、基体(6)から、非磁性金属
層(7)や磁性層(8)が剥離するという問題があっ
た。また、剥離しないような場合でも、基体(6)、非
磁性金属層(7)、磁性層(8)に熱応力が加わり、磁
性層(8)の磁気特性が劣化し、磁気スケールの感度が
低下するという問題があった。
In the structure as shown in FIG. 6, when the temperature rises to 100 ° C. or higher, the substrate (6), the non-magnetic metal layer (7) and the magnetic layer (8)
However, there is a problem that the non-magnetic metal layer (7) and the magnetic layer (8) are separated from the substrate (6) due to the different thermal expansion amounts. Even in the case of no peeling, thermal stress is applied to the base body (6), the non-magnetic metal layer (7) and the magnetic layer (8), the magnetic characteristics of the magnetic layer (8) deteriorate, and the sensitivity of the magnetic scale is reduced. There was a problem of lowering.

この発明は、上記のような問題点を解決するためにな
されたもので、例えば高温環境で使用しても特性劣化が
なく、安定かつ測定精度の優れた磁気スケールを製造す
る方法を得ることを目的としたものである。
The present invention has been made to solve the above problems, for example, to obtain a method for producing a magnetic scale that is stable and has excellent measurement accuracy without deterioration in characteristics even when used in a high temperature environment. It is intended.

この目的を達成したものとして、同一出願人による昭
和62年8月31日出願の特願昭62−217315号明細書「耐熱
性磁気スケールの製造方法」及び特願昭62−217316号明
細書「耐熱性磁気スケールの製造方法」がある。前者は
「耐熱性基材にこれと異なる材質の原料を載置し、上記
原料と共に上記基材に所望間隔に熱を加えて上記基材に
上記原料を混入させ、加熱部分の磁気特性を変化させ
た、上記基材及び上記加熱部分の少なくともいずれか一
方のキュリー点が100℃以上である耐熱性磁気スケール
の製造方法。」後者は「耐熱性基材に所定間隔に熱を加
えて加熱部分の磁気特性を変化させた、上記基材及び上
記加熱部分の少なくともいずれか一方のキュリー点が10
0℃以上である耐熱性磁気スケールの製造方法。」であ
る。しかしながら、これらでは、例えばフェライト析出
量があまり多くなく、残留磁化量が少なく、検出時のSN
比が高くないという問題がまだ残っていた。
To achieve this object, Japanese Patent Application No. 62-217315 filed on Aug. 31, 1987 by the same applicant, “Method for producing heat-resistant magnetic scale” and Japanese Patent Application No. 62-217316 “ There is a method for manufacturing a heat-resistant magnetic scale ”. The former said, "A raw material of a different material is placed on a heat-resistant base material, and the raw material is mixed with the raw material at a desired interval to mix the raw material with the base material to change the magnetic characteristics of the heated portion. The method for producing a heat-resistant magnetic scale in which the Curie point of at least one of the base material and the heated portion is 100 ° C. or higher. ”The latter is“ heated portion by applying heat to the heat-resistant substrate at predetermined intervals. The Curie point of at least one of the base material and the heated portion, which has changed the magnetic properties of 10
A method for producing a heat-resistant magnetic scale having a temperature of 0 ° C or higher. ". However, in these cases, for example, the ferrite precipitation amount is not so large, the residual magnetization amount is small, and
The problem that the ratio was not high still remained.

そこで、この発明はさらに、検出感度がよく、高いSN
比が得られる磁気スケールを製造する方法を提供するこ
とを目的としたものである。
Therefore, the present invention further has good detection sensitivity and high SN.
It is an object of the present invention to provide a method for producing a magnetic scale with which a ratio can be obtained.

[課題を解決するための手段] この発明の磁気スケールの製造方法は、強磁性鋼に非
磁性のオーステナイト系ステンレス鋼を重ね合わせ、上
記オーステナイト系ステンレス鋼側から高エネルギ密度
熱源により両者を所望間隔で加熱し、加熱部分の上記オ
ーステナイト系ステンレス鋼及び強磁性銅の少なくとも
一部を溶融・凝固させて上記オーステナイト系ステンレ
ス鋼に強磁性鋼を溶かし込んだ磁性のフェライトを析出
させて磁気格子を形成するようにしたものである。
[Means for Solving the Problems] A method for manufacturing a magnetic scale according to the present invention is a method in which a nonmagnetic austenitic stainless steel is superposed on a ferromagnetic steel, and the austenitic stainless steel side and a high energy density heat source are provided between them to form a desired gap. To melt and solidify at least a part of the austenitic stainless steel and ferromagnetic copper in the heated part to precipitate magnetic ferrite in which the ferromagnetic steel is melted in the austenitic stainless steel to form a magnetic lattice. It is something that is done.

