JP2691454B2 - Temperature control device - Google Patents

Temperature control device

Info

Publication number
JP2691454B2
JP2691454B2 JP1196952A JP19695289A JP2691454B2 JP 2691454 B2 JP2691454 B2 JP 2691454B2 JP 1196952 A JP1196952 A JP 1196952A JP 19695289 A JP19695289 A JP 19695289A JP 2691454 B2 JP2691454 B2 JP 2691454B2
Authority
JP
Japan
Prior art keywords
temperature
liquid medium
temperature control
heat exchange
constant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1196952A
Other languages
Japanese (ja)
Other versions
JPH0363485A (en
Inventor
隆一 海老沼
英治 坂本
伸俊 水澤
卓夫 刈谷
俊一 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1196952A priority Critical patent/JP2691454B2/en
Priority to EP89309976A priority patent/EP0363098B1/en
Priority to DE68922061T priority patent/DE68922061T2/en
Publication of JPH0363485A publication Critical patent/JPH0363485A/en
Priority to US08/412,101 priority patent/US5577552A/en
Application granted granted Critical
Publication of JP2691454B2 publication Critical patent/JP2691454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体露光装置等において用いられる温度
制御装置であって、液媒を利用して被温度制御部の温度
を精密に制御するようにした温度制御装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a temperature control device used in a semiconductor exposure apparatus or the like, and uses a liquid medium to precisely control the temperature of a temperature controlled part. The present invention relates to the temperature control device.

[従来の技術] 従来、精密な寸法管理を要求される半導体露光装置等
の装置においては、温度管理が重要な問題となってお
り、例えば露光装置のウエハやマスクの温度管理に関す
る提案は数多くなされている。特に、液媒を用いた温度
管理は、熱伝達率が大きくとれることから制御性が良く
実用性が高いという利点があり、従来より広く用いられ
ている。
[Prior Art] Conventionally, in an apparatus such as a semiconductor exposure apparatus that requires precise dimensional control, temperature control has been an important issue. For example, many proposals have been made regarding the temperature control of a wafer or a mask of an exposure apparatus. ing. In particular, temperature control using a liquid medium has the advantage that it has good controllability and high practicality because a large heat transfer coefficient can be obtained, and has been widely used in the past.

[発明が解決しようとする課題] しかしながら、温度制御対象を精密に温度管理された
液媒と熱的に結合させることによって温度制御させる装
置において、0.01℃程度の精度をもって温度管理する場
合には、恒温液媒供給源から温度制御対象の熱交換部に
至るまでの液媒流路の圧力損失は熱的に無視できない問
題となる。
[Problems to be Solved by the Invention] However, in a device that controls the temperature by thermally coupling a temperature controlled object with a liquid medium whose temperature is precisely controlled, when the temperature is controlled with an accuracy of about 0.01 ° C., The pressure loss in the liquid medium flow path from the constant temperature liquid medium supply source to the heat exchange section to be temperature controlled is a problem that cannot be ignored thermally.

例えば、断熱されたチューブを通して水を供給する場
合に、流路の圧力損失を0.5Kgf/cm2としてこの損失エネ
ルギーがすべて水の温度上昇になるとすれば、温度上昇
は0.012℃となる。また、複数の温度制御対象がそれぞ
れ異なる位置にあり、液媒の通過する流路形状および流
路長がそれぞれ異なるとすれば、これらそれぞれの流路
に対して流路損失分による温度上昇の違いが発生するこ
ととなる。したがって、各温度制御対象を同一温度に制
御する場合でも、この流路損失分による温度上昇の違い
のために、精密な温度制御ができなくなってしまうとい
う欠点があった。
For example, when supplying water through a heat-insulated tube, if the pressure loss in the flow path is 0.5 Kgf / cm 2 and all of this energy loss increases in temperature of water, the temperature increase will be 0.012 ° C. Further, if a plurality of temperature control targets are located at different positions and the flow passage shape and the flow passage length through which the liquid medium passes are different, the difference in temperature rise due to the flow passage loss for each of these flow passages. Will occur. Therefore, even if each temperature control target is controlled to the same temperature, there is a drawback that precise temperature control cannot be performed due to the difference in temperature rise due to the flow path loss.

すなわち、±0.01℃程度の精度で複数の温度制御対象
の温度を管理するためには、このような温度制御系自ら
がもつ発熱分が問題となっていた。このために、温度制
御対象自身に温度センサーを設置し、その温度出力によ
って1つ1つの温度制御対象を個別に制御する方法があ
るが、高精度なフィードバック制御装置を複数個用意し
なければならないという欠点があった。
That is, in order to manage the temperatures of a plurality of temperature control targets with an accuracy of about ± 0.01 ° C, the heat generation amount of the temperature control system itself has been a problem. For this purpose, there is a method of installing a temperature sensor on the temperature control target itself and individually controlling each temperature control target by its temperature output, but it is necessary to prepare a plurality of highly accurate feedback control devices. There was a drawback.

また、温度制御対象を高精度に温度管理するために、
温度制御対象は一定の温度に管理された恒温室に設置さ
れる場合が一般的であり、その場合恒温室内の温度管理
を精度良く実現する為には、恒温室内の発熱を小さくす
るのが望ましいのであるが、この際に、温度制御装置自
身の発熱は無視できない問題となる。
In addition, in order to manage the temperature of the temperature controlled object with high accuracy,
Generally, the temperature control target is installed in a temperature-controlled room controlled to a constant temperature. In that case, it is desirable to reduce the heat generation in the temperature-controlled room in order to realize temperature control in the temperature-controlled room with high accuracy. However, in this case, the heat generation of the temperature control device itself becomes a problem that cannot be ignored.

本発明の目的は、このような従来技術の問題点に鑑
み、温度制御装置において、簡単な構成により複数の対
象について高精度な温度制御が行なえるようにすること
にある。
An object of the present invention is to allow a temperature control device to perform highly accurate temperature control on a plurality of objects with a simple configuration in view of the problems of the conventional art.

[課題を解決するための手段] 上記目的を達成するため本発明の温度制御装置は、一
定の恒温液媒を供給する手段と、該供給手段から供給さ
れた恒温液媒を複数の流路に分配する分配手段と、分配
手段により恒温液媒が分配されるそれぞれの流路に設け
られた熱交換部と、熱交換部の上流側と下流側とに設け
られ、分配手段から熱交換部までの流路抵抗を調節する
手段とを備えるようにしている。
[Means for Solving the Problems] In order to achieve the above object, the temperature control device of the present invention is a means for supplying a constant temperature liquid medium, and a constant temperature liquid medium supplied from the supply means to a plurality of flow paths. Distributing means for distributing, a heat exchanging portion provided in each flow path through which the constant temperature liquid medium is distributed by the distributing means, and upstream and downstream sides of the heat exchanging portion, from the distributing means to the heat exchanging portion. And means for adjusting the flow path resistance.

また、恒温液媒を供給する手段である恒温液媒供給装
置の主要発熱部は、極力、温度制御される装置、つまり
それに付属する前記熱交換部が設置される室の外部に設
置するようにしている。
Further, the main heat generating portion of the constant temperature liquid medium supply device, which is a means for supplying the constant temperature liquid medium, is installed as much as possible outside the room in which the device whose temperature is controlled, that is, the heat exchange part attached thereto is installed. ing.

[作用] この構成において、複数の温度制御対象に対応して分
配された複数流路の恒温液媒に対し、各流路抵抗調節手
段によって流量と熱交換部に至る圧力損失とが個別に調
節され、これによって複数の温度制御対象それぞれの液
媒流路の圧力損失エネルギーに起因する液媒温度のばら
つきが補正される。
[Operation] In this configuration, the flow rate and the pressure loss to the heat exchange section are individually adjusted by the flow path resistance adjusting means with respect to the constant temperature liquid medium of the plurality of flow paths distributed corresponding to the plurality of temperature control targets. Accordingly, the variation of the liquid medium temperature due to the pressure loss energy of the liquid medium flow path of each of the plurality of temperature control targets is corrected.

また、温度制御対象が設置される室の外部に恒温液媒
供給手段の主要発熱部を設置することにより、温度制御
対象の外部の影響に起因する温度変動が小さくなる。
Further, by disposing the main heat generating portion of the constant temperature liquid medium supply means outside the chamber in which the temperature control target is installed, the temperature fluctuation caused by the outside influence of the temperature control target is reduced.

[実施例] 以下、図面を用いて本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例に係る温度制御装置の概
念図である。同図において、1は例えば±0.01℃の精度
に温度管理された一定温度および一定流量の恒温液媒を
供給する恒温液媒供給装置である。また、3,4,5はそれ
ぞれ異なる場所に配置された温度制御対象、6,7,8はそ
れぞれの温度制御対象と液媒との熱伝達率が高くなるよ
うに構成された熱交換部、9,10,11は断熱チューブで形
成された液媒供給路、12,13,14は断熱チューブで形成さ
れた液媒の回収流路である。これらの液媒供給路9,10,1
1、熱交換部6,7,8および液媒の回収流路12,13,14はそれ
ぞれに流れる液媒の流量や流路の形状によって圧力損失
が異なっている場合がある。18および22は精密恒温液媒
供給装置1から複数の温度制御対象の熱交換部6,7,8へ
液媒を分配するための分配器である。分配器18内には温
度センサ26が設置されており、この温度センサ26の示す
温度が常に一定であるように恒温液媒供給装置1が制御
される。19,20,21は、液媒供給路9,10,11中に設けられ
た調整弁であり、23,24,25は液媒回収路14,13,12中に設
けられた調整弁である。
FIG. 1 is a conceptual diagram of a temperature control device according to an embodiment of the present invention. In the figure, reference numeral 1 is a constant temperature liquid medium supply device for supplying a constant temperature liquid medium at a constant temperature and a constant flow rate whose temperature is controlled to an accuracy of ± 0.01 ° C., for example. Further, 3,4,5 are temperature control targets arranged in different places, 6,7,8 are heat exchange units configured to increase the heat transfer coefficient between each temperature control target and the liquid medium, Reference numerals 9, 10 and 11 denote liquid medium supply paths formed by heat insulating tubes, and 12, 13, 14 are liquid medium recovery passages formed by heat insulating tubes. These liquid medium supply channels 9, 10, 1
1, the heat exchange sections 6, 7, 8 and the liquid medium recovery channels 12, 13, 14 may have different pressure losses depending on the flow rate of the liquid medium flowing through them and the shape of the channels. Reference numerals 18 and 22 denote distributors for distributing the liquid medium from the precision constant temperature liquid medium supply device 1 to the plurality of temperature control target heat exchange units 6, 7, 8. A temperature sensor 26 is installed in the distributor 18, and the constant temperature liquid medium supply device 1 is controlled so that the temperature indicated by the temperature sensor 26 is always constant. 19,20,21 are adjusting valves provided in the liquid medium supply paths 9,10,11, and 23,24,25 are adjusting valves provided in the liquid medium collecting paths 14,13,12. .

このように構成された温度制御装置において、それぞ
れの熱交換部6,7,8には温度制御対象で発熱する熱を速
やかに取りさるのに十分な流量の液媒を流すことによっ
て、温度制御対象の温度の安定化を図っている。その
際、温度制御対象3,4,5はそれぞれ発熱の程度が異なっ
ているので、液媒の供給を効率よく行なうには、それぞ
れの発熱の程度に応じて、適切に設計された熱交換部6,
7,8に適切な流量の液媒を流す必要がある。そしてこの
ためには、分配器18から熱交換部6,7,8に至る流路中
に、流量調整用の調整弁を第2図に示すように、液媒供
給路9,10,11中の調整弁19,20,21として設けるだけでよ
く、液媒回収路中の調整弁23,24,25は必要ないと考えら
れる。ところが、この場合、分配器18から熱交換部6,7,
8に至るまでの圧力損失は異なってくる。
In the temperature control device configured as described above, the temperature control is performed by flowing a liquid medium at a sufficient flow rate into each of the heat exchange units 6, 7, and 8 to promptly remove the heat generated by the temperature control target. We are trying to stabilize the target temperature. At that time, the temperature control targets 3, 4 and 5 differ in the degree of heat generation. Therefore, in order to efficiently supply the liquid medium, a heat exchange section designed appropriately according to the degree of heat generation 6,
It is necessary to flow an appropriate amount of liquid medium to 7,8. For this purpose, a regulating valve for regulating the flow rate is provided in the liquid medium supply passages 9, 10, 11 in the passage extending from the distributor 18 to the heat exchange portions 6, 7, 8, as shown in FIG. It is considered that the adjusting valves 19, 20 and 21 need only be provided, and the adjusting valves 23, 24 and 25 in the liquid medium recovery passage are unnecessary. However, in this case, from the distributor 18 to the heat exchange units 6, 7,
The pressure loss up to 8 is different.

すなわち、調整弁19,20,21によって流路抵抗を調整す
ることによって、それぞれ適切な流量に設定された液媒
は、分配器18から、液媒供給路9,10,11、調整弁19,20,2
1、熱交換部6,7,8、および液媒回収流路12,13,14を経て
分配器22に至るまでの流路を通過する際に流路の圧力が
それぞれの流路で異なった様子で下がっていくのであ
る。第3図はこの様子を示すものであり、図中の3本の
折れ線は各経路における圧力変化を示している。
That is, by adjusting the flow path resistance by the adjusting valves 19, 20, 21, the liquid medium set to an appropriate flow rate, from the distributor 18, the liquid medium supply paths 9, 10, 11, the adjusting valve 19, 20,2
1, the heat exchange section 6,7,8, and the pressure of the flow path when passing through the flow path to the distributor 22 through the liquid medium recovery flow path 12,13,14 is different in each flow path It goes down in appearance. FIG. 3 shows this state, and the three broken lines in the figure show the pressure change in each path.

同図に示されるように、熱交換部6、7、8での圧力
は、それぞれの経路で異なっており、分配器18での液媒
の温度は同一であるため、圧力損失エネルギーに起因す
る液媒の温度上昇によって熱交換部での液媒の温度はそ
れぞれ異なることになる。この温度上昇は、液媒が水の
場合、圧力損失0.5kg/cm2あたりで0.012℃であり、±0.
01℃の精度で温度制御するためには無視できない値とな
る。
As shown in the figure, the pressures in the heat exchange sections 6, 7, and 8 are different in the respective paths, and the temperature of the liquid medium in the distributor 18 is the same, which is caused by the pressure loss energy. The temperature of the liquid medium in the heat exchange section varies depending on the temperature rise of the liquid medium. When the liquid medium is water, this temperature rise is 0.012 ° C per 0.5 kg / cm 2 pressure loss, ± 0.
This is a value that cannot be ignored for temperature control with an accuracy of 01 ℃.

そこで、第1図に示すように、液媒回収路12,13,14中
にも流路抵抗が調整できる調整弁25,24,23を設け、供給
側(上流側)と回収側(下流側)の調整弁19〜21と23〜
25を用いて圧力損失を振り分けることにより、熱交換部
6,7,8での圧力と流量とを個別に設定することができる
ようにしたのである。このようにした場合の各経路にお
ける圧力変化の様子を第4図に示す。熱交換部の上流と
下流にある調整弁によって、各熱交換部での圧力がほぼ
同じになるように設定した場合を示している。
Therefore, as shown in FIG. 1, adjusting valves 25, 24, and 23 whose flow path resistances can be adjusted are also provided in the liquid medium recovery passages 12, 13, and 14 so that the supply side (upstream side) and the recovery side (downstream side). ) Adjustment valves 19-21 and 23-
The heat exchange section can be
The pressure and flow rate at 6, 7 and 8 can be set individually. FIG. 4 shows how the pressure changes in each path in this case. The figure shows a case where the pressures in the heat exchange sections are set to be substantially the same by adjusting valves located upstream and downstream of the heat exchange section.

これによれば、各熱交換部6,7,8に至るまでの圧力損
失が、それぞれの経路で同じ程度になるので、圧力損失
エネルギーに起因する温度上昇も同じ程度になり、それ
ぞれの熱交換部6,7,8での液媒の温度が等しくなる。
According to this, since the pressure loss up to each heat exchange section 6, 7, 8 is the same in each path, the temperature rise due to the pressure loss energy is also the same, and the heat exchange in each heat exchange section is the same. The temperature of the liquid medium in parts 6, 7, 8 becomes equal.

なお、第4図では、それぞれの熱交換部での液媒の圧
力が同じになる場合について示したが、1つの経路につ
き、供給側と回収側の双方の調整弁のバランスを変える
ことにより、液媒の流量を変えることなく熱交換部での
圧力が調整できるため、圧力損失エネルギーに起因する
温度上昇を利用して、熱交換部での液媒温度を変えるこ
ともできる。
Although FIG. 4 shows the case where the pressure of the liquid medium in each heat exchange section is the same, by changing the balance of both the supply side and the recovery side adjustment valves for one path, Since the pressure in the heat exchange section can be adjusted without changing the flow rate of the liquid medium, it is possible to change the temperature of the liquid medium in the heat exchange section by utilizing the temperature rise caused by the pressure loss energy.

ところで、温度制御対象となる装置全体27は外部から
の温度の影響を小さくするために、通常は、温度が一定
に制御された恒温室28内に設置される。この恒温室を精
度よく恒温状態に保つためには、恒温室内の発熱は小さ
い方が望ましいのであるが、恒温液媒供給装置1は、送
水ポンプ、高温の1次冷却水の排出路等、大きな発熱源
を含んでいる。そこで、第1図に示すように、これらの
発熱源を含む恒温液媒供給装置1部分を恒温室28の外部
に配置して、恒温液媒供給装置1の発熱源からの熱の影
響を小さくするようにしている。恒温室28は空調された
室であってもよいし、単純に仕切りによって覆われた空
間であってもよいし、また、精密な恒温チャンバーであ
ってもよい。
By the way, the entire device 27 to be temperature controlled is usually installed in a temperature-controlled room 28 in which the temperature is controlled to be constant in order to reduce the influence of temperature from the outside. In order to maintain this constant temperature chamber in a constant temperature condition with high accuracy, it is desirable that the heat generation in the constant temperature chamber is small, but the constant temperature liquid medium supply device 1 has a large water supply pump, a high-temperature primary cooling water discharge path, and the like. Contains a heat source. Therefore, as shown in FIG. 1, the constant temperature liquid medium supply device 1 portion including these heat sources is arranged outside the constant temperature chamber 28 to reduce the influence of heat from the heat source of the constant temperature liquid medium supply device 1. I am trying to do it. The temperature-controlled room 28 may be an air-conditioned room, may be a space simply covered with a partition, or may be a precise temperature-controlled chamber.

[発明の効果] 以上説明したように本発明によれば、恒温水供給手段
から複数の温度制御対象の熱交換部に至る流路の圧力損
失を、供給側と回収側の双方の調整弁によって調整でき
るようにしたため、この圧力損失に起因する各熱交換部
での温度のばらつきを個々に補正することによって1つ
の精密恒温水供給手段により複数の温度制御対象を高精
度で管理することが簡単な構成で可能になる。
[Effects of the Invention] As described above, according to the present invention, the pressure loss in the flow path from the constant temperature water supply means to the plurality of heat exchange parts to be temperature controlled is controlled by the adjusting valves on both the supply side and the recovery side. Since it can be adjusted, it is easy to manage a plurality of temperature control targets with high precision by one precision constant temperature water supply means by individually correcting the temperature variation in each heat exchange section due to this pressure loss. It is possible with various configurations.

また、精密恒温水供給手段の主要発熱部を、温度制御
対象全体が設置される空間から隔てることにより、それ
ら発熱部の影響が排除されるため、温度制御のより高精
度化を図ることができる。
Further, by separating the main heat generating portion of the precision constant temperature water supply means from the space in which the entire temperature control target is installed, the influence of these heat generating portions is eliminated, so that the temperature control can be made more accurate. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明を実施した温度制御装置の概念図、 第2図は、圧力調整弁がない従来の場合の温度制御装置
の概念図、 第3図は、圧力調整ができない従来の場合の流路の圧力
損失の様子を示す説明図、そして 第4図は、圧力調整された第1図の場合の流路の圧力損
失の様子を示す説明図である。 1:恒温液媒供給装置、2:液媒供給出口、3,4,5:温度制御
対象、6,7,8:熱交換部、9,10,11:液媒供給路、12,13,1
4:液媒回収路、19,20,21:上流側調整弁、27:温度制御対
象となる装置、23,24,25:下流側調整弁、18,22:分配
器、26:温度センサー、28:恒温室。
FIG. 1 is a conceptual diagram of a temperature control device embodying the present invention, FIG. 2 is a conceptual diagram of a temperature control device in a conventional case without a pressure regulating valve, and FIG. 3 is a conventional case in which pressure regulation is not possible. FIG. 4 is an explanatory diagram showing the state of pressure loss in the flow channel, and FIG. 4 is an explanatory diagram showing the state of pressure loss in the flow channel in the case of FIG. 1 in which the pressure is adjusted. 1: constant temperature liquid medium supply device, 2: liquid medium supply outlet, 3,4,5: temperature control target, 6,7,8: heat exchange section, 9,10,11: liquid medium supply path, 12,13, 1
4: Liquid medium recovery path, 19, 20, 21: Upstream adjustment valve, 27: Temperature control target device, 23, 24, 25: Downstream adjustment valve, 18, 22: Distributor, 26: Temperature sensor, 28: Constant temperature room.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 刈谷 卓夫 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 鵜澤 俊一 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭62−119620(JP,A) 特開 平2−197775(JP,A) 特開 平1−123972(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takuo Kariya 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Shunichi Uzawa 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP 62-119620 (JP, A) JP 2-197775 (JP, A) JP 1-123972 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一定の恒温液媒を供給する手段と、該供給
手段から供給された恒温液媒を複数の流路に分配する分
配手段と、分配手段により恒温液媒が分配されるそれぞ
れの流路に設けられた熱交換部と、熱交換部の上流側と
下流側とに設けられ、分配手段から熱交換部までの流路
抵抗を調節する手段とを具備することを特徴とする温度
制御装置。
1. A means for supplying a constant temperature liquid medium, a distribution means for distributing the constant temperature liquid medium supplied from the supply means to a plurality of flow paths, and a distribution means for distributing the constant temperature liquid medium. A temperature characterized by comprising a heat exchange part provided in the flow path, and means for adjusting the flow path resistance from the distribution means to the heat exchange part, which is provided on the upstream side and the downstream side of the heat exchange part. Control device.
【請求項2】前記恒温液媒を供給する手段の主要発熱部
は、前記熱交換部が設置される室の外部に設置されてい
ることを特徴とする請求項1記載の温度制御装置。
2. The temperature control device according to claim 1, wherein the main heat generating part of the means for supplying the constant temperature liquid medium is installed outside the chamber in which the heat exchange part is installed.
JP1196952A 1988-10-03 1989-07-31 Temperature control device Expired - Fee Related JP2691454B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1196952A JP2691454B2 (en) 1989-07-31 1989-07-31 Temperature control device
EP89309976A EP0363098B1 (en) 1988-10-03 1989-09-29 Temperature controlling device
DE68922061T DE68922061T2 (en) 1988-10-03 1989-09-29 Device for regulating the temperature.
US08/412,101 US5577552A (en) 1988-10-03 1995-03-28 Temperature controlling device for mask and wafer holders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196952A JP2691454B2 (en) 1989-07-31 1989-07-31 Temperature control device

Publications (2)

Publication Number Publication Date
JPH0363485A JPH0363485A (en) 1991-03-19
JP2691454B2 true JP2691454B2 (en) 1997-12-17

Family

ID=16366387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196952A Expired - Fee Related JP2691454B2 (en) 1988-10-03 1989-07-31 Temperature control device

Country Status (1)

Country Link
JP (1) JP2691454B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513040B2 (en) * 1989-10-03 1996-07-03 日本電気株式会社 Refrigerant supply device for liquid-cooled electronic devices
US6412551B1 (en) * 2000-05-19 2002-07-02 Unisys Corporation System for regulating the temperature of IC-chips with a fluid which is heated and cooled as a function of the fluid temperatures to and from heat exchangers for the IC-chips

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119620A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Constitution system for cooling water supply equipment
JPH0820159B2 (en) * 1989-01-27 1996-03-04 甲府日本電気株式会社 Control system with cooling valve open / closed state detection function

Also Published As

Publication number Publication date
JPH0363485A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
US5577552A (en) Temperature controlling device for mask and wafer holders
JP4910163B2 (en) Constant temperature liquid circulation device and temperature control method in the device
US6394361B1 (en) Device for automatically balancing a liquid-based heat-transfer system
JP2691454B2 (en) Temperature control device
EP0061347A2 (en) Method and apparatus for regulating fluid flows in parallel-connected conduits e.g., in furnace installations having air pre-heaters and by-pass conduits
US20080097657A1 (en) Method and System for Wafer Temperature Control
CN107246372A (en) A kind of temprature control method of vapour compression machine for MVR vapo(u)rization systems
IL41950A (en) Vapor generator control
US6109047A (en) Systems and methods for capacity regulation of refrigeration systems
US5045272A (en) Fluid temperature balancing system
US3144208A (en) Controlled fluid unit
JPH05230107A (en) Method of controlling temperature in reactor in olefin polymerization
JP3665708B2 (en) Integrated valve
JPH0296812A (en) Temperature controller
JPS61252493A (en) Control unit of separate type heat pipe
JPS6082668A (en) Gas flow rate controller
CN219695660U (en) Temperature control device
KR20180033848A (en) Apparatus for supplying gas and substrate process system
JPS61225594A (en) Method to control flow rate of heat exchanger
JPH0222592Y2 (en)
SU1322019A1 (en) Method of open heat supply system operation
JP2725715B2 (en) Control device for decompression boiler type vaporizer
CN115875137A (en) Double-valve fluid metering system
SU874746A1 (en) Device for tubular furnace automatic control
JPH01132500A (en) Heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees