JPH0674124A - Fuel injection device and manufacture of fixed iron core thereof - Google Patents

Fuel injection device and manufacture of fixed iron core thereof

Info

Publication number
JPH0674124A
JPH0674124A JP32720392A JP32720392A JPH0674124A JP H0674124 A JPH0674124 A JP H0674124A JP 32720392 A JP32720392 A JP 32720392A JP 32720392 A JP32720392 A JP 32720392A JP H0674124 A JPH0674124 A JP H0674124A
Authority
JP
Japan
Prior art keywords
magnetic
iron core
fixed iron
injection device
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32720392A
Other languages
Japanese (ja)
Other versions
JP2989977B2 (en
Inventor
Shoichiro Nishitani
昌一郎 西谷
Masaharu Moriyasu
雅治 森安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4327203A priority Critical patent/JP2989977B2/en
Publication of JPH0674124A publication Critical patent/JPH0674124A/en
Application granted granted Critical
Publication of JP2989977B2 publication Critical patent/JP2989977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To dissolve a factor that causes fuel leak by obviating a seal place by forming a fixed iron core which constitutes together with an electromagnetic coil an electromagnetic actuator for reciprocating a valve body, into integral structure having no joining place between a magnetic portion and a non-magnetic portion. CONSTITUTION:A fuel injection device reciprocates a valve body by means of an electromagnetic actuator consisting of a fixed iron core and an electromagnetic coil arranged in a casing, and feeds fuel into an internal combustion engine. The fixed iron core is provided with respective magnetic portions 12, 13 on both sides with a center nonmagnetic portion 11 interposed. In this instance, the fixed iron core is formed into integral structure having no joining place between the nonmagnetic portion 11 and the respective magnetic portions 12, 13. At the time of manufacture, firstly austenite stainless steel is processed into the shape of the fixed iron core in the range of a semi-stable austenite temperature not lower than a martensite transformation temperature. Next, magnetization is carried out by conducting processing and induction and transformation into a martensite phase, and then, the quality of the center portion is changed into the former non-magnetic austenite phase by means of heat processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関に燃料を供給
する電子制御式燃料噴射装置、特に弁体を往復駆動させ
る電磁アクチュエータの固定鉄心の構造及びその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronically controlled fuel injection device for supplying fuel to an internal combustion engine, and more particularly to a structure of a fixed iron core of an electromagnetic actuator for reciprocally driving a valve body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図6は、特公昭58−54263号公報
に記載されている電子制御式燃料噴射装置の断面図であ
る。電子制御式燃料噴射装置の電磁アクチュエータは、
ケーシング内に配置された定置の電磁コイル10と固定
鉄心11、12、13で構成され、この鉄心に対して同
軸的にギャップを開けて配置された弁体15と一体の可
動子14を往復駆動させる。この固定鉄心は、磁性部1
2、13が2つに分割され、その中間部に非磁性部11
を有し、それらを金属シール16、17する構成であ
る。この非磁性部11は磁気回路において可動子14を
通る磁束を増加し、弁体の作動応答性を向上させるもの
である。従来の固定鉄心は、磁性部12、13と非磁性
部11がそれぞれ異なる磁性材料と非磁性材料からなる
ために3つの部材から構成され、その機能上、鉄心の内
部を燃料が通るためにそれぞれの部分はシールされてい
る。このシール法としては、金属シールの他にOリング
シールも用いられている。また、固定鉄心の材料にはA
lにより耐酸化性を向上させたステンレス鋼が用いられ
る。
2. Description of the Related Art FIG. 6 is a sectional view of an electronically controlled fuel injection device described in Japanese Patent Publication No. 58-54263. The electromagnetic actuator of the electronically controlled fuel injection device
Reciprocatingly drives a movable element 14 that is integrated with a stationary electromagnetic coil 10 and fixed iron cores 11, 12 and 13 that are arranged in a casing, and that is integrally formed with a valve body 15 that is coaxially opened with a gap. Let This fixed iron core has a magnetic part 1
2, 13 are divided into two, and the non-magnetic part 11 is provided in the middle part.
And the metal seals 16 and 17 are provided. The non-magnetic portion 11 increases the magnetic flux passing through the mover 14 in the magnetic circuit and improves the actuation response of the valve body. The conventional fixed iron core is composed of three members because the magnetic parts 12 and 13 and the non-magnetic part 11 are made of different magnetic materials and non-magnetic materials, respectively. The part of is sealed. As the sealing method, an O-ring seal is used in addition to the metal seal. The material of the fixed core is A
Stainless steel whose oxidation resistance is improved by 1 is used.

【0003】[0003]

【発明が解決しようとする課題】従来の電子制御式燃料
噴射装置の電磁アクチュエータの固定鉄心は、3つの部
材からなり、この3つの部材を精度よく組み立てるため
に、それぞれの部品ははめ合い構造が必要となるので、
部品形状が複雑かつ高精度が要求されるという問題があ
った。さらに高精度な部品を多数必要とするので、部品
コストが高いという問題があった。また、3つの部材で
構成されているので、それぞれの部分をOリングシール
と機械的固定の併用、あるいは、溶接による固定が必要
であった。燃料噴射装置は、動作中に−30℃と+13
0℃との間の激しい温度負荷を受ける。このため、Oリ
ングシールは、繰り返し使用により、老化、収縮、硬化
及び特にガソリンに含まれる芳香族化合物による軟化剤
の流出により劣化が促進され、シール性が低下する。一
方、溶接による金属シールは、シール箇所に非破壊検査
では検出できない微細な割れやブローホールが存在する
場合には、それらの欠陥が繰り返し使用により成長し、
シール性が低下することがある。圧力下にある燃料は上
記のシール性の低下した箇所を通って機関室内に流出し
て、着火することがあるなどの問題もあった。
The fixed iron core of the electromagnetic actuator of the conventional electronically controlled fuel injection device is composed of three members, and in order to assemble these three members with high accuracy, the respective parts have a fitting structure. You will need
There is a problem that the shape of the parts is complicated and high precision is required. Further, since a large number of highly accurate parts are required, there is a problem that the parts cost is high. Further, since it is composed of three members, it is necessary to use the O-ring seal and mechanical fixing at the same time, or fix them by welding. The fuel injection device operates at -30 ° C and +13 during operation.
Subject to severe temperature loading between 0 ° C. Therefore, the O-ring seal is deteriorated due to aging, shrinkage, curing, and especially the outflow of the softening agent due to the aromatic compound contained in gasoline, and the sealing property is deteriorated by repeated use. On the other hand, in the case of metal seals made by welding, if there are fine cracks or blowholes that cannot be detected by nondestructive inspection at the seal location, these defects grow through repeated use
The sealability may deteriorate. There is also a problem that the fuel under pressure may ignite by flowing out into the engine room through the above-mentioned location where the sealing property is deteriorated.

【0004】本発明は、上記のような問題点を解決する
ためになされたもので、部品数が少なく、シール箇所の
ない燃料噴射装置の電磁アクチュエータ用固定鉄心を得
ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a fixed iron core for an electromagnetic actuator of a fuel injection device which has a small number of parts and has no sealed portion.

【0005】また、製造コストが低減できる電磁アクチ
ュエータ用固定鉄心の製造方法を提供することを目的と
する。
Another object of the present invention is to provide a method of manufacturing a fixed iron core for an electromagnetic actuator, which can reduce the manufacturing cost.

【0006】[0006]

【課題を解決するための手段】本発明に係る燃料噴射装
置は、電磁アクチュエータ用固定鉄心が、磁性部と非磁
性部との間に接合箇所がない一体構造のもので構成され
たものである。
In the fuel injection device according to the present invention, the fixed iron core for an electromagnetic actuator is constructed as an integral structure having no joint between the magnetic part and the non-magnetic part. .

【0007】上記固定鉄心は、オーステナイト系ステン
レス鋼をマルテンサイト変態温度以上の準安定オーステ
ナイト温度域で固定鉄心の形状に強加工を施し、マルテ
ンサイト相に加工誘起変態させて磁性化したのち、加熱
処理により中間部をもとの非磁性のオーステナイト相に
改質して製造したものである。
The fixed core is formed by subjecting an austenitic stainless steel to strong working in the shape of the fixed core in a metastable austenite temperature range above the martensitic transformation temperature, and subjecting it to work-induced transformation into a martensite phase to magnetize it, followed by heating. It is manufactured by modifying the intermediate portion to the original non-magnetic austenite phase by treatment.

【0008】また、上記固定鉄心は、鉄−クロム系合
金、またはフェライト系ステンレス鋼、またはマルテン
サイト系ステンレス鋼よりなる磁性鋼に、オーステナイ
ト生成元素を局所的に溶融添加して、非磁性のオーステ
ナイト相を上記磁性鋼の中間部に形成することによって
も製造できる。
The fixed iron core is made of non-magnetic austenite by locally melting and adding an austenite-forming element to magnetic steel made of an iron-chromium alloy, ferritic stainless steel, or martensitic stainless steel. It can also be produced by forming a phase in the middle part of the magnetic steel.

【0009】また、磁性部を構成する材料にオーステナ
イト生成元素を溶融添加することにより非磁性部を形成
するものにおいて、磁性部は、Alを含まないフェライ
ト系またはマルテンサイト系ステンレス鋼で構成すると
よい。
In addition, in the case where the non-magnetic portion is formed by melting and adding an austenite forming element to the material constituting the magnetic portion, the magnetic portion may be made of ferritic or martensitic stainless steel containing no Al. .

【0010】さらに、上記固定鉄心は、強磁性の鉄−ニ
ッケル系合金にフェライト生成元素を局所的に溶融添加
して、非磁性のオーステナイト相を上記強磁性の鉄−ニ
ッケル系合金の中間部に形成することによっても製造で
きる。
Further, in the fixed iron core, a ferrite-forming element is locally melted and added to a ferromagnetic iron-nickel alloy so that a non-magnetic austenite phase is added to an intermediate portion of the ferromagnetic iron-nickel alloy. It can also be manufactured by forming.

【0011】[0011]

【作用】本発明においては、電磁アクチュエータ用固定
鉄心を、磁性部と非磁性部との間に接合箇所がない一体
構造のもので構成したので、シール箇所がなくなり、固
定鉄心からの燃料漏れが起こらない燃料噴射装置が得ら
れる。
In the present invention, since the fixed iron core for the electromagnetic actuator has an integral structure in which there is no joint between the magnetic portion and the non-magnetic portion, there is no seal portion and fuel leakage from the fixed iron core does not occur. A fuel injector that does not occur is obtained.

【0012】また、上記固定鉄心は、固定鉄心の形状で
素材を磁性化したのち、加熱処理により中間部をもとの
非磁性に改質して製造しているので、1つの部材からな
るシール箇所のない一体構造のものが得られ、さらに部
品コストや組立工程の大幅な簡略化により製造コストが
大幅に低減される。
Further, since the fixed iron core is manufactured by magnetizing the material in the shape of the fixed iron core and then modifying the intermediate portion to the original non-magnetic state by the heat treatment, the fixed iron core is made of a single member. A one-piece structure having no points can be obtained, and the manufacturing cost can be significantly reduced by greatly simplifying the parts cost and the assembly process.

【0013】なお、請求項3及び5のように固定鉄心の
形状の磁性鋼に、局所的に添加物を溶融添加して、非磁
性相を形成することにより、1つの部材からなる接合箇
所のない一体構造の固定鉄心を得ることもできる。
It is to be noted that the additive is locally melted and added to the magnetic steel in the shape of the fixed iron core to form a non-magnetic phase, thereby forming a non-magnetic phase. It is also possible to obtain a fixed iron core having no integral structure.

【0014】また、固定鉄心の形状の磁性鋼に、局所的
にオーステナイト生成元素を溶融添加して、非磁性相を
形成するものにおいて、磁性鋼に、Alを含まないフェ
ライト系またはマルテンサイト系ステンレス鋼を用いる
ことにより、非磁性改質部の割れがなくなり、コアから
の燃料漏れが起こらない燃料噴射装置が得られる。
Further, in a magnetic steel having the shape of a fixed iron core, which is locally melt-added with an austenite-forming element to form a non-magnetic phase, the magnetic steel is ferritic or martensitic stainless containing no Al. By using steel, it is possible to obtain a fuel injection device in which cracks in the non-magnetic modified portion are eliminated and fuel does not leak from the core.

【0015】[0015]

【実施例】【Example】

実施例1.図1は、本発明の一実施例である電磁アクチ
ュエータ用固定鉄心の製造工程図である。まず、外径2
0mm、内径14mm、長さ50mmの非磁性オーステ
ナイト系ステンレス鋼(SUS304)1(素材)を用
意する。そのステンレス鋼を250℃で鍛造により外径
18mm、内径16mmの固定鉄心の形状に加工する。
加工後ただちに、250℃の加工物を−20℃のNaC
l水溶液(22.4wt%)2中で急冷する。以上の処
理により、オーステナイト系ステンレス鋼は加工誘起マ
ルテンサイト変態を起こし、強磁性となる。次に、非磁
性部分形成箇所にCO2 レーザ3を照射し、非磁性部分
形成箇所を局所的に900〜1300℃に加熱する。加
熱部分4はマルテンサイト組織からオーステナイト組織
に変わり、非磁性となる。
Example 1. FIG. 1 is a manufacturing process diagram of a fixed core for an electromagnetic actuator according to an embodiment of the present invention. First, the outer diameter 2
A non-magnetic austenitic stainless steel (SUS304) 1 (material) having a diameter of 0 mm, an inner diameter of 14 mm and a length of 50 mm is prepared. The stainless steel is forged at 250 ° C. into a fixed iron core having an outer diameter of 18 mm and an inner diameter of 16 mm.
Immediately after processing, the processed product at 250 ° C is treated with NaC at -20 ° C.
Quench in 1 aqueous solution (22.4 wt%) 2. By the above treatment, the austenitic stainless steel undergoes work-induced martensitic transformation and becomes ferromagnetic. Next, the CO2 laser 3 is irradiated to the nonmagnetic portion forming portion, and the nonmagnetic portion forming portion is locally heated to 900 to 1300 ° C. The heated portion 4 changes from a martensite structure to an austenite structure and becomes nonmagnetic.

【0016】以上の処理により、固定鉄心の形状に加工
されたオーステナイト系ステンレス鋼の組織及び磁性は
図2に示すようになり、強磁性部12、13の中間部に
非磁性部11を有する固定鉄心を、強磁性部と非磁性部
との間に接合箇所をもたない一体構造のもので構成する
ことができる。
By the above processing, the structure and magnetism of the austenitic stainless steel processed into the shape of the fixed iron core are as shown in FIG. 2, and the fixed portion having the non-magnetic portion 11 in the middle portion of the ferromagnetic portions 12 and 13 is obtained. The iron core can be formed of an integral structure having no joint between the ferromagnetic portion and the non-magnetic portion.

【0017】なお、上記実施例においては、非磁性オー
ステナイト系ステンレス鋼にSUS304を用いている
が、それに供される要求材料特性に応じて決定されるべ
きものであり、本実施例に限定されるものではない。ま
た、素材及び固定鉄心の形状は適宜決定してよい。
Although SUS304 is used as the non-magnetic austenitic stainless steel in the above-mentioned embodiment, it should be determined according to the required material characteristics to be used for it, and is not limited to this embodiment. Not a thing. Further, the material and the shape of the fixed core may be appropriately determined.

【0018】さらに、固定鉄心の加工方法及びその加工
条件は、固定鉄心の強磁性部に要求される透磁率に応じ
て決定されるべきものであり、本実施例に限定されるも
のではない。
Further, the processing method and the processing conditions of the fixed iron core should be determined according to the magnetic permeability required for the ferromagnetic portion of the fixed iron core, and are not limited to this embodiment.

【0019】また、加熱熱源にCO2 レーザを用いてい
るが、YAGレーザや電子ビーム等の励起ビームも利用
可能であり、本実施例に限定されるものではない。ま
た、励起ビームの照射条件及びワークの回転数は、固定
鉄心の非磁性部に要求される透磁率に応じて決定される
べきものであり、本実施例に限定されるものではない。
Although a CO 2 laser is used as the heating heat source, a YAG laser, an excitation beam such as an electron beam can also be used, and the present invention is not limited to this embodiment. Moreover, the irradiation condition of the excitation beam and the rotation speed of the work should be determined according to the magnetic permeability required for the non-magnetic portion of the fixed iron core, and are not limited to the present embodiment.

【0020】実施例2.図3に、本発明の他の実施例で
ある電磁アクチュエータ用固定鉄心の製造工程図を示
す。まず、外径18mm、内径16mm、長さ50mm
の磁性フェライト系ステンレス鋼(SUS405)1
(素材)と直径1mmのNiワイヤ(純度99.9%以
上)5を用意する。次に、ステンレス鋼1を回転数4r
pmで回転させながら、CO2 レーザ3を出力1.5k
W、ab値1で外面中央に一回照射し、その照射部にN
iワイヤ5を供給する。レーザの照射部は、レーザ移動
方向に対して幅2mm、深さ1mmの溶融部6を生じ、
溶融部内にNiが均一に分散する。レーザ照射後に溶融
部6が凝固し、その溶融部のみがオーステナイト組織に
変わり、非磁性となる。以上の処理により、固定鉄心の
磁性は、磁性部の中間部に非磁性を有する構造となる。
Example 2. FIG. 3 shows a manufacturing process drawing of a fixed core for an electromagnetic actuator according to another embodiment of the present invention. First, outer diameter 18 mm, inner diameter 16 mm, length 50 mm
Magnetic Ferritic Stainless Steel (SUS405) 1
(Material) and a Ni wire 1 mm in diameter (purity 99.9% or more) 5 are prepared. Next, rotate the stainless steel 1 at a rotation speed of 4 r
Outputs CO2 laser 3 at 1.5k while rotating at pm
Irradiate the center of the outer surface once with W and ab values of 1, and then N
Supply the i-wire 5. The laser irradiation portion produces a fusion zone 6 having a width of 2 mm and a depth of 1 mm in the laser movement direction,
Ni is uniformly dispersed in the fusion zone. After the laser irradiation, the melted portion 6 is solidified, and only the melted portion changes into an austenite structure and becomes non-magnetic. By the above processing, the magnetism of the fixed iron core becomes a structure having non-magnetism in the intermediate portion of the magnetic portion.

【0021】実施例3.図4に、本発明のさらに他の実
施例である電磁アクチュエータ用固定鉄心の製造工程図
を示す。まず、外径18mm、内径16mm、長さ50
mmの強磁性パーマロイB1(素材)を用意する。次
に、そのパーマロイBの全面に厚さ0.13mmのCr
メッキ7を施す。さらに、パーマロイBを回転数4rp
mで回転させながら、CO2 レーザ3を出力1.5k
W、ab値1で外面中央に一回照射する。レーザの照射
部は、レーザ移動方向に対して幅2mm、深さ1mmの
溶融部6を生じ、溶融部内にCrが均一に分散する。レ
ーザ照射後に溶融部6が凝固し、その溶融部6はFe−
17wt%Cr−35wt%Ni合金となり、組織がオ
ーステナイト単相で非磁性となる。以上の処理により、
固定鉄心の磁性は、強磁性部の中間部に非磁性を有する
構造となる。
Example 3. FIG. 4 shows a manufacturing process drawing of a fixed core for an electromagnetic actuator which is still another embodiment of the present invention. First, outer diameter 18 mm, inner diameter 16 mm, length 50
Prepare a ferromagnetic permalloy B1 (material) of mm. Next, the entire surface of the permalloy B is Cr with a thickness of 0.13 mm.
Apply plating 7. Furthermore, permalloy B is rotated at 4 rp
Outputs CO2 laser 3 1.5k while rotating at m
Irradiate the center of the outer surface once with W and ab values of 1. At the laser irradiation portion, a melted portion 6 having a width of 2 mm and a depth of 1 mm is generated in the laser moving direction, and Cr is uniformly dispersed in the melted portion. After laser irradiation, the melted portion 6 solidifies, and the melted portion 6 is Fe-
It becomes a 17 wt% Cr-35 wt% Ni alloy, and the structure is austenite single phase and non-magnetic. By the above processing,
The magnetism of the fixed iron core has a non-magnetic structure in the middle part of the ferromagnetic part.

【0022】なお、上記実施例2ではフェライト系ステ
ンレス鋼(SUS405)を用いたが、鉄−クロム系合
金、またはマルテンサイト系ステンレス鋼でもよく、ま
た、実施例3において用いられている材料も、それに供
される要求材料特性に応じて決定されるべきものであ
り、本実施例に限定されるものではない。また、非磁性
部の組成もオーステナイト生成領域であればよく本実施
例に限定されるものでないことは言うまでもない。
Although the ferritic stainless steel (SUS405) is used in the second embodiment, an iron-chromium alloy or a martensitic stainless steel may be used, and the material used in the third embodiment is also It should be determined according to the required material characteristics to be used for it, and is not limited to this example. Needless to say, the composition of the non-magnetic portion is not limited to that of this embodiment as long as it is in the austenite forming region.

【0023】実施例4.なお、上記実施例2で示した製
法により製造されるものにおいて、磁性部がAlで耐酸
化性を向上させたステンレス鋼で構成される場合、低融
点のAlが非磁性のオーステナイトの結晶粒界に偏析し
て図5(a)に示すような割れを引き起こし、圧力下に
ある燃料が割れを通って機関室内に流出して、着火する
などの新たな問題が生じる。本実施例では鉄心の磁性部
を、Alの含まれないステンレス鋼、あるいはAlでは
なくSiで耐酸化性を向上させたステンレス鋼で構成
し、その一部をオーステナイト生成元素を局部的に溶融
添加することにより非磁性改質したので、非磁性改質部
の割れがなくなり、コアからの燃料漏れが起こらない燃
料噴射装置が得られる。
Example 4. In the case where the magnetic part is made of stainless steel whose Al is made of Al and has improved oxidation resistance, the low melting point Al is a non-magnetic austenite crystal grain boundary in the product manufactured by the manufacturing method shown in the second embodiment. Segregates to cause cracks as shown in FIG. 5 (a), and fuel under pressure flows through the cracks into the engine room, causing a new problem such as ignition. In this embodiment, the magnetic part of the iron core is made of stainless steel containing no Al or stainless steel whose oxidation resistance is improved by Si instead of Al, and a portion of which is locally added with an austenite-forming element by melting. By doing so, since the non-magnetic reforming is performed, cracks in the non-magnetic reforming portion are eliminated, and a fuel injection device in which fuel leakage from the core does not occur can be obtained.

【0024】本実施例の磁性部の材料としては、SUS
410L、SUS430、SUS434などの、Crが
10〜35%、Siが4%以下、Cが0.15%以下、
その他必要に応じてMn、P、S、Mo、N、Ni、C
uなどが含まれ、Alの含まれていないフェライト系ス
テンレス鋼、あるいは、SUS403、SUS410、
SUS416などの、Crが10〜20%、Siが2%
以下、Cが1.5%以下、その他必要に応じてMn、
P、S、Ni、Moなどが含まれ、Alの含まれていな
いマルテンサイト系ステンレス鋼があげられる。
The material of the magnetic part of this embodiment is SUS.
410L, SUS430, SUS434 and the like, Cr is 10 to 35%, Si is 4% or less, C is 0.15% or less,
Other Mn, P, S, Mo, N, Ni, C as required
ferritic stainless steel containing u and the like and not containing Al, or SUS403, SUS410,
Cr such as SUS416 is 10 to 20%, Si is 2%
Hereinafter, C is 1.5% or less, and if necessary, Mn,
An example of the martensitic stainless steel contains P, S, Ni, Mo, etc. and does not contain Al.

【0025】以下に、磁性部がSUS410Lで構成さ
れる鉄心の製法を示す。まず、切断、冷間鍛造、切削な
どの加工により外径10mm、内径8mm、長さ50m
mのパイプ形状に加工した素材(SUS410L)、ま
た、直径0.35mmのNiワイヤ(純度99.9以
上)を用意する。次に、SUS410Lを回転数32r
pmで回転させながら、CO2 レーザを出力1.5k
W、ab値1で外面中央に一回照射し、その照射部にN
iワイヤを供給する。レーザの照射部は、レーザ移動方
向に対して幅2mm、深さ1mmの溶融部を生じ、溶融
部内にNiが均一に分散する。レーザ照射後に溶融部が
凝固し、その溶融部のみがオーステナイト組織に変わ
り、非磁性となる。以上の処理により、コアは、磁性ス
テンレス鋼の中間部に非磁性改質部を有する構造とな
る。
A method of manufacturing an iron core whose magnetic portion is made of SUS410L will be described below. First, by processing such as cutting, cold forging, and cutting, the outer diameter is 10 mm, the inner diameter is 8 mm, and the length is 50 m.
A raw material (SUS410L) processed into a m-shaped pipe and a Ni wire (purity 99.9 or more) having a diameter of 0.35 mm are prepared. Next, use SUS410L to rotate 32r
Outputs a CO2 laser of 1.5k while rotating at pm
Irradiate the center of the outer surface once with W and ab values of 1, and then N
Supply i-wire. The laser irradiation portion produces a melted portion having a width of 2 mm and a depth of 1 mm in the laser moving direction, and Ni is uniformly dispersed in the melted portion. After the laser irradiation, the melted portion is solidified, and only the melted portion changes into an austenite structure and becomes non-magnetic. Through the above processing, the core has a structure having a non-magnetic modified portion in the middle portion of magnetic stainless steel.

【0026】上記方法で得られた非磁性部の透磁率を磁
気天秤法により測定した結果、1.1以下であった。ま
た、磁性材にAlで耐酸化性を向上させたSUS405
を用いて非磁性改質した場合に発生していた図5(a)
に示すような割れは、図5(b)に示すように、SUS
410Lを非磁性改質した場合には観察されなかった。
The magnetic permeability of the non-magnetic portion obtained by the above method was measured by a magnetic balance method and the result was 1.1 or less. In addition, SUS405, whose magnetic material is Al, has improved oxidation resistance.
5 (a) that occurred when non-magnetic modification was performed using
As shown in FIG. 5 (b), the cracks shown in FIG.
It was not observed when 410L was non-magnetically modified.

【0027】なお、上記各実施例において素材及び固定
鉄心の形状は適宜決定してよい。また、非磁性部の範囲
も同様に適宜決定してよい。
The material and the shape of the fixed iron core in each of the above embodiments may be appropriately determined. Further, the range of the non-magnetic part may be appropriately determined in the same manner.

【0028】さらに、加熱熱源にCO2 レーザを用いて
いるが、YAGレーザや電子ビーム等の励起ビーム、ア
ークやプラズマも利用可能であり、上記各実施例に限定
されるものではない。また、励起ビームの照射条件及び
ワークの回転数は、固定鉄心の非磁性部に要求される透
磁率に応じて決定されるべきものであり、上記各実施例
に限定されるものではない。
Further, although a CO 2 laser is used as the heating heat source, an excitation beam such as a YAG laser or an electron beam, an arc or a plasma can be used, and the present invention is not limited to the above-mentioned embodiments. Further, the irradiation condition of the excitation beam and the rotation speed of the work should be determined according to the magnetic permeability required for the non-magnetic portion of the fixed iron core, and are not limited to the above-mentioned respective embodiments.

【0029】さらに、上記実施例2、4において、オー
ステナイト生成元素にNiを用いているが、Co、M
n、Cuも使用可能であり、本実施例に限定されるもの
ではない。
Further, in Examples 2 and 4 above, Ni was used as the austenite forming element.
n and Cu can also be used, and the present invention is not limited to this example.

【0030】また、純度99.9%以上のNiワイヤを
用いているが、Ni−Cr合金、Ni−Cu合金などオ
ーステナイト生成元素が含まれる合金のワイヤも利用可
能であり、本実施例に限定されるものではない。また、
ワイヤの直径は、非磁性部の組成に応じて決定されるも
のであり、本実施例に限定されるものではない。
Although a Ni wire having a purity of 99.9% or more is used, a wire made of an alloy containing an austenite-forming element such as a Ni-Cr alloy or a Ni-Cu alloy can also be used, and is limited to this embodiment. It is not something that will be done. Also,
The diameter of the wire is determined according to the composition of the non-magnetic portion, and is not limited to this embodiment.

【0031】また、上記実施例2、4において、Niの
添加方法にワイヤ供給法を用いているが、メッキ法、粉
末供給法も利用可能であり、本実施例に限定されるもの
ではない。同様に、上記実施例3において、Crの添加
方法にメッキ法を用いているが、本実施例に限定される
ものではない。
Further, in the above-mentioned Embodiments 2 and 4, the wire supply method is used as the Ni addition method, but the plating method and the powder supply method can also be used, and the present invention is not limited to this embodiment. Similarly, although the plating method is used as the Cr addition method in the third embodiment, the present invention is not limited to this embodiment.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、電磁ア
クチュエータ用固定鉄心を、磁性部と非磁性部との間に
接合箇所をもたない一体構造のもので構成したので、シ
ール個所がなくなり、電磁アクチュエータ用固定鉄心か
らの燃料漏れが発生する要因をなくなり、燃料噴射装置
の信頼性が大幅に向上する効果がある。
As described above, according to the present invention, the fixed core for the electromagnetic actuator is constructed as an integral structure having no joint between the magnetic portion and the non-magnetic portion. Is eliminated, the factor that causes fuel leakage from the fixed core for the electromagnetic actuator is eliminated, and the reliability of the fuel injection device is significantly improved.

【0033】また、上記固定鉄心は、オーステナイト系
ステンレス鋼をマルテンサイト変態温度以上の準安定オ
ーステナイト温度域で固定鉄心の形状に強加工を施し、
マルテンサイト相に加工誘起変態させて磁性化したの
ち、加熱処理により中間部をもとの非磁性のオーステナ
イト相に改質して製造したので、1つの部材からなるシ
ール箇所のない一体構造のものが得られ、さらに固定鉄
心の部品が3体から1体に減らせ、部品コストや組立工
程の大幅な簡略化により製造コストが大幅に低減される
効果がある。
The fixed iron core is formed by subjecting austenitic stainless steel to strong working in the shape of the fixed iron core in the metastable austenite temperature range above the martensitic transformation temperature,
It was manufactured by transforming the intermediate part to the original non-magnetic austenite phase by heat treatment after processing-induced transformation to the martensite phase to make it magnetized. In addition, the number of parts of the fixed iron core can be reduced from three to one, and the manufacturing cost can be significantly reduced by greatly simplifying the parts cost and the assembly process.

【0034】また、上記固定鉄心は、鉄−クロム系合
金、またはフェライト系ステンレス鋼、またはマルテン
サイト系ステンレス鋼よりなる磁性鋼に、オーステナイ
ト生成元素を励起ビームなどを熱源として局所的に溶融
添加し、溶融部を非磁性のオーステナイト単相として製
造してもよく、上記製造方法と同様、1つの部材からな
るシール箇所のない一体構造のものが得られ、さらに固
定鉄心の部品が3体から1体に減らせ、部品コストや組
立工程の大幅な簡略化により製造コストが大幅に低減さ
れる効果がある。
The fixed iron core is obtained by locally melting and adding an austenite-forming element to a magnetic steel made of an iron-chromium alloy, a ferritic stainless steel, or a martensitic stainless steel by using an excitation beam or the like as a heat source. Alternatively, the melted portion may be manufactured as a non-magnetic austenite single phase, and as in the above-described manufacturing method, an integrated structure having one member and no sealing portion can be obtained. There is an effect that the manufacturing cost can be significantly reduced due to the reduction in the body and the simplification of the parts cost and the assembly process.

【0035】なお、上記磁性鋼に、Alを含まないフェ
ライト系またはマルテンサイト系ステンレス鋼を用いる
ことにより、非磁性改質部の割れがなくなり、コアから
の燃料漏れが起こらない燃料噴射装置が得られる効果が
ある。
By using a ferritic or martensitic stainless steel containing no Al as the magnetic steel, a fuel injection device is obtained in which cracks in the non-magnetic reformed portion are eliminated and fuel leakage from the core does not occur. It is effective.

【0036】さらに、上記固定鉄心は、強磁性のFe−
Ni合金鋼に、Crなどのフェライト生成元素を励起ビ
ームを熱源として局所的に溶融添加し、溶融部を非磁性
のオーステナイト単相として製造してもよく、上記製造
方法と同様の効果がある。
Further, the fixed iron core is made of a ferromagnetic Fe--
A ferrite-forming element such as Cr may be locally melt-added to a Ni alloy steel by using an excitation beam as a heat source, and the melted portion may be manufactured as a non-magnetic austenite single phase, which has the same effect as the above manufacturing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示す電磁アクチュエータ用
固定鉄心の製造工程図である。
FIG. 1 is a manufacturing process diagram of a fixed core for an electromagnetic actuator showing a first embodiment of the present invention.

【図2】本発明の実施例1における電磁アクチュエータ
用固定鉄心の断面図である。
FIG. 2 is a sectional view of a fixed core for an electromagnetic actuator according to the first embodiment of the present invention.

【図3】本発明の実施例2を示す電磁アクチュエータ用
固定鉄心の製造工程図である。
FIG. 3 is a manufacturing process diagram of a fixed core for an electromagnetic actuator showing a second embodiment of the present invention.

【図4】本発明の実施例3を示す電磁アクチュエータ用
固定鉄心の製造工程図である。
FIG. 4 is a manufacturing process diagram of a fixed core for an electromagnetic actuator showing a third embodiment of the present invention.

【図5】本発明の実施例2及び4における非磁性改質部
を示す写真である。
FIG. 5 is a photograph showing a nonmagnetic modified portion in Examples 2 and 4 of the present invention.

【図6】電子制御式燃料噴射装置を示す断面図である。FIG. 6 is a cross-sectional view showing an electronically controlled fuel injection device.

【符号の説明】[Explanation of symbols]

1 素材 3 CO2 レーザビーム 4 加熱部 5 Niワイヤ 6 溶融部 7 Crメッキ層 10 電磁コイル 11 非磁性部 12 強磁性部 13 強磁性部 14 可動子 15 弁体 1 Material 3 CO2 Laser Beam 4 Heating Part 5 Ni Wire 6 Melting Part 7 Cr Plating Layer 10 Electromagnetic Coil 11 Non-Magnetic Part 12 Ferromagnetic Part 13 Ferromagnetic Part 14 Mover 15 Valve Body

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング内に配置された電磁コイル、
及び非磁性部をはさんで両側に磁性部を有する固定鉄心
で構成される電磁アクチュエータにより弁体を往復駆動
させ、内燃機関に燃料を供給する燃料噴射装置におい
て、上記固定鉄心を、上記磁性部と上記非磁性部との間
に接合箇所をもたない一体構造のもので構成したことを
特徴とする燃料噴射装置。
1. An electromagnetic coil arranged in a casing,
And a fuel injection device that supplies fuel to an internal combustion engine by reciprocatingly driving a valve element by an electromagnetic actuator composed of fixed iron cores having magnetic portions on both sides with a non-magnetic portion interposed therebetween. A fuel injection device having an integral structure having no joint between the nonmagnetic portion and the nonmagnetic portion.
【請求項2】 オーステナイト系ステンレス鋼をマルテ
ンサイト変態温度以上の準安定オーステナイト温度域で
固定鉄心の形状に強加工を施し、マルテンサイト相に加
工誘起変態させて磁性化したのち、加熱処理により中間
部をもとの非磁性のオーステナイト相に改質する燃料噴
射装置の固定鉄心の製造方法。
2. Austenitic stainless steel is subjected to strong working in the shape of a fixed core in a metastable austenite temperature range above the martensitic transformation temperature, and is subjected to work-induced transformation into a martensite phase to be magnetized and then subjected to heat treatment to form an intermediate. Method for manufacturing a fixed iron core of a fuel injection device, which reforms a non-magnetic austenite phase based on a part.
【請求項3】 鉄−クロム系合金、またはフェライト系
ステンレス鋼、またはマルテンサイト系ステンレス鋼よ
りなる磁性鋼に、オーステナイト生成元素を局所的に溶
融添加して、非磁性のオーステナイト相を上記磁性鋼の
中間部に形成する燃料噴射装置の固定鉄心の製造方法。
3. A non-magnetic austenite phase is added to a magnetic steel composed of an iron-chromium alloy, a ferritic stainless steel, or a martensitic stainless steel by locally melting and adding an austenite-forming element. Of manufacturing a fixed iron core of a fuel injection device, which is formed in the middle part of the.
【請求項4】 請求項3記載の磁性鋼はAlを含まない
フェライト系ステンレス鋼、またはマルテンサイト系ス
テンレス鋼よりなることを特徴とする燃料噴射装置の固
定鉄心の製造方法。
4. The method for manufacturing a fixed core of a fuel injection device, wherein the magnetic steel according to claim 3 is made of ferritic stainless steel containing no Al or martensitic stainless steel.
【請求項5】 強磁性の鉄−ニッケル系合金にフェライ
ト生成元素を局所的に溶融添加して、非磁性のオーステ
ナイト相を上記強磁性の鉄−ニッケル系合金の中間部に
形成する燃料噴射装置の固定鉄心の製造方法。
5. A fuel injection device for locally adding a ferrite-forming element to a ferromagnetic iron-nickel alloy to add a non-magnetic austenite phase to an intermediate portion of the ferromagnetic iron-nickel alloy. Method of manufacturing fixed iron core.
JP4327203A 1991-12-17 1992-11-11 Manufacturing method of fixed iron core for fuel injection device Expired - Lifetime JP2989977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4327203A JP2989977B2 (en) 1991-12-17 1992-11-11 Manufacturing method of fixed iron core for fuel injection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-333435 1991-12-17
JP33343591 1991-12-17
JP4327203A JP2989977B2 (en) 1991-12-17 1992-11-11 Manufacturing method of fixed iron core for fuel injection device

Publications (2)

Publication Number Publication Date
JPH0674124A true JPH0674124A (en) 1994-03-15
JP2989977B2 JP2989977B2 (en) 1999-12-13

Family

ID=26572428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4327203A Expired - Lifetime JP2989977B2 (en) 1991-12-17 1992-11-11 Manufacturing method of fixed iron core for fuel injection device

Country Status (1)

Country Link
JP (1) JP2989977B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821000A (en) * 1995-12-07 1998-10-13 Hitachi Metals, Ltd. And Denso Corporation Composite magnetic member and process for producing the member
US6386467B1 (en) 1999-06-29 2002-05-14 Aisan Kogyo Kabushiki Kaisha Injectors
JP2007510093A (en) * 2003-10-31 2007-04-19 シナージェクト, エルエルシー Air-assisted fuel injector with a piece of leg / seat
WO2010007151A2 (en) * 2008-07-18 2010-01-21 Robert Bosch Gmbh Method for producing a metal composite component, in particular for an electromagnetic valve
WO2010007153A2 (en) * 2008-07-18 2010-01-21 Robert Bosch Gmbh Metallic composite component, in particular for an electromagnetic valve
JP2010510458A (en) * 2006-11-22 2010-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for manufacturing a fixed magnetic circuit element
JP2013115964A (en) * 2011-11-30 2013-06-10 Jtekt Corp Rotor for rotary machine and method of manufacturing the same
JP2013115963A (en) * 2011-11-30 2013-06-10 Jtekt Corp Rotor for rotary machine and method of manufacturing the same
WO2015110622A1 (en) * 2014-01-27 2015-07-30 Delphi Automotive Systems Luxembourg Sa Fuel injector
JP2015232397A (en) * 2011-06-29 2015-12-24 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Single-piece component for electromagnetic valve
JP2018500496A (en) * 2014-12-22 2018-01-11 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Injection valve for injecting fluid, method of using the injection valve, and method of manufacturing the injection valve
RU195570U1 (en) * 2019-10-04 2020-01-31 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" FUEL INJECTOR ELECTROMAGNET

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107516569A (en) * 2016-06-15 2017-12-26 董晓程 Electromagnet is integrally formed sleeve pipe and its preparation technology with guide pin bushing and magnetic shield

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650710C2 (en) * 1995-12-07 1999-06-17 Hitachi Metals Ltd Magnetic body made of a composite material and method for its production
US5821000A (en) * 1995-12-07 1998-10-13 Hitachi Metals, Ltd. And Denso Corporation Composite magnetic member and process for producing the member
US6386467B1 (en) 1999-06-29 2002-05-14 Aisan Kogyo Kabushiki Kaisha Injectors
JP2007510093A (en) * 2003-10-31 2007-04-19 シナージェクト, エルエルシー Air-assisted fuel injector with a piece of leg / seat
JP2010510458A (en) * 2006-11-22 2010-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for manufacturing a fixed magnetic circuit element
JP2012163208A (en) * 2006-11-22 2012-08-30 Robert Bosch Gmbh Method of manufacturing fixed magnetic circuit element
JP2011528495A (en) * 2008-07-18 2011-11-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Metal composite parts, especially metal composite parts for solenoid valves
US9196408B2 (en) 2008-07-18 2015-11-24 Robert Bosch Gmbh Method for manufacturing a metal composite component, in particular for an electromagnetic valve
WO2010007151A3 (en) * 2008-07-18 2010-03-11 Robert Bosch Gmbh Method for producing a metal composite component, in particular for an electromagnetic valve
JP2011528494A (en) * 2008-07-18 2011-11-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing a metal composite member, particularly a metal composite member for a solenoid valve
WO2010007153A2 (en) * 2008-07-18 2010-01-21 Robert Bosch Gmbh Metallic composite component, in particular for an electromagnetic valve
WO2010007151A2 (en) * 2008-07-18 2010-01-21 Robert Bosch Gmbh Method for producing a metal composite component, in particular for an electromagnetic valve
WO2010007153A3 (en) * 2008-07-18 2010-03-11 Robert Bosch Gmbh Metallic composite component, in particular for an electromagnetic valve
US8851450B2 (en) 2008-07-18 2014-10-07 Robert Bosch Gmbh Metallic composite component, in particular for an electromagnetic valve
JP2015232397A (en) * 2011-06-29 2015-12-24 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Single-piece component for electromagnetic valve
US9651163B2 (en) 2011-06-29 2017-05-16 Robert Bosch Gmbh Component for a magnetic actuator as well as a method for its manufacture
JP2013115963A (en) * 2011-11-30 2013-06-10 Jtekt Corp Rotor for rotary machine and method of manufacturing the same
JP2013115964A (en) * 2011-11-30 2013-06-10 Jtekt Corp Rotor for rotary machine and method of manufacturing the same
WO2015110622A1 (en) * 2014-01-27 2015-07-30 Delphi Automotive Systems Luxembourg Sa Fuel injector
JP2018500496A (en) * 2014-12-22 2018-01-11 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Injection valve for injecting fluid, method of using the injection valve, and method of manufacturing the injection valve
RU195570U1 (en) * 2019-10-04 2020-01-31 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" FUEL INJECTOR ELECTROMAGNET

Also Published As

Publication number Publication date
JP2989977B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JPH0674124A (en) Fuel injection device and manufacture of fixed iron core thereof
US5865907A (en) Composite magnetic member, process for producing the member and electromagnetic valve using the member
JP4691162B2 (en) Method for manufacturing a rigid housing
JP5627623B2 (en) Method for manufacturing a fixed magnetic circuit element
JP3024471B2 (en) Electromagnetic actuator and method of manufacturing the same
KR20060033722A (en) Liquid phase diffusion welding method for metallic machine part and metallic machine part
CN107850020B (en) Hollow composite magnetic member, method for manufacturing same, and fuel injection valve
GB2262659A (en) A core for an electromagnetic fuel injection device
JP5846793B2 (en) Composite material and electromagnetic actuator
JP4094583B2 (en) Composite material having non-magnetic part and method for producing the same
JPH05164012A (en) Fuel injection device and manufacturing method for its fixed core
US5468522A (en) Method of manufacturing a composite magnetic component
JP2936444B2 (en) Soft magnetic / non-magnetic integrated yoke component provided with magnetic flux cut-off portion and method of manufacturing soft magnetic / non-magnetic integrated yoke component provided with magnetic flux cut-off portion
JPH07103354A (en) Solenoid valve and manufacture thereof
TWI544506B (en) Electromagnetic ring
WO2018216603A1 (en) Proportional solenoid, method for producing same, and method for controlling characteristics of proportional solenoid
JPH09312208A (en) Yoke for magnetic circuit formation use and manufacture thereof
JP3213641B2 (en) Manufacturing method of composite magnetic member
JP2000087117A (en) Method for joining valve shaft of solenoid valve to sintered movable iron core
JPS63318380A (en) Magnetic circuit member of solenoid valve and manufacture thereof
JPH0287014A (en) Preparation of magnetic scale
JP2002129294A (en) High saturation magnetic flux density composite magnetic member and motor using the same member
JP2974554B2 (en) Magnetostriction measurement axis
JPH0220675A (en) Welding method for wire dot printer head
JP2002008916A (en) Composite magnetic member and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121008

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20131008

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20131008