JP2693950B2 - Substrate molding method for optical disk - Google Patents

Substrate molding method for optical disk

Info

Publication number
JP2693950B2
JP2693950B2 JP62060294A JP6029487A JP2693950B2 JP 2693950 B2 JP2693950 B2 JP 2693950B2 JP 62060294 A JP62060294 A JP 62060294A JP 6029487 A JP6029487 A JP 6029487A JP 2693950 B2 JP2693950 B2 JP 2693950B2
Authority
JP
Japan
Prior art keywords
mold
temperature
substrate
resin
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62060294A
Other languages
Japanese (ja)
Other versions
JPS63225941A (en
Inventor
昭彦 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP62060294A priority Critical patent/JP2693950B2/en
Publication of JPS63225941A publication Critical patent/JPS63225941A/en
Application granted granted Critical
Publication of JP2693950B2 publication Critical patent/JP2693950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • B29C45/2642Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複屈折を低減することのできる光学式ディス
ク用基盤成形方法に関する。 [従来の技術] 近年光ビームを集光して光学的記録媒体に照射するこ
とによって、この記録媒体に情報を高密度に記録した
り、この記録媒体からの戻り光を光検出器で受光するこ
とによって、記録媒体に書込まれている記録情報を高速
度で読出す(再生する)ことのできる光学的情報記録再
生装置が注目されるようになった。 上記記録媒体としては、PMMA等のアクリル樹脂等の基
盤に、この基盤を通った光ビームが集光照射され、記録
層を形成した部分の磁化の方向に応じて、戻り光の偏光
面が回転する磁気的記録層が形成された光磁気ディスク
とか、反射光量が異るピット列で情報が記録される光デ
ィスク等がある。尚、これら光磁気ディスク及び光ディ
スクを光学式ディスクと総称する。 上記アクリル樹脂は例えば日本国特開昭57−74701号
公報に開示されているように、光学的特性に優れている
が、吸湿性が大きく、記録媒体面が反ってしまうという
欠点がある。 このため、反りが生じにくい形状安定性が優れ、且つ
機械的強度が大きいポリカーボネート(以下PCと記
す。)樹脂等を基盤に用いることが有効と考えられる。 上記PC樹脂等を基盤に用いる場合には、その光学的特
性を十分把握する必要がある。例えば、特に光磁気ディ
スク用の基盤に用いる場合には、複屈折を示さないもの
が望ましい。又、光ディスク用の基盤に用いる場合に
も、ディスク側に導く光ビームと、ディスク側からの戻
り光ビームとは、一般に偏光ビームスプリッタで分離す
ることが行われるため、基盤が複屈折を示すと、この分
離が十分に行われず、C/Nの低下を招くことになる。こ
のため、一般的に光学式ディスクに用いる基盤として
は、複屈折の小さいものが望ましい。 上記基盤に用いる樹脂は、基盤に成形する方法等によ
ってもその屈折率が変化する場合があるので、複屈折を
小さくできる基盤の成形方法を確立することが望まれ
る。 光ディスク用基盤の成形方法の従来例として、特開昭
60−155424号に開示されたものがある。 この従来例では、厚さ1.0mm〜2.0mmで半径65mm以上か
つ175mm以下の基盤の射出成形において分子量14000〜22
000のポリカーボネート樹脂を用い、射出シリンダ温度
を330〜340℃に設定し、金型温度を80〜130℃とし、か
つ射出シリンダ内でのポリカーボネート樹脂の滞留時間
t(分)をt≦14−(1/10)(T−300)(ここでT:射
出シリンダ温度)とした射出成形方法である。 どのメーカーもポリカーボネートの射出成形にはこの
条件とほとんど同じ条件で行なっていると思われるほ
ど、一般的な条件である。 [発明が解決しようとする問題点] 上記従来例の成形方法によると、基盤に垂直入射させ
た場合非常に低い複屈折を実現できるが、斜め入射によ
る複屈折はかなり大きく根本的に複屈折を低減するには
至っていない。 つまり、従来の成形方法ては、基盤表面に光ビームを
垂直に入射させた場合には、光の複屈折はほぼ0になる
が、対物レンズによって光ビームを集光して基盤を透過
させて記録層に導く場合のように、斜め入射光が存在す
る場合にはかなり大きな複屈折が存在する。このため、
信号光のみに分離することを十分に行えなくなり、C/N
が低下し、情報を正確に読取る機能が低下する。 本発明は上述した点にかんがみてなされたもので、低
複屈折の基盤を製造することのできる光学式ディスク用
基盤成形方法を提供することを目的とする。 [問題点を解決する手段及び作用] 本発明では基盤材料となる樹脂のガラス転移温度以上
の温度に保持した金型内キャビティに溶融した樹脂を射
出する工程と、この工程後に金型を徐冷してガラス転移
温度以下まで下げる徐冷工程と、この工程後に金型を開
き基盤を取り出す工程とからなる成形方法によって、複
屈折の小さい光学式ディスク基盤を実現している。 [実施例] 以下、図面を参照して本発明を具体的に説明する。 第1図ないし第3図は本発明の一実施例に係り、第1
図は一実施例に用いられる成形装置を示し、第2図は射
出直後の徐冷の様子を示し、第3図は一実施例による望
ましい成形条件の範囲を示す。 第1図に示すようにこの一実施例の成形方法に係る基
盤成形装置1は、溶融された樹脂2を射出ノズル3か
ら、このノズル3を受けるロケートリング4の透孔を経
て金型5内のキャビティ7の基盤形状スペースに導くよ
うにしている。 上記金型5は、ロケートリング4及びゲートカット6
を嵌入できる中心孔が設けてあり、且つこの金型5は上
下方向に離脱できる上型5Aと下型5Bとからなる。これら
上型5A及び下型5Bは、精度良く高圧で密着され、この密
着により内側の中空部内に収納されたキャビティ7及び
コア8も密着状態に保存される。 上記キャビティ7には、コア8に対向する上面側に、
基盤状凹部が設けてあり、コア8と密着させることによ
って、ディスク基盤形状中空部9が形成される。従っ
て、この中空部9に溶融樹脂2を流し込み、冷却するこ
とによってディスク基盤を成形できるようにしてある。 上記キャビティ7の下面側及びコア8の上面側には、
循環液通路10がそれぞれ設けてあり、図示しない一方の
端部からこの通路10を通して他方の端部側へと液体を循
環させることによって金型5(及びこの金型5と密着す
るキャビティ7及びコア8)の温度を制御できるように
してある。この金型5の温度は、溶融された樹脂2がキ
ャビティ7内に入り込まされた後、冷却水によって金型
5の温度が樹脂2のガラス転移温度以下まで徐冷される
よう制御されることが一実施例による成形方法の特徴に
なっている。 尚、このガラス転移温度以下まで徐冷するということ
は、射出成形の際キャビティ7内に押し込んだ溶融状態
の樹脂2をガラス状態の相より高い温度のゴム状態の相
に保持し、このゴム状態の相において徐冷して成形を行
い、ガラス温度以下まで下がった後に金型5を開くよう
にしている。 上記ゴム状態の相では樹脂を形成する分子は分子内で
のボンドのまわりの回転が自由であると共に、分子間に
弱い2次的な力が働く状態であり、一方ガラス状態の相
では、分子団はただ制限された振動を行うのみであり、
近辺の鎖のセグメントに関しては、自分の位置を変える
ことができない。つまり自由度の大きい相状態で徐冷を
行っている。 尚、上記コア8はディスクの情報を形成するためのも
のである。 上記装置1を用いて一実施例に従って、基盤を成形す
る工程を以下に説明する。 上型5Aを下方に又は下型5Bを上方に移動して両者を精
度良く、高圧で密着する。この場合、金型5内のキャビ
ティ7とコア8の方が精度良く密着するようにする。次
に、第1図の1点鎖線で示す射出ノズル3を下方に移動
し、上記5Aのロケートリング4に射出ノズル3を密着さ
せ、第1図に示す状態に設定する。次に、射出ノズル3
から高温高圧で溶融した樹脂2を射出し、コア8とキャ
ビティ7とで形成される中空部9に入り込ませる。尚、
この場合、金型5の温度は樹脂のガラス転移温度以上に
設定してある。 上記中空部9内に樹脂2を入り込ませた後、循環液通
路10内に(循環液の)温度を変えた循環液を送り込み、
金型5をゆっくりと冷却する。しかしてこの徐冷工程に
よって、金型5の温度がガラス転移温度以下(PC樹脂の
ガラス転移温度は140℃〜150℃程度であり、この実施例
におけるPC樹脂では145℃である。)になったら、射出
ノズル3を元の位置に戻すと共に、金型5を開いて上型
5Aと下型5Bとに分離する。このとき、下型5Bのゲートカ
ット6を上方に移動して、ディスク基盤形状の樹脂の内
周を打ち抜き、成形された基盤が取り出される。 上記成形方法は、射出直後の冷却をゆっくり行ってい
る。この樹脂射出直後のキャビティ内の温度変化を表わ
したものを第2図に示す。尚、第2図においてサンプル
No.1,No.2は従来の射出成形方法に従った場合のものを
示す。 上記成形方法において、成形条件を変えて行ったその
成形条件を表1に示す(尚、比較のため従来例に従った
比較例をNo.1,No.2で示す)。 金型温度(以降B点と記す。)と金型開放温度(以降
C点と記す。)は、従来例においてはほぼ同一である。
これは循環液によって金型をある温度で保持しながら、
樹脂を射出成形すると、ほとんど瞬時にして樹脂は金型
温度まで冷却され、直ちに金型を開放して冷え固った基
盤を取り出している。 一方、この一実施例の方法に従った実施例の→サンプ
ルNo.3〜No.6では、金固温度(B点)を循環液を流し
て、ガラス転移点より高い温度で保持し、樹脂を射出す
る。その後金型5に冷却用循環液を流しながら樹脂が金
固温度まで下がった所で、ゆっくりと循環液の温度を変
えて、金型5を冷却していく。しかして、樹脂の温度が
ガラス転移点Tg以下に下がったら、金型5を開いてディ
スク基盤を取り出すようにしている。 この実施例に従った実験例において、金型温度B点か
ら金型開放温度C点までの徐冷の条件は第2表のように
なる。 このように一実施例にしたがって成形された実験側の
ディスク基盤に対して、複屈折を測定した結果を第3表
に示す。この複屈折の測定は、垂直入射による条件と、
斜め入射の条件とで行った。尚、この測定装置の構成
は、特願昭61−45931号に示してある。 この結果から従来方法の成形によるサンプルNo.1及び
2は垂直入射による複屈折は小さいが、斜め入射による
方法では非常に大きくなっている。 それに対してこの一実施例の成形方法によるサンプル
No.3〜6は、斜め入射による複屈折もかなり小さくなっ
ていることがわかる。この斜め入射による複屈折はディ
スク基盤の表面に対して垂直な方向の屈折率の大きさを
表わしたもので、この基盤を用いた光ディスクに記録さ
れた情報を再生する場合、ディスク基盤からの戻り光と
しての信号光を、ディスク基盤に向かう光ビームから分
離する際の分離を十分に行うことができなくなり、読取
りエラーの発生の原因になる。又、光磁気ディスク基盤
に用いた場合には、磁気的力−効果による信号光の分離
が十分でなくなり、やはり読取りエラーの発生の原因に
なるものであり、複屈折ができるだけ小さいものが望ま
しいことになる。 従って、この一実施例に従って成形されたディスク基
盤を用いると、読取りエラーの発生を低減化でき、記録
再生装置の信頼性を向上できることになる。 ところで、上記金型温度をあまり高くすると、ガラス
転移点Tgまで徐冷するまでに時間がかかり、製造効率が
低くなるためコストアップの原因になる。一方、冷却速
度を大きくすると、徐冷の効果がなくなり、複屈折が大
きくなり、C/Nが低下する。 また、冷却速度を遅くしすぎると、グルーブ、プレピ
ットの凹凸がぼやけてしまいC/Nが下がる。従って、B
点温度はガラス転移点より10〜20℃高く冷却温度が−0.
1〜−0.25℃/sec位の場合がよいという結論を得てい
る。第3図にC/N比50dB以上が得られる条件範囲を示
す。 尚、ここで縦軸はガラス転移温度(Tg)を基準とした
金型温度(Tb=B)を示す。 ところで、この実施例によると、従来の方法に較べ金
型専有時間が長くコストの面で不利と予想されるが、こ
れは成形機の工夫しだい解決される問題である。例え
ば、射出成形、徐冷、金型開放ディスク取り出しの工程
を1サイクルとして一台の成形機に複個数の金型を循回
させれば一枚の基板の成形時間については不利とならな
い。 又、記録再生光学系のばらつきとか信号処理系のS/N
に応じてとか、使用目的等に応じてディスク基盤側の冷
却速度等を変えて成形し、実用上差しつかえないように
調整することもできる。 [発明の効果] 以上述べたように本発明によれば、キャビティー内に
射出した溶融樹脂をガラス転移温度以下まで徐冷してか
ら、ディスク基盤を金型から取り出しているので、垂直
入射のみならず斜め入射による複屈折も低減化し、C/N
が低下しない光学式ディスク基盤を実現できる。また、
ガラス転移温度以下まで徐冷することにより、金型から
取り出した時点で複屈折が生じにくいディスク基盤がで
きる。
Description: TECHNICAL FIELD The present invention relates to a method for molding an optical disk substrate capable of reducing birefringence. [Prior Art] In recent years, by converging a light beam and irradiating it onto an optical recording medium, information can be recorded on this recording medium at a high density, and the return light from this recording medium is received by a photodetector. As a result, an optical information recording / reproducing apparatus capable of reading (reproducing) recorded information written on a recording medium at a high speed has come into the spotlight. As the recording medium, a light beam that has passed through this substrate is focused and irradiated onto a substrate such as an acrylic resin such as PMMA, and the polarization plane of the returning light rotates depending on the direction of magnetization of the portion where the recording layer is formed. There are a magneto-optical disk having a magnetic recording layer formed thereon, an optical disk in which information is recorded in pit rows having different reflected light amounts, and the like. The magneto-optical disc and the optical disc are collectively referred to as an optical disc. The acrylic resin is excellent in optical characteristics, as disclosed in Japanese Patent Laid-Open No. 57-74701, for example, but has a drawback that it has a high hygroscopic property and the recording medium surface is warped. Therefore, it is considered effective to use a polycarbonate (hereinafter referred to as PC) resin or the like, which has excellent shape stability in which warpage does not easily occur and has high mechanical strength, as a substrate. When using the above-mentioned PC resin or the like as a substrate, it is necessary to fully understand its optical characteristics. For example, especially when used as a substrate for a magneto-optical disk, a material that does not exhibit birefringence is desirable. Also, when used as a substrate for an optical disc, the light beam guided to the disc side and the return light beam from the disc side are generally separated by a polarization beam splitter, so that the substrate shows birefringence. However, this separation is not performed sufficiently, resulting in a decrease in C / N. Therefore, generally, a substrate having a small birefringence is desirable as a substrate used for an optical disc. Since the refractive index of the resin used for the substrate may change depending on the method of molding the substrate, it is desired to establish a method of molding the substrate that can reduce the birefringence. As a conventional example of a method for molding an optical disk substrate, Japanese Patent Laid-Open No.
There is one disclosed in 60-155424. In this conventional example, a molecular weight of 14000 to 22 in injection molding of a substrate having a thickness of 1.0 mm to 2.0 mm and a radius of 65 mm or more and 175 mm or less.
000 polycarbonate resin is used, the injection cylinder temperature is set to 330 to 340 ° C., the mold temperature is 80 to 130 ° C., and the residence time t (minute) of the polycarbonate resin in the injection cylinder is t ≦ 14− ( 1/10) (T-300) (where T: injection cylinder temperature). It is a general condition that every manufacturer seems to be performing the injection molding of polycarbonate under almost the same conditions. [Problems to be Solved by the Invention] According to the molding method of the above-mentioned conventional example, very low birefringence can be realized when vertically incident on the substrate, but birefringence due to oblique incidence is considerably large and fundamentally causes birefringence. It has not yet been reduced. That is, according to the conventional molding method, when the light beam is vertically incident on the substrate surface, the birefringence of the light is almost zero, but the light beam is condensed by the objective lens and transmitted through the substrate. There is a fairly large birefringence when obliquely incident light is present, such as when leading to the recording layer. For this reason,
It becomes impossible to sufficiently separate only the signal light, and C / N
And the ability to read information accurately is reduced. The present invention has been made in view of the above points, and an object of the present invention is to provide a method for molding a substrate for an optical disc, which can manufacture a substrate having low birefringence. [Means and Actions for Solving Problems] In the present invention, a step of injecting a molten resin into a cavity in a mold held at a temperature equal to or higher than a glass transition temperature of a resin serving as a base material, and gradually cooling the mold after this step Then, an optical disk substrate having a small birefringence is realized by a molding method including a slow cooling step of lowering the glass transition temperature or lower and a step of opening the mold and taking out the substrate after this step. EXAMPLES Hereinafter, the present invention will be described specifically with reference to the drawings. FIGS. 1 to 3 relate to an embodiment of the present invention.
The drawing shows the molding apparatus used in one embodiment, FIG. 2 shows the state of slow cooling immediately after injection, and FIG. 3 shows the range of desirable molding conditions according to one embodiment. As shown in FIG. 1, the substrate molding apparatus 1 according to the molding method of this embodiment has a structure in which a molten resin 2 is injected from an injection nozzle 3 through a through hole of a locate ring 4 that receives the nozzle 3 into a mold 5. It is guided to the space of the base shape of the cavity 7. The mold 5 includes a locate ring 4 and a gate cut 6
The mold 5 is provided with an upper mold 5A and a lower mold 5B that can be removed vertically. The upper mold 5A and the lower mold 5B are accurately and closely contacted with each other at high pressure, and the cavity 7 and the core 8 housed in the inner hollow portion are also kept in close contact by this adhesion. In the cavity 7, on the upper surface side facing the core 8,
A disk-shaped hollow portion 9 is formed by providing a disk-shaped concave portion and bringing the disk-shaped hollow portion 9 into close contact with the core 8. Therefore, the disk substrate can be molded by pouring the molten resin 2 into the hollow portion 9 and cooling it. On the lower surface side of the cavity 7 and the upper surface side of the core 8,
Circulating liquid passages 10 are provided respectively, and by circulating the liquid from one end (not shown) through the passage 10 to the other end, the mold 5 (and the cavity 7 and the core that are in close contact with the mold 5) The temperature of 8) can be controlled. The temperature of the mold 5 may be controlled so that the temperature of the mold 5 is gradually cooled to a temperature below the glass transition temperature of the resin 2 by cooling water after the molten resin 2 is introduced into the cavity 7. This is a feature of the molding method according to one embodiment. It should be noted that the gradual cooling to below the glass transition temperature means that the resin 2 in the molten state pushed into the cavity 7 during the injection molding is held in the rubber state phase at a temperature higher than the glass state phase. In the phase (3), the mold 5 is gradually cooled to perform molding, and the mold 5 is opened after the temperature has dropped to the glass temperature or lower. In the rubber phase, the molecules forming the resin are free to rotate around the bond in the molecule and weak secondary force acts between the molecules, while in the glass phase, the molecules are The group only makes limited vibrations,
You cannot change your position with respect to nearby chain segments. That is, gradual cooling is performed in a phase state having a high degree of freedom. The core 8 is for forming information on the disc. A process of forming a substrate using the above-described apparatus 1 according to an embodiment will be described below. The upper mold 5A is moved downward or the lower mold 5B is moved upward to bring them into close contact with each other with high accuracy and high pressure. In this case, the cavity 7 in the mold 5 and the core 8 are brought into close contact with each other more accurately. Next, the injection nozzle 3 shown by the one-dot chain line in FIG. 1 is moved downward to bring the injection nozzle 3 into close contact with the locate ring 4 of 5A described above, and the state shown in FIG. 1 is set. Next, the injection nozzle 3
The resin 2 melted under high temperature and high pressure is injected from the above to enter the hollow portion 9 formed by the core 8 and the cavity 7. still,
In this case, the temperature of the mold 5 is set to the glass transition temperature of the resin or higher. After injecting the resin 2 into the hollow portion 9, the circulating fluid having a different temperature (of the circulating fluid) is fed into the circulating fluid passage 10,
Cool the mold 5 slowly. However, due to this slow cooling step, the temperature of the mold 5 becomes lower than the glass transition temperature (the glass transition temperature of the PC resin is about 140 ° C to 150 ° C, and 145 ° C for the PC resin in this example). Then, return the injection nozzle 3 to its original position and open the mold 5 to open the upper mold.
Separate into 5A and lower mold 5B. At this time, the gate cut 6 of the lower die 5B is moved upward to punch out the inner periphery of the resin having a disk substrate shape, and the molded substrate is taken out. In the above molding method, cooling immediately after injection is slowly performed. FIG. 2 shows the temperature change in the cavity immediately after the resin injection. The sample in Fig. 2
No.1 and No.2 show the case where the conventional injection molding method is followed. The molding conditions obtained by changing the molding conditions in the above-described molding method are shown in Table 1 (for comparison, comparative examples according to the conventional example are shown as No. 1 and No. 2). The mold temperature (hereinafter referred to as B point) and the mold opening temperature (hereinafter referred to as C point) are almost the same in the conventional example.
This is because the mold is kept at a certain temperature by the circulating liquid,
When the resin is injection-molded, the resin is cooled to the mold temperature almost instantly, and the mold is immediately opened to take out the cooled and solid base. On the other hand, in the samples No. 3 to No. 6 of the example according to the method of this one example, the circulating temperature of the solidification temperature (point B) was flowed, and the temperature was kept higher than the glass transition point. Inject. After that, while the circulating liquid for cooling is flown through the mold 5, the temperature of the circulating liquid is slowly changed when the resin has cooled to the solidification temperature of the mold, and the mold 5 is cooled. Then, when the temperature of the resin falls below the glass transition point Tg, the die 5 is opened to take out the disk substrate. In the experimental example according to this example, the conditions of slow cooling from the mold temperature B point to the mold opening temperature C point are as shown in Table 2. Table 3 shows the results of measuring the birefringence of the experimental disk substrate molded according to one example. This birefringence is measured under the condition of normal incidence and
It was performed under the condition of oblique incidence. The structure of this measuring device is shown in Japanese Patent Application No. 61-45931. From this result, sample Nos. 1 and 2 formed by the conventional method have a small birefringence due to the vertical incidence, but the birefringence due to the oblique incidence is very large. On the other hand, the sample by the molding method of this one embodiment
It can be seen that in Nos. 3 to 6, birefringence due to oblique incidence is considerably small. The birefringence due to this oblique incidence represents the magnitude of the refractive index in the direction perpendicular to the surface of the disc substrate. When reproducing information recorded on an optical disc using this substrate, the return from the disc substrate It becomes impossible to sufficiently separate the signal light as light from the light beam directed to the disk substrate, which causes a read error. Further, when used as a magneto-optical disk substrate, the separation of the signal light due to the magnetic force-effect becomes insufficient, which also causes a read error. It is desirable that the birefringence be as small as possible. become. Therefore, by using the disk substrate formed according to this embodiment, the occurrence of read errors can be reduced and the reliability of the recording / reproducing apparatus can be improved. By the way, if the mold temperature is too high, it takes time until the glass transition point Tg is gradually cooled, and the manufacturing efficiency is lowered, which causes a cost increase. On the other hand, when the cooling rate is increased, the effect of slow cooling is lost, birefringence increases, and C / N decreases. Also, if the cooling rate is made too slow, the groove and pre-pit unevenness will be blurred and the C / N will decrease. Therefore, B
The point temperature is 10 to 20 ° C higher than the glass transition point and the cooling temperature is -0.
It has been concluded that a temperature of 1 to -0.25 ° C / sec is preferable. Figure 3 shows the range of conditions under which a C / N ratio of 50 dB or more can be obtained. Here, the vertical axis represents the mold temperature (Tb = B) based on the glass transition temperature (Tg). By the way, according to this embodiment, the mold occupancy time is longer than that in the conventional method, and it is expected to be disadvantageous in terms of cost, but this is a problem to be solved depending on the device of the molding machine. For example, if a plurality of molds are circulated in one molding machine with the processes of injection molding, slow cooling, and mold release disk removal as one cycle, the molding time of one substrate will not be disadvantageous. Also, due to variations in the recording / reproducing optical system and S / N of the signal processing system.
It is also possible to adjust the cooling speed and the like on the disk substrate side depending on the purpose of use or the like so that the disk substrate can be practically used. EFFECTS OF THE INVENTION As described above, according to the present invention, the molten resin injected into the cavity is gradually cooled to the glass transition temperature or lower, and then the disk substrate is taken out from the mold. C / N
It is possible to realize an optical disc substrate that does not deteriorate. Also,
By gradually cooling the glass substrate to a temperature below the glass transition temperature, a disk substrate is obtained in which birefringence does not easily occur when taken out from the mold.

【図面の簡単な説明】 第1図ないし第3図は本発明の一実施例に係り、第1図
は一実施例の方法に用いられる装置の概略の構成を示す
説明図、第2図は射出直後のキャビディ内の徐例による
温度変化を示す図、第3図は一実施例による望ましい成
形条件範囲を示す図である。 1……成形装置、2……溶融樹脂 3……射出ノズル、4……ロケートリング 5……金型、6……ゲートカット 7……キャビティ、8……コア 9……中空部、10……循環液通路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 3 relate to an embodiment of the present invention, FIG. 1 is an explanatory view showing a schematic configuration of an apparatus used in the method of the embodiment, and FIG. FIG. 3 is a diagram showing a gradual temperature change in the cavities immediately after injection, and FIG. 3 is a diagram showing a desirable molding condition range according to one embodiment. 1 ... Molding device, 2 ... Molten resin 3 ... Injection nozzle, 4 ... Locate ring 5 ... Mold, 6 ... Gate cut 7 ... Cavity, 8 ... Core 9 ... Hollow part, 10 ... ... Circulating fluid passage

Claims (1)

(57)【特許請求の範囲】 1.基盤材料であり、射出される樹脂のガラス転移温度
以上の温度に設定してある金型内キャビティーに、溶融
した樹脂を射出する射出工程と、 この射出工程後に前記金型を徐冷し、前記金型を前記ガ
ラス転移温度以下まで下げる徐冷工程と、 この徐冷工程後に前記金型から基盤を取り出す工程と、 から成ることを特徴とする光学式ディスク用基盤成形方
法。
(57) [Claims] The injection step of injecting the molten resin into the cavity in the mold, which is the base material and is set to a temperature not lower than the glass transition temperature of the resin to be injected, and the mold is gradually cooled after this injection step, An optical disk substrate molding method comprising: a gradual cooling step of lowering the mold to the glass transition temperature or lower; and a step of taking out the substrate from the mold after the gradual cooling step.
JP62060294A 1987-03-16 1987-03-16 Substrate molding method for optical disk Expired - Lifetime JP2693950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060294A JP2693950B2 (en) 1987-03-16 1987-03-16 Substrate molding method for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060294A JP2693950B2 (en) 1987-03-16 1987-03-16 Substrate molding method for optical disk

Publications (2)

Publication Number Publication Date
JPS63225941A JPS63225941A (en) 1988-09-20
JP2693950B2 true JP2693950B2 (en) 1997-12-24

Family

ID=13137996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060294A Expired - Lifetime JP2693950B2 (en) 1987-03-16 1987-03-16 Substrate molding method for optical disk

Country Status (1)

Country Link
JP (1) JP2693950B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227610A (en) * 1990-02-02 1991-10-08 Tamron Co Ltd Injection molding method of plastic
CN102179892A (en) * 2010-12-31 2011-09-14 杭州兴源过滤科技股份有限公司 Nanometer filter plate forming mould special for filter press and forming method thereof
CN102179900A (en) * 2010-12-31 2011-09-14 杭州兴源过滤科技股份有限公司 Forming die and forming method for nano-diaphragm special for filter press

Also Published As

Publication number Publication date
JPS63225941A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
JP2693950B2 (en) Substrate molding method for optical disk
US4898529A (en) Apparatus for molding magneto-optic substrates
JPH1186353A (en) Optical disk, metal mold for injection molding of optical disk and injection molding machine for optical disk production
US4877666A (en) Magneto-optic substrates
JPH1186352A (en) Method for molidng thin disk substrate and metal mold for molding the same
JPS6395920A (en) Injection molding of resin sheet
JP3696175B2 (en) High density optical disc having a center hole with asymmetric top and bottom structure and manufacturing method thereof
JPH09295319A (en) Mold for molding disk substrate
JP3095763B2 (en) Disc substrate molding stamper and disk substrate molding method
JP3304377B2 (en) optical disk
JP4079541B2 (en) Disc board
JP3158394B2 (en) Mold for recording disk molding
JPH0831023A (en) Production of disk without having through-hole in central part and production of disk having small-diameter through-hole in central part and the disk
JP2001110094A (en) Information recording disk
JPH0751300B2 (en) Molding method for preformatted optical disk substrate and mold used therefor
JP2525065B2 (en) Optical disk substrate molding method
JPH0763991B2 (en) Mold for molding optical disc substrate with format
JP2003048234A (en) Mold for molding optical disk, molded substrate and optical disk
JPH07316B2 (en) Formatting method for optical disc substrate with format
US20050266202A1 (en) Optical recording medium substrate and method of injection molding same
JP2002063741A (en) Optical disk
JP2000293891A (en) Optical disk substrate and forming mold for this substrate
JPH07272324A (en) Optical disk
JPH10283680A (en) Method and device for manufacturing optical recording medium
JPH07182818A (en) Method for molding hub for optical disk