[作用] この発明では、強磁性鋼と非磁性鋼を重ね合わせ、非
磁性鋼側から高エネルギ密度熱源により両者を加熱し
て、加熱部分に下地の強磁性鋼をも溶かし込んで磁性体
のフェライトを析出させて磁気格子を形成するととも
に、強磁性鋼で磁気的に接続したので、検出感度がよく
SN比が高く、高温域で使用しても特性劣化などの問題の
ない磁気スケールを製造できる。また、非磁性鋼は磁気
格子形成の際に強磁性鋼に強固に固定接合される。
[Operation] In the present invention, the ferromagnetic steel and the non-magnetic steel are superposed, and both are heated by the high energy density heat source from the non-magnetic steel side, and the ferromagnetic steel of the base is also melted in the heated portion to form the magnetic material. Precipitation of ferrite to form a magnetic grid and magnetic connection with ferromagnetic steel ensure good detection sensitivity.
A high S / N ratio makes it possible to manufacture a magnetic scale without problems such as characteristic deterioration even when used in a high temperature range. Further, the non-magnetic steel is firmly fixedly joined to the ferromagnetic steel when forming the magnetic grid.

[実施例] 以下、この発明の一実施例を図について説明する。第
1図はこの発明の一実施例による磁気スケールの製造方
法を説明する斜視図である。(1)は板状の強磁性鋼
(例えば、フェライト系やマルテンサイト系のステンレ
ス鋼、JISのSUS410やSUS430など)、(2)は板状のオ
ーステナイト系非磁性ステンレス鋼(例えば、JISのSUS
304)、(11)は強磁性鋼(1)と非磁性鋼(2)を重
ね合わせた基板である。(3)は基板(11)に非磁性鋼
板(2)側からレーザビームや電子ビームなどの高エネ
ルギ密度熱源(20)を所望の間隔で照射して加熱した加
熱部分であり、加熱部分(3)の非磁性鋼(2)と強磁
性鋼(1)の少なくとも一部を溶融・凝固させる。ビー
ム照射により非磁性鋼(2)は溶融・凝固されるととも
に、強磁性鋼(1)と混合され、換言すると強磁性鋼
(1)も溶かし込んで、フェライトが析出して強磁性体
になり、基板(11)に所定間隔で磁気格子が形成され
る。なお、この際、非磁性鋼(2)は強磁性鋼(1)に
強固に固定接合される。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view illustrating a method of manufacturing a magnetic scale according to an embodiment of the present invention. (1) is a plate-shaped ferromagnetic steel (for example, ferritic or martensitic stainless steel, JIS SUS410 or SUS430), and (2) is a plate-shaped austenitic non-magnetic stainless steel (for example, JIS SUS).
304) and (11) are substrates in which ferromagnetic steel (1) and non-magnetic steel (2) are superposed. Reference numeral (3) denotes a heating portion obtained by irradiating the substrate (11) with a high energy density heat source (20) such as a laser beam or an electron beam from the nonmagnetic steel plate (2) side at a desired interval to heat the substrate (11). ) At least a part of the non-magnetic steel (2) and the ferromagnetic steel (1) are melted and solidified. By the beam irradiation, the non-magnetic steel (2) is melted and solidified and mixed with the ferromagnetic steel (1). In other words, the ferromagnetic steel (1) is also melted and ferrite is precipitated and becomes a ferromagnetic body. Magnetic lattices are formed on the substrate (11) at predetermined intervals. At this time, the non-magnetic steel (2) is firmly fixedly joined to the ferromagnetic steel (1).

例えば、非磁性鋼(2)として板厚1mmのSUS304、強
磁性鋼(1)として板厚1mmのSUS410を用い、これに高
エネルギ密度熱源(20)としてCO2レーザを出力1kw、ビ
ームスキャン速度2m/min程度の条件で照射して加熱する
と、加熱部分(3)に溶融幅1.2mm、溶融深さ1.5mmの溶
融部が形成される。即ち加熱部分(3)の非磁性鋼
(2)の内部に磁気格子が形成されるとともに強磁性鋼
(1)により磁気的に接続される。
For example, SUS304 with a plate thickness of 1 mm is used as the non-magnetic steel (2), SUS410 with a plate thickness of 1 mm is used as the ferromagnetic steel (1), a CO2 laser is output as a high energy density heat source (20) at 1 kw, and a beam scanning speed is 2 m. When irradiated and heated under a condition of about / min, a melted part having a melt width of 1.2 mm and a melt depth of 1.5 mm is formed in the heated part (3). That is, a magnetic grid is formed inside the non-magnetic steel (2) of the heating portion (3) and magnetically connected by the ferromagnetic steel (1).

第2図はこの発明の一実施例による磁気スケールを用
いて変位量を検出している様子を示す側面構成図であ
る。図において、(5)は磁束量を検出する素子、例え
ばホール素子などであり、(4)は励磁用磁石、(30)
は磁束である。励磁用磁石(4)に電流を流して磁場を
形成し、磁気格子から漏れる磁束量をホール素子(5)
などを用いて検出する。第3図は検出された磁束量(ホ
ール素子出力)を示すグラフであり、横軸に変位量、縦
軸に磁束量(ホール素子出力)をとっている。従って、
ビームを照射して基板に形成する磁気格子の間隔を任意
に選び、第2図のように励磁用磁石と磁束量を検出する
素子例えばホール素子などを用いることにより、第3図
に示すような変位量と残留磁化量の関係がえられ、変位
の検出が可能となる。また、この方法では非磁性基板の
中に磁性層を形成したので、磁束が第3図に示すように
パルス的に検出され、従来の方法に比べ安定で、かつ非
常に検出感度が高くなる。
FIG. 2 is a side view showing the manner in which the amount of displacement is detected using the magnetic scale according to the embodiment of the present invention. In the figure, (5) is an element that detects the amount of magnetic flux, such as a Hall element, (4) is an exciting magnet, (30)
Is the magnetic flux. A current is passed through the exciting magnet (4) to form a magnetic field, and the amount of magnetic flux leaking from the magnetic lattice is determined by the hall element (5).
Etc. to detect. FIG. 3 is a graph showing the detected magnetic flux amount (Hall element output), in which the horizontal axis represents the displacement amount and the vertical axis represents the magnetic flux amount (Hall element output). Therefore,
As shown in FIG. 3, by arbitrarily selecting the interval of the magnetic grid formed on the substrate by irradiating the beam and using the exciting magnet and the element for detecting the amount of magnetic flux such as the Hall element as shown in FIG. The relationship between the displacement amount and the residual magnetization amount is obtained, and the displacement can be detected. Further, in this method, since the magnetic layer is formed in the non-magnetic substrate, the magnetic flux is detected in pulses as shown in FIG. 3, which is more stable than the conventional method and has a very high detection sensitivity.

また、磁性を示すフェライトのキュリー点は約700℃
と高いので、耐熱性が優れている。
Also, the Curie point of ferrite that exhibits magnetism is approximately 700 ° C.
Because it is high, it has excellent heat resistance.

なお、上記実施例では、CO2レーザを用いたが、YAGレ
ーザなど他のレーザや電子ビームでもよく、プラズマな
ど他の高エネルギ密度熱源であってもよい。
Although the CO 2 laser is used in the above embodiment, another laser such as a YAG laser or an electron beam may be used, or another high energy density heat source such as plasma may be used.

上記実施例では、ビーム照射条件についてはその一例
を示したもので、様々な条件を選択できることは言うま
でもない。
In the above-mentioned embodiment, the beam irradiation condition is shown as an example, and it goes without saying that various conditions can be selected.

さらに、上記実施例では、基板(11)としてステンレ
ス鋼SUS304やSUS410を用いたが、他の非磁性のオーステ
ナイト系ステンレス鋼、例えばSUS316、SUS309などや、
他の強磁性鋼でもよく、形状も例えばパイプなど円筒や
円柱状など他の形状でもよいことは言うまでもない。
Furthermore, although stainless steel SUS304 or SUS410 was used as the substrate (11) in the above-mentioned examples, other non-magnetic austenitic stainless steels such as SUS316 and SUS309,
It goes without saying that other ferromagnetic steel may be used, and the shape may be another shape such as a cylinder such as a pipe or a column.

また、上記実施例では、励磁用磁石(4)と磁束量を
検出する素子、例えばホール素子(5)などを用いて検
出するようにしたが、第4図の側面構成図に示すように
着磁用の電磁石(15)により磁気スケールに予め着磁
し、第5図の斜視図に示すように磁気スケールに残留し
ている磁化量をホール素子のようなセンサで検出するよ
うにしても、第3図と同様の変位量と検出磁束量の関係
が得られ、変位の検出が可能となる。
In the above embodiment, the magnet for excitation (4) and the element for detecting the amount of magnetic flux, for example, the hall element (5) are used for the detection, but as shown in the side view of FIG. Even if the magnetic scale is magnetized in advance by the electromagnet for magnetization (15) and the amount of magnetization remaining in the magnetic scale is detected by a sensor such as a Hall element as shown in the perspective view of FIG. The same relationship between the displacement amount and the detected magnetic flux amount as in FIG. 3 is obtained, and the displacement can be detected.

[発明の効果] 以上のように、この発明によれば強磁性鋼に非磁性の
オーステナイト系ステンレス鋼を重ね合わせ、上記オー
ステナイト系ステンレス鋼側から高エネルギ密度熱源に
より両者を所望間隔で加熱し、加熱部分の上記オーステ
ナイト系ステンレス鋼及び強磁性鋼の少なくとも一部を
溶融・凝固させて上記オーステナイト系ステンレス鋼に
強磁性鋼を溶かし込んだ磁性のフェライトを析出させて
磁気格子を形成するようにしたので、高温域で使用して
も特性劣化などの問題のない、検出感度がよく高いSN比
が得られる磁気スケールを製造できる効果がある。
[Effects of the Invention] As described above, according to the present invention, non-magnetic austenitic stainless steel is superposed on ferromagnetic steel, and both are heated at a desired interval from the austenitic stainless steel side by a high energy density heat source, At least a part of the austenitic stainless steel and the ferromagnetic steel in the heated portion is melted and solidified to precipitate a magnetic ferrite in which the ferromagnetic steel is melted in the austenitic stainless steel to form a magnetic lattice. Therefore, there is an effect that it is possible to manufacture a magnetic scale which has a good detection sensitivity and a high S / N ratio without causing a problem such as characteristic deterioration even when used in a high temperature range.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の磁気スケールの製造方法
を示す斜視図、第2図はこの発明の一実施例に係わる磁
気スケールを用いて変位量を検出する様子を示す側面構
成図、第3図は第2図の方法により検出された磁束量
(ホール素子出力)と変位量の関係を示すグラフ、第4
図はこの発明の他の実施例に係わる磁気スケールを着磁
している様子を示す側面構成図、第5図はこの発明の他
の実施例に係わる磁気スケールを用いて変位量を検出す
る様子を示す斜視図、第6図は従来の磁気スケールを示
す断面図である。 図において、(1)は強磁性鋼、(2)は非磁性のオー
ステナイト系ステンレス鋼、(3)は加熱部分、(20)
は高エネルギ密度熱源である。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a perspective view showing a method of manufacturing a magnetic scale according to an embodiment of the present invention, and FIG. 2 is a side view showing a state of detecting a displacement amount using a magnetic scale according to an embodiment of the present invention. 3 is a graph showing the relationship between the amount of magnetic flux (Hall element output) detected by the method of FIG. 2 and the amount of displacement, FIG.
FIG. 5 is a side view showing a state in which a magnetic scale according to another embodiment of the present invention is magnetized, and FIG. 5 shows how a displacement amount is detected using a magnetic scale according to another embodiment of the present invention. FIG. 6 is a sectional view showing a conventional magnetic scale. In the figure, (1) is a ferromagnetic steel, (2) is a non-magnetic austenitic stainless steel, (3) is a heating part, (20)
Is a high energy density heat source. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森安 雅治 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社生産技術研究所内 (72)発明者 金子 雅之 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社生産技術研究所内 (72)発明者 平本 誠剛 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社生産技術研究所内 (72)発明者 池田 英男 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社材料研究所内 (72)発明者 大村 俊次 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社材料研究所内 (72)発明者 杉山 良浩 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社材料研究所内 (56)参考文献 特開 昭62−227095(JP,A) 特開 昭61−134604(JP,A) 特開 昭62−42003(JP,A) 特開 昭62−222103(JP,A) 特開 昭62−67112(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaharu Moriyasu 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Corporation, Research Institute of Industrial Science (72) Masayuki Kaneko 8-chome, Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture No. 1 Mitsubishi Electric Corporation Production Technology Laboratory (72) Inventor Seigo Hiramoto 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Corporation Production Technology Laboratory (72) Inventor Hideo Ikeda Amagasaki City, Hyogo Prefecture 8-1, 1-1 Tsukaguchihonmachi Mitsubishi Electric Corporation Materials Research Laboratory (72) Inventor Shunji Omura 8-1-1 Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Corporation Materials Research Institute (72) Inventor Yoshihiro Sugiyama Hyogo Prefecture 8-1-1 Tsukaguchi Honcho, Amagasaki-shi, Materials Research Laboratory, Mitsubishi Electric Corporation (56) References Japanese Patent Laid-Open No. 62-227095 (JP, ) Patent Akira 61-134604 (JP, A) JP Akira 62-42003 (JP, A) JP Akira 62-222103 (JP, A) JP Akira 62-67112 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強磁性鋼に非磁性のオーステナイト系ステ
ンレス鋼を重ね合わせ、上記オーステナイト系ステンレ
ス鋼側から高エネルギ密度熱源により両者を所望間隔で
加熱し、加熱部分の上記オーステナイト系ステンレス鋼
及び強磁性鋼の少なくとも一部を溶融凝固させて、上記
オーステナイト系ステンレス鋼に強磁性鋼を溶かし込ん
だ磁性のフェライトを析出させて磁気格子を形成するよ
うにした磁気スケールの製造方法。
1. A non-magnetic austenitic stainless steel is superposed on a ferromagnetic steel, and both are heated at a desired interval from the austenitic stainless steel side by a high energy density heat source to heat the austenitic stainless steel and the strong portion of the heated portion. A method for producing a magnetic scale, wherein at least a part of magnetic steel is melted and solidified to precipitate magnetic ferrite obtained by dissolving ferromagnetic steel in the austenitic stainless steel to form a magnetic lattice.
JP63240371A 1988-09-26 1988-09-26 Method of manufacturing magnetic scale Expired - Lifetime JP2544456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240371A JP2544456B2 (en) 1988-09-26 1988-09-26 Method of manufacturing magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240371A JP2544456B2 (en) 1988-09-26 1988-09-26 Method of manufacturing magnetic scale

Publications (2)

Publication Number Publication Date
JPH0287014A JPH0287014A (en) 1990-03-27
JP2544456B2 true JP2544456B2 (en) 1996-10-16

Family

ID=17058497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240371A Expired - Lifetime JP2544456B2 (en) 1988-09-26 1988-09-26 Method of manufacturing magnetic scale

Country Status (1)

Country Link
JP (1) JP2544456B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2616504B2 (en) * 1991-02-15 1997-06-04 トヨタ自動車株式会社 Method of forming signal pattern using change in magnetic characteristics
JPH0599604A (en) * 1991-03-25 1993-04-23 Toyota Motor Corp Manufacture of magnetic scale
EP0585782A3 (en) * 1992-08-31 1994-05-18 Aichi Steel Works Ltd Composite magnetic component and method of manufacturing the same
CN103658988B (en) * 2012-08-31 2016-07-06 西门子公司 A kind of method encapsulating magnet by welding steel

Also Published As

Publication number Publication date
JPH0287014A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
JP6298589B2 (en) Encoder and scale and method for manufacturing the scale
US5091021A (en) Magnetically coded device and method of manufacture
JP2012225912A5 (en)
US5089060A (en) Thermomagnetically patterned magnets and method of making same
JP2544456B2 (en) Method of manufacturing magnetic scale
KR930011893B1 (en) Method of making permanent magnet sensor element with a soft magnetic layer
JPH0674124A (en) Fuel injection device and manufacture of fixed iron core thereof
EP0027308B1 (en) Manufacture and use of magnetic scale systems
JPH0823501B2 (en) Heat resistant magnetic scale and method for producing the same
JP2588916B2 (en) Manufacturing method of heat resistant and corrosion resistant magnetic scale
US4935070A (en) Method of manufacturing heat resisting magnetic scale
JPH0288715A (en) Production of heat resistant magnetic scale
JP2824059B2 (en) Manufacturing method of heat resistant magnetic scale
JP2886131B2 (en) Manufacturing method of heat resistant magnetic scale
JPH01100710A (en) Information recording method
JPH0287013A (en) Preparation of magnetic scale
US5076862A (en) Method of manufacturing heat resisting magnetic scale
JP2733098B2 (en) Information reading device
JPH02179902A (en) Magnetic recording medium and magnetic detector
JPH0758536B2 (en) Magnetic recording steel material and manufacturing method thereof
JPH02114394A (en) Method for reading out magnetic information
JP2854357B2 (en) Information reading device
JPH05164012A (en) Fuel injection device and manufacturing method for its fixed core
JPH0447502A (en) Information reader
JPH03207001A (en) Information reader