JP2693450B2 - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JP2693450B2
JP2693450B2 JP62229469A JP22946987A JP2693450B2 JP 2693450 B2 JP2693450 B2 JP 2693450B2 JP 62229469 A JP62229469 A JP 62229469A JP 22946987 A JP22946987 A JP 22946987A JP 2693450 B2 JP2693450 B2 JP 2693450B2
Authority
JP
Japan
Prior art keywords
magnetic
film
region
pole
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62229469A
Other languages
Japanese (ja)
Other versions
JPS6473516A (en
Inventor
仁志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62229469A priority Critical patent/JP2693450B2/en
Publication of JPS6473516A publication Critical patent/JPS6473516A/en
Application granted granted Critical
Publication of JP2693450B2 publication Critical patent/JP2693450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3113Details for improving the magnetic domain structure or avoiding the formation or displacement of undesirable magnetic domains

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、磁性膜を磁極に用いた磁気ヘッドに係
り、高密度の磁気記録再生を行なうために必要な磁性膜
を提供するものである。 (従来の技術) 磁性膜を磁極に用いた磁気ヘッドは、従来のバルク磁
性体を磁極に用いた磁気ヘッドに比べて、微細なヘッド
の作製が容易、高周波特性が良好、インダクタンスが低
いなどの利点を有し、次世代の高密度記録再生ヘッドと
して有望であり、実際にハードディスク用磁気ヘッドの
一部に実用化されている。この種のヘッドとしては、記
録再生兼用の誘導型ヘッド、再生専用の磁気抵抗効果型
ヘッドや高周波透磁率の磁界変化を利用したヘッド(J.
Akiyama、H.Iwasaki、S.Yutabe、and S.Chiba:IEEE Tra
ns.Magn,MAG−22,692(1986))が知られている。一般
にこの種のヘッドに用いる磁性膜には、記録媒体からの
信号磁界と直交する膜面内方向に容易軸を有する一軸磁
気異方性を付与し、磁化回転を利用して高透磁率を得て
いる。 (発明が解決しようとする問題点) しかしながら、狭トラック信号の記録再生を行なうた
め磁極幅を狭めると、磁極幅端に発生する磁荷から生ず
る静磁エネルギを抑制するため、第4図に示すような高
密度の磁壁が発生し易い。第4図(a)はバックリング
型、第4図(b)は還流型の磁区構造を示す。このよう
な磁壁の発生は、透磁率の低下を引き起こし、その結
果、ヘッド感度が低下する。また、バルクハウゼンノイ
ズの発生源でもある。従って、高SN比の記録再生を行な
うには、磁壁密度を減らし、理想的には全く磁壁のない
磁極が望ましい。 一方、磁性膜の膜面垂直方向に貫通し、磁性膜を幾つ
かの磁性領域に分割するような非磁性領域を磁性膜の一
部に設けると、見かけ上、この非磁性領域は磁壁に、磁
性領域は磁区に相当すると考えられる。すなわち、各磁
性領域内では単磁区でも、各磁性領域ごとに異なる方向
に磁化が向けるため、静磁エネルギを低減できる。その
結果、磁壁のない磁極を実現できる。しかし、この場
合、この非磁性領域を非常に薄くしないと(〜100Å)
信号時磁束に対する磁気抵抗は増大し透磁率は低下す
る。通常、非磁性領域を作製するには、第1に第5図に
示した方法が考えられる。始めに基板41上に磁性膜42を
形成し(第5図(a))、次にフォトリソグラフィ技術
により非磁性領域に相当する箇所43の磁性膜をとり除き
(第5図(b))、最後に非磁性層44を全面に形成する
ことで43の箇所に非磁性領域を埋め込む(第5図
(c))。しかし、この方法では以上に狭い溝43を形成
しなければならないなど、作製が困難である。また、第
2にイオン注入などにより磁性膜の一部に非磁性領域を
形成する方法が考えられるが、この場合も、イオン注入
の領域を非常に絞り込む必要があるので作製が困難であ
る。 〔発明の構成〕 (問題点を解決するための手段) 本発明では、磁極膜面に対して垂直方向から斜めに傾
いた膜面を有する非磁性層を磁極内部に挿入する方法に
より、磁極を隣接する磁性領域間で信号が伝達される幾
つかの磁性領域(磁壁のある磁極の磁区に相当)に分割
したことを特徴とする磁極を提案する。 (作 用) 本発明では、第1に、磁性領域間の非磁性層の厚みに
相当する微細加工を行なう必要がなく、微細加工精度は
磁性領域の大きさにより決定されるので、著しく薄い非
磁性層を有する磁極の作製が可能になる。第2に、垂直
方向から斜めに傾いた磁極面上に非磁性層を形成できる
ので、膜厚が均一で、しかも欠陥の少ない良質な薄い非
磁性層を作製できるなどの利点を有する。その結果、非
磁性層が介在するための透磁率低下は抑制され、また、
磁性領域内部の磁極発生が抑えられる。さらに第3に、
垂直方向から斜めに傾いた非磁性層が磁極に増入される
と、磁極中の非磁性層の膜面垂直方向の長さを長くで
き、非磁性層の両側の磁性領域において、磁極の磁化容
易軸方向(トラック幅方向)の端面に発生する磁荷の有
効量が増大して静磁エネルギは大きく低減する。従って
各磁性領域ごとに、磁化を異なる方向に安定して向ける
ことができ、その結果磁壁のない磁極が確実に実現さ
れ、高SN比の記録再生が可能になる。 (実施例) 第1図は本発明による磁極の一実施例を示す。x,y,z
は、それぞれ磁極の磁化容易軸方向、記録媒体からの信
号磁束が加わる磁極膜面方向、および磁極膜面垂直方向
多を示す。第1図(a)は、磁極のx−y断面図であ
り、磁性層11の一部には、x方向に沿った非磁性領域12
(磁壁に相当する)が幾つか形成されている。すなわ
ち、磁性層11は磁区に相当する幾つかの磁性領域13に分
割されている。ここで非磁性層12の幅(y方向の長さ)
は、磁性領域13同志の交換相互作用が及ばない以上の大
きさ(例えば20Å以上)とする。従って、磁性領域13内
の磁化14は、外部磁界のない状態では交互に180゜異な
るx方向に向くことが可能になり、その結果磁極幅端に
現われる磁荷による静磁エネルギは低減され、磁区の発
生が抑制される。また、磁性領域13の幅を充分狭めるこ
とで(但し例えば20Å以上)信号磁束に対する磁気抵抗
の増大は抑制され高透磁率が実現できる。第1図(b)
は、磁極のy−z断面図を示す。非磁性領域12はz方向
から傾いて磁極内に形成されている。次に示すように非
磁性領域12がz方向に対して斜めに形成されることで、
非常に薄い非磁性領域12の作成が容易になる。 第2図は、第1図に示した実施例の作成方法の一例を
示す。始めに基板21上にスパッタ、蒸着などにより磁性
膜22(NiFe合金、アモルファス軟磁性合金、センダスト
合金など)を形成する(第2図(a))。ここで、膜作
製中に均一磁界を加えるなどの方法によりx方向に容易
軸を有する面内一軸磁気異方性を付与する。次にフォト
リソグラフィ技術により互いに非磁性領域12を介して隣
接する磁性領域13の一方131を形成する(第2図
(b))。この時、磁性領域131にテーパ23を形成す
る。テーパ23の角度θは磁性膜22のエッチング条件に応
じていろいろ変えることが可能である。次にレジスト24
を除去後、非磁性領域12に対応する非磁性層25(Al2O3,
SiO2,Cuなど)を非常に薄く形成(但し例えば20Å以
上)する(第2図(c))。この場合、θ=90゜である
と磁性領域131の壁面に非磁性層25を形成することは困
難であるが、θを減少させると磁性領域131のテーパ部2
1にも非磁性層25の形成は容易になる。次に磁性膜26を
形成する(第2図(d))。次にフォトリソグラフィ技
術例えばエッチバックを用いて磁性領域131上の磁性膜2
6をエッチングすることにより、磁性領域13の残り132を
形成して(第2図(f))、ほぼフラットな磁極面を得
る。従って、磁性領域13を磁性領域131と132に分割して
形成し、さらに磁性領域131にテーパ23を形成すること
で第1図に示した磁極構造の作成が可能になることが判
る。 第3図は、第1図に示した実施例の別の作成方法の一
例を示す。第2図(c)で示した非磁性領域12を形成す
る工程までは同様であるが、次に膜全面にレジスト30を
塗布し、磁性領域132が形成される部分31のレジスト30
をフォトエッチングにより除去する(第3図(a))。
津に導体膜32を薄く形成した後レジスト30を除去する
(第3図(b))。次に導体膜32上にメッキ法により磁
性領域132を形成する(第3図(c))。その結果、第
1図に示した磁極を得る。 〔発明の効果〕 本発明によると、磁性膜の内部に非磁性層を、非磁性
層膜面が磁性膜面と直交する方向から斜めに傾いた方向
に挿入することにより、非磁性層の膜厚を著しく薄くし
ても磁極の作製が可能になる。その結果、磁極内の磁壁
内の磁壁を消失もしくは著しく低減させることが可能に
なり、さらに非磁性層の介在による透磁率の低下を抑制
できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a magnetic head using a magnetic film as a magnetic pole, and relates to a magnetic film required for high-density magnetic recording and reproduction. It is provided. (Prior Art) A magnetic head using a magnetic film as a magnetic pole is easier to manufacture a finer head than a conventional magnetic head using a bulk magnetic body as a magnetic pole, has good high-frequency characteristics, and has low inductance. It has advantages and is promising as a next-generation high-density recording / reproducing head, and is actually put to practical use as a part of a magnetic head for a hard disk. As this type of head, an inductive head for both recording and reproduction, a magnetoresistive head for reproduction only, and a head that utilizes the magnetic field change of high frequency permeability (J.
Akiyama, H.Iwasaki, S.Yutabe, and S.Chiba: IEEE Tra
ns.Magn, MAG-22,692 (1986)) is known. Generally, the magnetic film used for this kind of head is given uniaxial magnetic anisotropy having an easy axis in the in-plane direction orthogonal to the signal magnetic field from the recording medium, and a high magnetic permeability is obtained by utilizing magnetization rotation. ing. (Problems to be Solved by the Invention) However, when the magnetic pole width is narrowed for recording / reproducing a narrow track signal, the magnetostatic energy generated from the magnetic charge generated at the magnetic pole width end is suppressed, and therefore, shown in FIG. Such high-density domain wall is likely to occur. FIG. 4 (a) shows a buckling type magnetic domain structure, and FIG. 4 (b) shows a reflux type magnetic domain structure. The generation of such a domain wall causes a decrease in magnetic permeability, resulting in a decrease in head sensitivity. It is also a source of Barkhausen noise. Therefore, in order to perform recording / reproduction with a high SN ratio, it is desirable to reduce the magnetic domain wall density and ideally use a magnetic pole without any magnetic domain wall. On the other hand, when a non-magnetic region that penetrates the magnetic film in the direction perpendicular to the film surface and divides the magnetic film into several magnetic regions is provided in a part of the magnetic film, the non-magnetic region apparently appears on the domain wall. The magnetic region is considered to correspond to a magnetic domain. That is, even in a single magnetic domain in each magnetic region, the magnetization is directed in different directions in each magnetic region, so that magnetostatic energy can be reduced. As a result, a magnetic pole without a domain wall can be realized. However, in this case, the non-magnetic region must be very thin (~ 100Å)
The magnetic resistance to the magnetic flux at the time of signal increases and the magnetic permeability decreases. In general, the method shown in FIG. 5 can be considered for producing the nonmagnetic region. First, the magnetic film 42 is formed on the substrate 41 (FIG. 5 (a)), and then the magnetic film at the portion 43 corresponding to the nonmagnetic region is removed by the photolithography technique (FIG. 5 (b)). Finally, a non-magnetic layer 44 is formed on the entire surface to fill the non-magnetic region at 43 (FIG. 5 (c)). However, this method is difficult to manufacture because it is necessary to form the narrower groove 43. Secondly, a method of forming a nonmagnetic region in a part of the magnetic film by ion implantation or the like can be considered, but in this case as well, the region for ion implantation needs to be extremely narrowed down, which makes the fabrication difficult. [Structure of the Invention] (Means for Solving the Problems) In the present invention, a magnetic pole is formed by a method of inserting a non-magnetic layer having a film surface inclined obliquely from a direction perpendicular to the magnetic pole film surface into the magnetic pole. We propose a magnetic pole characterized by being divided into several magnetic regions (corresponding to the magnetic domains of magnetic poles with domain walls) in which signals are transmitted between adjacent magnetic regions. (Operation) In the present invention, firstly, it is not necessary to perform microfabrication corresponding to the thickness of the non-magnetic layer between the magnetic regions, and the microfabrication precision is determined by the size of the magnetic region. It is possible to manufacture a magnetic pole having a magnetic layer. Secondly, since the non-magnetic layer can be formed on the magnetic pole surface inclined obliquely from the vertical direction, there is an advantage that a high-quality thin non-magnetic layer having a uniform film thickness and few defects can be produced. As a result, the decrease in magnetic permeability due to the interposition of the nonmagnetic layer is suppressed, and
Generation of magnetic poles inside the magnetic region is suppressed. Third,
When a non-magnetic layer that is inclined from the vertical direction is added to the magnetic pole, the length of the non-magnetic layer in the magnetic pole in the direction perpendicular to the film surface can be increased, and the magnetic poles can be magnetized in the magnetic regions on both sides of the non-magnetic layer. The effective amount of magnetic charges generated on the end face in the easy axis direction (track width direction) is increased, and the magnetostatic energy is greatly reduced. Therefore, the magnetization can be stably directed in different directions for each magnetic region, and as a result, a magnetic pole without a domain wall can be surely realized, and recording / reproduction with a high SN ratio can be performed. (Embodiment) FIG. 1 shows an embodiment of a magnetic pole according to the present invention. x, y, z
Indicates the direction of the easy axis of magnetization of the magnetic pole, the direction of the magnetic pole film surface to which the signal magnetic flux from the recording medium is applied, and the direction perpendicular to the magnetic pole film surface. FIG. 1A is an xy cross-sectional view of the magnetic pole, and a part of the magnetic layer 11 has a non-magnetic region 12 along the x direction.
Several (corresponding to domain walls) are formed. That is, the magnetic layer 11 is divided into several magnetic regions 13 corresponding to magnetic domains. Here, the width of the non-magnetic layer 12 (length in the y direction)
Is larger than the exchange interaction between the magnetic regions 13 (for example, 20 Å or more). Therefore, the magnetization 14 in the magnetic region 13 can be alternately turned in the x direction different by 180 ° in the absence of an external magnetic field, and as a result, the magnetostatic energy due to the magnetic charge appearing at the magnetic pole width end is reduced, and the magnetic domain is reduced. Is suppressed. Further, by sufficiently narrowing the width of the magnetic region 13 (however, for example, 20 Å or more), an increase in the magnetic resistance with respect to the signal magnetic flux is suppressed and a high magnetic permeability can be realized. Fig. 1 (b)
Shows a yz sectional view of the magnetic pole. The nonmagnetic region 12 is formed in the magnetic pole with an inclination from the z direction. By forming the nonmagnetic region 12 obliquely with respect to the z direction as shown below,
The very thin nonmagnetic region 12 is easily created. FIG. 2 shows an example of the production method of the embodiment shown in FIG. First, a magnetic film 22 (NiFe alloy, amorphous soft magnetic alloy, sendust alloy, etc.) is formed on the substrate 21 by sputtering or vapor deposition (FIG. 2 (a)). Here, in-plane uniaxial magnetic anisotropy having an easy axis in the x direction is imparted by a method such as applying a uniform magnetic field during film formation. Next, one side 131 of the magnetic regions 13 adjacent to each other via the non-magnetic region 12 is formed by the photolithography technique (FIG. 2B). At this time, the taper 23 is formed in the magnetic region 131. The angle θ of the taper 23 can be variously changed according to the etching conditions of the magnetic film 22. Then resist 24
After removing the non-magnetic region 25, the non-magnetic layer 25 (Al 2 O 3 ,
SiO 2 and Cu) are formed very thin (however, for example, 20 Å or more) (FIG. 2 (c)). In this case, if θ = 90 °, it is difficult to form the non-magnetic layer 25 on the wall surface of the magnetic region 131, but if θ is decreased, the taper portion 2 of the magnetic region 131 is formed.
In addition, the formation of the non-magnetic layer 25 becomes easy. Next, the magnetic film 26 is formed (FIG. 2 (d)). Next, the magnetic film 2 on the magnetic region 131 is formed by using a photolithography technique such as etch back.
The remainder 132 of the magnetic region 13 is formed by etching 6 (FIG. 2 (f)), and a substantially flat magnetic pole surface is obtained. Therefore, it can be understood that the magnetic pole structure shown in FIG. 1 can be produced by dividing the magnetic region 13 into the magnetic regions 131 and 132 and further forming the taper 23 in the magnetic region 131. FIG. 3 shows an example of another production method of the embodiment shown in FIG. The process up to the step of forming the non-magnetic region 12 shown in FIG. 2C is the same, but the resist 30 is then applied to the entire surface of the film to form the resist 30 in the portion 31 where the magnetic region 132 is formed.
Are removed by photoetching (FIG. 3 (a)).
After the conductor film 32 is thinly formed on the trench, the resist 30 is removed (FIG. 3 (b)). Next, a magnetic region 132 is formed on the conductor film 32 by a plating method (FIG. 3 (c)). As a result, the magnetic pole shown in FIG. 1 is obtained. EFFECTS OF THE INVENTION According to the present invention, a non-magnetic layer is formed inside a magnetic film by inserting the non-magnetic layer in a direction in which the non-magnetic layer film surface is obliquely inclined from the direction orthogonal to the magnetic film surface. The magnetic pole can be manufactured even if the thickness is remarkably reduced. As a result, it becomes possible to eliminate or significantly reduce the magnetic domain walls in the magnetic poles in the magnetic poles, and further it is possible to suppress the decrease in magnetic permeability due to the interposition of the nonmagnetic layer.

【図面の簡単な説明】 第1図は本発明は一実施例に係る磁極構造を示す図、第
2図および第3図は第1図に示した磁極構造の作製方法
の実施例を示す図、第4図は従来の磁極に発生する磁壁
を示す図、第5図は非磁性層を含む磁極の従来の作製方
法を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a magnetic pole structure according to an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing an embodiment of a method for manufacturing the magnetic pole structure shown in FIG. FIG. 4 is a diagram showing a magnetic domain wall generated in a conventional magnetic pole, and FIG. 5 is a diagram showing a conventional method of manufacturing a magnetic pole including a nonmagnetic layer.

Claims (1)

(57)【特許請求の範囲】 1.磁性膜を磁極に用いた磁気ヘッドにおいて、前記磁
性膜は、前記磁性膜の膜面に垂直な方向から斜めに傾い
た膜面を備えると共に分割する磁性領域間の交換相互作
用が及ばない幅以上の幅を備える非磁性層により、前記
磁極の磁化容易軸方向に沿って複数の前記磁性領域に分
割され、隣接する前記磁性領域の間で信号が伝達される
ことを特徴とする磁気ヘッド。
(57) [Claims] In a magnetic head using a magnetic film as a magnetic pole, the magnetic film has a film surface inclined obliquely from a direction perpendicular to the film surface of the magnetic film and has a width not smaller than an exchange interaction between divided magnetic regions. The magnetic head is characterized in that it is divided into a plurality of the magnetic regions along the direction of the easy axis of magnetization of the magnetic pole by the non-magnetic layer having the width, and a signal is transmitted between the adjacent magnetic regions.
JP62229469A 1987-09-16 1987-09-16 Magnetic head Expired - Fee Related JP2693450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62229469A JP2693450B2 (en) 1987-09-16 1987-09-16 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62229469A JP2693450B2 (en) 1987-09-16 1987-09-16 Magnetic head

Publications (2)

Publication Number Publication Date
JPS6473516A JPS6473516A (en) 1989-03-17
JP2693450B2 true JP2693450B2 (en) 1997-12-24

Family

ID=16892683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62229469A Expired - Fee Related JP2693450B2 (en) 1987-09-16 1987-09-16 Magnetic head

Country Status (1)

Country Link
JP (1) JP2693450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013376B2 (en) 2011-02-28 2016-10-25 ダコ・デンマーク・エー/エス Two-phase immiscible system for pretreatment of embedded biological samples

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498222A (en) * 1978-01-20 1979-08-03 Fujitsu Ltd Thin film magnetic head

Also Published As

Publication number Publication date
JPS6473516A (en) 1989-03-17

Similar Documents

Publication Publication Date Title
US4672493A (en) Thin-film magnetic head with a double gap for a recording medium to be magnetized vertically
US6362940B1 (en) Recording-reproducing magnetic head
US20050219764A1 (en) Perpendicular magnetic recording head and method of manufacturing the same
US6922316B2 (en) Thin-film magnetic head and method of manufacturing same
JP3503874B2 (en) Method for manufacturing thin-film magnetic head
JPH11353617A (en) Thin film magnetic head
WO1996039691A1 (en) Flux enhanced write transducer and process for producing the same in conjunction with shared shields on magnetoresistive read heads
US6728064B2 (en) Thin-film magnetic head having two magnetic layers, one of which includes a pole portion layer and a yoke portion layer, and method of manufacturing same
US5926348A (en) Magnetoresistive head having a magnetoresistive element with bent portions located at points of high longitudinal bias magnetic field intensity
US8405931B2 (en) Magnetic main write pole
US6738222B2 (en) Thin-film magnetic head and method of manufacturing same
US6850390B2 (en) Thin-film magnetic head and method of manufacturing same
US6901651B2 (en) Method of manufacturing thin-film magnetic head
US6466415B1 (en) Thin film magnetic head including a first pole portion having a depressed portion for receiving a coil
JP2693450B2 (en) Magnetic head
JPS58171709A (en) Thin film magnetic head
JP2693451B2 (en) Magnetic head
JPH0684144A (en) Magnetoresistance-effect type magnetic head
JPH0583965B2 (en)
JP3210139B2 (en) Magnetoresistive magnetic head
JPH1055516A (en) Magnetic head and recording and reproducing integrated magnetic head using it
JP2002208114A (en) Thin film magnetic head and manufacturing method therefor
JPH06333770A (en) Manufacture of magnetic film and thin film magnetic head
JP3028495B2 (en) Thin film magnetic head
JPS63138512A (en) Thin film magnetic head and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees