【発明の詳細な説明】
<産業上の利用分野>
本発明は高エネルギ反射電子回折法(RHEED)によっ
て試料表面の結晶構造等を調べる反射電子回折装置に関
する。
<従来の技術>
試料の表面層(表面最外の第1原子層から表面数原子
層に及ぶ縁端層)の結晶構造を解析する方法として、一
般に、高エネルギ反射電子回折法(RHEED)が用いられ
ている。ここで、高エネルギとは数kev以上を言い、通
常は10〜30kevが用いられる。この方法は例えば分子線
エピタキシ(MBE)や高真空蒸着装置により薄膜を作成
する場合に、膜の成長過程で膜表面の状態をその場観察
する方法としてしばしば利用される。
この方法は、例えば高真空蒸着装置において、膜を形
成すべき基板や蒸発源を収容する真空チャンバ内で、電
子銃からの10〜30kev程度のエネルギの電子線を、基板
上に形成された薄膜表面に1〜4゜程度の角度で照射
し、反射もしくは回折した電子線をZnS等の螢光体を塗
布してなる螢光板に当てて発光させ、その像によって薄
膜表面の状態を把握するものである。
ここで、螢光板は通常、ガラス板の一面に螢光体を塗
布して真空チャンバの壁体に支承され、チャンバの外方
からその回折像を観察したり、あるいは写真を取れるよ
う構成される。
<発明が解決しようとする問題点>
上述の反射電子回折法を用いた手法で問題となるの
は、真空チャンバ内に蒸発源加熱用のフィラメントや電
子銃のフィラメント等の強い光を発する物体が存在する
場合、その光によって螢光板が照らされ、回折像のコン
トラストが低下し、観察に支障をきたすことである。
そこで、フィラメント等の発光体と螢光板との間に遮
蔽板を配置することが考えられるが、少なくとも電子線
の軌道近傍は開けておく必要があるから完全な遮蔽は不
可能であるとともに、遮蔽板を高真空中に置くことはチ
ャンバ内で曝される表面積がそれだけ増大することにな
り、その分アウトガス源が増えることになって好ましく
ない。本発明の目的は、遮蔽板等を別途配置することな
く、良好なコントラストの電子線回折像を得ることので
きる反射電子回折装置を提供することにある。
<問題点を解決するための手段>
上記の目的を達成するために、本発明の反射電子回折
装置は、蒸発源を収容した真空チャンバ内で試料の表面
に前記蒸発源から蒸着を行い、この試料表面に高エネル
ギ電子線を入射させて試料による回折電子図形を蛍光板
に写し出す装置において、前記蛍光板の表面に、前記電
子線を通過させ得る光学的遮蔽膜が形成されていること
を特徴としている。
<作用>
光は光学的遮蔽膜13によって反射され、電子線は光学
的遮蔽膜13を通過して螢光体12に到達する。従って、光
学的遮蔽膜13を内側に向けて真空チャンバに取り付ける
と、チャンバ内の発光体からの光の影響を受けない高コ
ントラストの回折像が観察できる。
<実施例>
本発明の実施例を、以下、図面に基づいて説明する。
第1図は本発明実施例の全体構成図、第2図はその螢
光板1の構造を示す部分拡大断面図である。
表面に膜を形成すべき試料Wおよび蒸発源Mを収容す
る真空チャンバ2内に、10〜30kev程度の高エネルギの
電子線Beを出射し得る電子銃3が配設されている。この
電子銃3に対向する位置には、螢光板1が配設されてお
り、電子銃3からの電子線Beは試料Wの表面に対して1
〜4゜程度の浅い角度で入射し、試料Wの表面で回折も
しくは反射して螢光板1に入射するよう構成されてい
る。
螢光板1は、第2図に示すように、ガラス板等の透光
性平板11の一面にZnS等の螢光体12が塗布され、更にそ
の上にAlを500〜1000Å程度の厚さで蒸着してなる光学
的遮蔽膜13が形成されてなっている。このAlは、スパッ
タ蒸着装置や電子ビームガンを利用した真空蒸着装置に
よって容易に蒸着できる。このような螢光板1が、その
光学的遮蔽膜13を内側に向けて真空チャンバ2に取り付
けられているわけである。
第3図はAl膜中での電子の飛程を示すグラフである。
(「Nuclear Reaction Analysis」J.B.Marion & F.
C.Young,NORTH−HOLLAND PUB.COM−AMSTERDAM 196
8)。
高速電子線回折では前述したように10〜30kevのエネ
ルギの電子線を用いるが、下限値である10kevのエネル
ギの電子でもその飛程は約0.16mg/cm2であり、通常の厚
さに換算すると、
0.16mg/cm2÷2.7g/cm3=0.6μm=6000Å
となる。つまり、6000Å以下の厚さのAl膜であれば高速
電子線回折における電子線は通過する。
第4図はAl膜の厚さと光の通過率の関係を示すグラフ
である(「Advanced Optical Technics」Editor;A.C.
S.Vanheel,NORTH−HOLLAND PUB.COM−AMSTERDAM 196
7)。
このグラフから明らかなように、波長が2200Åより長
い光は、500Å程度以上の厚さのAl膜により完全に遮蔽
される。真空チャンバ2内に存在するフィラメント等の
発光体からの光の波長は、6500Å以上、せいぜい8000Å
程度である。
従って、第2図に光学的遮蔽膜13を500〜1000Å程度
の膜厚を有するAl蒸着膜によって構成すれば、電子線Be
はこの光学的遮蔽膜13を充分に透過して螢光体12を発光
させ、かつ、フィラメント等からの光は完全に遮蔽され
ることになり、チャンバ2の外方から透光性平板11を介
して高コントラストの回折像を観察できる。
なお、光学的遮蔽膜13はAl膜に限らず、反射率の高い
物質の膜であればよく、要は10〜30kev程度のエネルギ
の電子線を通過させ、かつ、6500Å程度より長い波長の
光を遮蔽できる膜であればよい。
<発明の効果>
以上説明したように、本発明によれば光学的遮蔽膜に
よって真空チャンバ内に存在するフィラメント等の発光
体からの光が完全に遮蔽される結果、チャンバ外部に表
われる回折像は鮮明であり、観察が極めて容易となる。
しかも、真空チャンバ内に別途遮蔽板を設けないから、
真空中での表面積が増大することなく、アウトガス源の
増加に関する問題もない。DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a backscattered electron diffraction apparatus for examining a crystal structure and the like on a sample surface by a high energy backscattered electron diffraction method (RHEED). <Prior Art> As a method of analyzing the crystal structure of the surface layer (edge layer extending from the outermost first atomic layer to the surface several atomic layers) of the sample, generally, high energy backscattered electron diffraction (RHEED) method is used. It is used. Here, high energy means several kev or more, and usually 10 to 30 kev is used. This method is often used as a method for observing the state of the film surface in-situ during the growth process of the film, for example, when forming a thin film by molecular beam epitaxy (MBE) or a high vacuum vapor deposition apparatus. In this method, for example, in a high vacuum vapor deposition apparatus, an electron beam with an energy of about 10 to 30 kev from an electron gun is formed on a substrate in a vacuum chamber containing a substrate on which a film is to be formed and an evaporation source. Irradiating the surface with an angle of about 1 to 4 °, irradiating the reflected or diffracted electron beam to a fluorescent plate coated with a fluorescent substance such as ZnS to emit light, and grasping the state of the thin film surface by the image Is. Here, the fluorescent plate is usually configured such that one surface of the glass plate is coated with the fluorescent substance and is supported by the wall of the vacuum chamber so that the diffraction image can be observed from the outside of the chamber or a photograph can be taken. . <Problems to be Solved by the Invention> A problem with the method using the backscattered electron diffraction method is that an object that emits strong light, such as a filament for heating an evaporation source or a filament of an electron gun, is present in the vacuum chamber. When present, the light illuminates the fluorescent plate, lowering the contrast of the diffracted image and obstructing the observation. Therefore, it is conceivable to place a shielding plate between the luminous body such as a filament and the fluorescent plate.However, since it is necessary to open at least the vicinity of the orbit of the electron beam, complete shielding is not possible and Placing the plate in a high vacuum undesirably increases the surface area exposed in the chamber and thus increases the outgas source. An object of the present invention is to provide a backscattered electron diffraction apparatus capable of obtaining an electron beam diffraction image with good contrast without separately disposing a shielding plate or the like. <Means for Solving the Problems> In order to achieve the above object, the backscattered electron diffraction apparatus of the present invention performs vapor deposition from the evaporation source on the surface of a sample in a vacuum chamber containing the evaporation source. An apparatus for projecting a high-energy electron beam on a sample surface to project a diffracted electron pattern of the sample onto a fluorescent plate is characterized in that an optical shielding film capable of passing the electron beam is formed on the surface of the fluorescent plate. . <Operation> Light is reflected by the optical shield film 13, and the electron beam passes through the optical shield film 13 and reaches the fluorescent body 12. Therefore, when the optical shield film 13 is attached to the vacuum chamber with the optical shield film 13 facing inward, a high-contrast diffraction image that is not affected by the light from the light emitter in the chamber can be observed. <Example> An example of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of an embodiment of the present invention, and FIG. 2 is a partially enlarged sectional view showing the structure of the fluorescent plate 1. An electron gun 3 capable of emitting a high-energy electron beam Be of about 10 to 30 kev is arranged in a vacuum chamber 2 containing a sample W on which a film is to be formed and an evaporation source M. A fluorescent plate 1 is arranged at a position facing the electron gun 3, and an electron beam Be from the electron gun 3 is directed to the surface of the sample W by 1
It is configured to enter at a shallow angle of about 4 °, diffract or reflect on the surface of the sample W, and enter the fluorescent plate 1. As shown in FIG. 2, the fluorescent plate 1 is coated with a fluorescent body 12 such as ZnS on one surface of a translucent flat plate 11 such as a glass plate, and Al is further applied thereon with a thickness of about 500 to 1000Å. An optical shielding film 13 formed by vapor deposition is formed. This Al can be easily deposited by a sputter deposition apparatus or a vacuum deposition apparatus using an electron beam gun. Such a fluorescent plate 1 is attached to the vacuum chamber 2 with its optical shielding film 13 facing inward. FIG. 3 is a graph showing the range of electrons in the Al film.
("Nuclear Reaction Analysis" JB Marion & F.
C.Young, NORTH-HOLLAND PUB.COM-AMSTERDAM 196
8). In high-speed electron diffraction, an electron beam with an energy of 10 to 30 kev is used as described above, but the range of an electron with an energy of 10 kev, which is the lower limit, is about 0.16 mg / cm 2, which is converted to a normal thickness. Then, 0.16mg / cm 2 ÷ 2.7g / cm 3 = 0.6μm = 6000Å. That is, if the Al film has a thickness of 6000Å or less, the electron beam in high-speed electron beam diffraction passes through. FIG. 4 is a graph showing the relationship between the thickness of the Al film and the light transmittance (“Advanced Optical Technics” Editor; AC).
S.Vanheel, NORTH-HOLLAND PUB.COM-AMSTERDAM 196
7). As is clear from this graph, light with a wavelength longer than 2200Å is completely shielded by the Al film having a thickness of about 500Å or more. The wavelength of the light emitted from the light-emitting body such as a filament existing in the vacuum chamber 2 is 6500Å or more, and at most 8000Å
It is about. Therefore, if the optical shielding film 13 shown in FIG. 2 is composed of an Al vapor deposition film having a film thickness of about 500 to 1000Å, the electron beam Be
Is sufficiently transmitted through the optical shield film 13 to cause the fluorescent body 12 to emit light, and the light from the filament or the like is completely shielded, so that the translucent flat plate 11 is attached from the outside of the chamber 2. Through it, a high-contrast diffraction image can be observed. The optical shielding film 13 is not limited to the Al film, and may be a film of a substance having a high reflectance. Any film can be used as long as it can shield. <Effects of the Invention> As described above, according to the present invention, the optical shielding film completely shields the light from the luminous body such as the filament existing in the vacuum chamber, and as a result, the diffraction image appearing outside the chamber. Is clear and very easy to observe.
Moreover, since there is no separate shielding plate inside the vacuum chamber,
There is no increase in surface area in vacuum and there is no problem with increasing outgassing sources.
【図面の簡単な説明】
第1図は本発明実施例の全体構成図、
第2図はその螢光板1の構造を示す部分拡大断面図、
第3図はAl膜中での電子の飛程を示すグラフ、
第4図はAl膜の厚さと光の透過率の関係を示すグラフ、
11……透光性平板
12……螢光体
13……光学的遮蔽膜[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an embodiment of the present invention,
FIG. 2 is a partially enlarged sectional view showing the structure of the fluorescent plate 1,
FIG. 3 is a graph showing the range of electrons in the Al film,
FIG. 4 is a graph showing the relationship between the thickness of the Al film and the light transmittance,
11 …… Transparent flat plate
12 ... Fluorescent body
13 ... Optical shielding film