JP2689403B2 - Electronic component mounting method for picking up components - Google Patents

Electronic component mounting method for picking up components

Info

Publication number
JP2689403B2
JP2689403B2 JP63051738A JP5173888A JP2689403B2 JP 2689403 B2 JP2689403 B2 JP 2689403B2 JP 63051738 A JP63051738 A JP 63051738A JP 5173888 A JP5173888 A JP 5173888A JP 2689403 B2 JP2689403 B2 JP 2689403B2
Authority
JP
Japan
Prior art keywords
vacuum
suction
component
degree
vacuum degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63051738A
Other languages
Japanese (ja)
Other versions
JPH01228735A (en
Inventor
健 星川
修一 斎藤
誠 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Yamagata Casio Co Ltd
Original Assignee
Casio Computer Co Ltd
Yamagata Casio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Yamagata Casio Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP63051738A priority Critical patent/JP2689403B2/en
Publication of JPH01228735A publication Critical patent/JPH01228735A/en
Application granted granted Critical
Publication of JP2689403B2 publication Critical patent/JP2689403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)
  • Automatic Assembly (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] この発明は電子部品搭載機において、吸着ノズルによ
り真空吸着された部品の吸着状態を判定する方法に関す
るものである。
Description: TECHNICAL FIELD [0001] The present invention relates to a method for determining a suction state of a component vacuum-sucked by a suction nozzle in an electronic component mounting machine.

[従来技術とその問題点] 近時、プリント基板に電子部品を自動的に搭載する際
に、部品供給部の電子部品を吸着ノズルにより真空吸着
して取り出して移送し、プリント基板の所定位置に搭載
するようにした電子部品搭載機が使用されている。ま
た、部品供給部の電子部品を吸着ノズルにより真空吸着
して取り出し、プリント基板の搭載位置へ移送する間、
部品が正常な状態に吸着保持されていないと、プリント
基板に部品搭載した際に、正確に搭載できないので、正
常な状態に吸着されているかどうかを判定する必要があ
り、また、搭載する電子部品の大きさ、形状等は各種あ
り、これらの異なる種々の部品の吸着状態を正確に判定
する必要がある。このため、従来から、吸着状態の判定
にカメラや光電センサを用いたものがあるが、このよう
にすると、装置が大型化してコスト高になるので、簡便
なデジタル出力式真空センサを用いることが多いが、次
のような欠点があった。
[Prior art and its problems] Recently, when electronic components are automatically mounted on a printed circuit board, the electronic components in the component supply unit are vacuum-sucked by a suction nozzle, taken out, and transferred to a predetermined position on the printed circuit board. An electronic component mounting machine that is designed to be mounted is used. Also, while the electronic components of the component supply unit are vacuum-sucked by the suction nozzle and taken out, and transferred to the mounting position of the printed circuit board,
If a component is not sucked and held in a normal state, it cannot be mounted correctly when it is mounted on a printed circuit board.Therefore, it is necessary to judge whether the component is sucked in a normal state. There are various sizes, shapes, and the like, and it is necessary to accurately determine the suction state of these various different parts. For this reason, conventionally, there is a device that uses a camera or a photoelectric sensor to determine the suction state. However, if this is done, the device becomes large and the cost increases, so a simple digital output type vacuum sensor can be used. Although there were many, there were the following defects.

まず、従来から使用されている電子部品搭載機の概略
の構造を第5図により説明すると、電子部品搭載機1の
上側部に部品が収納された部品供給部2を設置するとと
もに上部中央にプリント基板を搬送して位置決めする基
板搬送部3を設け、これらの上方に設けられた搭載ヘッ
ド部4の下部に吸着ノズルを設け、前記搭載ヘッド部4
をXYロボット5によりX、Y方向に移動させるように
し、また、側部に装置の操作及び搭載プログラムを入力
する操作パネル6、動作を制御する制御部(図示せず)
等により構成されている。そして、動作を第6図により
説明すると、部品供給部2の各部品2aの先端の部品2aは
常に部品吸着位置aに位置しており、一方、基板搬送部
3により搬送されたプリント基板7は所定の位置に停止
している。そして、搭載ヘッド部4の吸着ノズル4aはXY
ロボット5により部品吸着位置aまで移動して先端の部
品2aを真空吸着し、吸着後、XYロボット5によりプリン
ト基板7上の所定位置まで移動して部品2aをプリント基
板7の指定された部品搭載位置に搭載し、順次前記動作
を繰返して部品2aの搭載を行なう。なお、部品供給部2
の部品2aは吸着後、次の部品2aが部品吸着位置aになる
ようにパーツフィーダ等により設定されており、また、
搭載部品2aの選択、プリント基板7上への搭載位置、手
順等はすべてあらかじめプログラムされている。また、
吸着ノズル4aにより部品2aの吸着姿勢が第7図に示すよ
うに正常の時にはプリント基板7の正常な位置に搭載さ
れるが、第8図に示すように吸着姿勢が異常な場合、ま
たは部品が吸着されていない場合には、異常な位置に搭
載されるか、未搭載の状態となり、その部品搭載基板は
不良となり、修理工数を要するだけでなく、検査で選別
不可能なレベルの不良基板が混在すると、その基板を使
用した製品の品質にも大きな影響を与える。このような
未搭載あるいは搭載不良を防止するために、吸着姿勢の
判定を行ない、正常な姿勢での吸着時にのみ搭載OK
(可)の指示を行ない、異常姿勢の吸着あるいは未吸着
のときにはNG(不可)の指示を行ない、部品吸着解除
後、再び部品吸着動作を繰り返すような制御を行なって
いる。
First, the schematic structure of a conventionally used electronic component mounting machine will be described with reference to FIG. 5. The electronic component mounting machine 1 is provided with a component supply unit 2 in which components are housed on the upper side thereof, and a print is performed on the upper center. A substrate transfer unit 3 for transferring and positioning a substrate is provided, and a suction nozzle is provided below a mounting head unit 4 provided above the substrate transfer unit 3.
Is moved by the XY robot 5 in the X and Y directions, and an operation panel 6 for inputting a device operation and a loading program on the side, and a control unit (not shown) for controlling the operation
And the like. To explain the operation with reference to FIG. 6, the component 2a at the tip of each component 2a of the component supply unit 2 is always located at the component suction position a, while the printed circuit board 7 transported by the substrate transport unit 3 is Stops in place. The suction nozzle 4a of the mounting head unit 4 is XY
The robot 5 moves to the component suction position a to suck the tip 2a by vacuum, and after suction, the XY robot 5 moves to a predetermined position on the printed circuit board 7 to mount the component 2a on the specified printed circuit board 7. The component 2a is mounted at a position and the above operation is sequentially repeated to mount the component 2a. The component supply unit 2
After the component 2a is picked up, the next component 2a is set by the part feeder or the like so that the next component 2a is located at the component pick-up position a.
The selection of the mounted component 2a, the mounting position on the printed circuit board 7, the procedure, etc. are all pre-programmed. Also,
When the suction posture of the component 2a is normal by the suction nozzle 4a as shown in FIG. 7, it is mounted on the normal position of the printed circuit board 7. However, when the suction posture is abnormal as shown in FIG. If it is not adsorbed, it will be mounted in an abnormal position or will not be mounted, the component mounting board will be defective, not only repair man-hours will be required, but also a defective board of a level that cannot be sorted by inspection. When mixed, the quality of the product using the substrate is greatly affected. In order to prevent such non-installation or improper installation, the suction posture is determined and it can be mounted only when suction is performed in the normal posture.
(OK) is instructed, and NG (unavailable) is instructed when an abnormal posture is sucked or not sucked, and control is performed such that the component suction operation is repeated after the component suction is released.

ここで、従来のデジタル出力式真空センサを用いた吸
着状態の部品吸着判定方法を説明すると、まず、判定装
置の概略は第9図に示すように、吸着ノズル4aのエアー
回路8上に真空発生装置9があり、エアー回路8の途中
にデジタル出力式真空センサ10が介装されている。そし
て、真空発生装置9によりエアー回路8に負圧が発生
し、吸着ノズル4aにより部品2aを真空吸着し、この時の
吸着状態が第7図に示すような正常吸着の際には吸着ノ
ズル4aと部品2a間のエアーリーク量が小さく、エアー回
路8は高い真空度を保ち、その時の真空度をデジタル出
力式真空センサ10が検知し、あらかじめセンサ10に設定
された判定値(第7図の状態における真空度よりやや低
めに設定する)に対して実際の真空度がそれ以上か、そ
れ以下かを判定し、第7図に示すような正常吸着の場合
は判定値より高い真空度を示すため、センサ10は制御部
のCPU11へはOKの情報を伝達し、CPU11はOKの情報を受け
取るとXYロボット5に基板7の指定位置への移動と部品
2aの搭載を指示する。他方、第8図に示すような異常吸
着の場合にはエアーリーク量が大きく、エアー回路8の
真空度は判定値より小さくなり、センサ10はCPU11へNG
の情報を伝達し、CPU11はXYロボット5に吸着部品解除
後に再び部品吸着の指示を出す。この時の真空度と判定
値との関係は第10図に示す通りであり、この第10図は横
軸に部品吸着開始時間を0として経過時間を示し、縦軸
には大気圧を0として真空度を表わし、第7図の正常吸
着の際には吸着ノズル4aに無負荷の状態(その時の真空
度H0)から始まり、部品吸着後、時間の経過とともに真
空度が高くなり、やがて定常状態となって真空度はほぼ
一定値を示し、定常状態時の真空度H1は判定値HJより高
いが、この時の曲線は12である。他方、第8図に示すよ
うな異常吸着の際には無負荷の状態H0から始まり、部品
吸着後、時間の経過とともに真空度が高くなって定常状
態に達するが、その時の真空度H2は判定値HJより低くな
り、この時の曲線は13であり、また、真空度は部品吸着
開始時間から定常状態に達した後の時間t1の時に測定さ
れ、判定される。なお、前記の動作を第11図のフローチ
ャートに示している。しかし、エアー回路8内の真空度
は吸着ノズル4aが無負荷の状態にあっても、変動するこ
とがある。
Here, an explanation will be given of a component suction determination method in a suction state using a conventional digital output type vacuum sensor. First, as shown in FIG. 9, the determination device is generally configured to generate a vacuum on the air circuit 8 of the suction nozzle 4a. There is a device 9, and a digital output type vacuum sensor 10 is provided in the middle of the air circuit 8. Then, a negative pressure is generated in the air circuit 8 by the vacuum generator 9, and the component 2a is vacuum-sucked by the suction nozzle 4a. When the suction state at this time is normal suction as shown in FIG. The amount of air leakage between the component and the component 2a is small, the air circuit 8 maintains a high degree of vacuum, and the vacuum degree at that time is detected by the digital output type vacuum sensor 10, and the judgment value set in advance in the sensor 10 (see FIG. 7). (Slightly lower than the vacuum level in the state), it is determined whether the actual vacuum level is higher or lower, and in the case of normal adsorption as shown in FIG. 7, a higher vacuum level than the determination value is shown. Therefore, the sensor 10 transmits the OK information to the CPU 11 of the control unit, and when the CPU 11 receives the OK information, the XY robot 5 moves the board 7 to the designated position and the parts
Instruct to install 2a. On the other hand, in the case of the abnormal adsorption as shown in FIG. 8, the air leak amount is large, the vacuum degree of the air circuit 8 becomes smaller than the judgment value, and the sensor 10 causes the CPU 11 to fail.
Information is transmitted to the XY robot 5, and then the XY robot 5 issues a component suction instruction again after releasing the suction component. The relationship between the degree of vacuum and the judgment value at this time is as shown in FIG. 10. In this FIG. 10, the horizontal axis shows the elapsed time with the component suction start time as 0, and the vertical axis shows the atmospheric pressure as 0. It represents the degree of vacuum, and in the case of normal suction in FIG. 7, the suction nozzle 4a starts from an unloaded state (vacuum degree H 0 at that time), and after suction of parts, the degree of vacuum increases with the passage of time and eventually becomes steady. In this state, the degree of vacuum shows a substantially constant value, and the degree of vacuum H 1 in the steady state is higher than the judgment value H J , but the curve at this time is 12. On the other hand, when the abnormal adsorption as shown in FIG. 8 starts at state H 0 of no load, after the component suction, but reaches a steady state higher vacuum degree over time, the vacuum degree of H 2 at that time Is lower than the judgment value H J , the curve at this time is 13, and the degree of vacuum is measured and judged at time t 1 after reaching the steady state from the component suction start time. The above operation is shown in the flowchart of FIG. However, the degree of vacuum in the air circuit 8 may vary even when the suction nozzle 4a is in an unloaded state.

一つの場合には、真空発生装置9は通常コンバムが使
用されていることが多く、エアーコンプレッサからの圧
縮空気を利用して、真空を発生している。この場合、通
常エアーコンプレッサの圧縮空気は他の装置にも利用さ
れ、コンバムに到達する圧縮空気圧は変動し、それに伴
って、コンバム即ち、真空発生装置9の発生する真空度
が変動する。
In one case, a vacuum is usually used as the vacuum generator 9, and compressed air from an air compressor is used to generate a vacuum. In this case, the compressed air of the normal air compressor is also used for other devices, the compressed air pressure reaching the convum fluctuates, and the convum, that is, the degree of vacuum generated by the vacuum generator 9 fluctuates accordingly.

他の場合には、第12図に示すように、吸着ノズル4aの
吸着孔4bが基板7上のクリーム半田または接着材等を微
量づつ吸引し目づまり4cを生起すると、吸着孔4bの断面
積が実質上小さくなり、エアー回路8の真空度が上昇す
る。この場合に生起する問題点を円筒形部品2bを吸着し
たときの例示によって説明する。
In other cases, as shown in FIG. 12, when the suction holes 4b of the suction nozzle 4a suck a small amount of cream solder or adhesive on the substrate 7 to cause clogging 4c, a cross-sectional area of the suction holes 4b is generated. Becomes substantially smaller, and the degree of vacuum of the air circuit 8 rises. The problem that occurs in this case will be described by way of example when the cylindrical component 2b is sucked.

第13図(a)は円筒形部品2bを正常に吸着した状態を
示し、第13図(b)は円筒形部品2bの平坦な端面を吸着
した異常状態を示し、第13図(c)は円筒形部品2bの角
部を吸着した異状状態を示している。このときエアー回
路8の真空度は第13図(b)の場合に最も大、第13図
(a)の場合に中間、第13図(c)の場合に最も小であ
り、各場合の真空曲線を第14図に示すと、第13図(a)
の場合に曲線14、第13図(b)の場合に曲線15、第13図
(c)の場合に曲線16となる。
FIG. 13 (a) shows a state where the cylindrical component 2b is normally sucked, FIG. 13 (b) shows an abnormal state where the flat end face of the cylindrical component 2b is sucked, and FIG. 13 (c) is It shows an abnormal state in which the corners of the cylindrical part 2b are adsorbed. At this time, the vacuum degree of the air circuit 8 is the highest in the case of FIG. 13 (b), the intermediate degree in the case of FIG. 13 (a), and the lowest in the case of FIG. 13 (c). The curve is shown in Fig. 14 and is shown in Fig. 13 (a).
In the case of, the curve 14 is formed, in the case of FIG. 13 (b), the curve 15 is formed, and in the case of FIG. 13 (c), the curve 16 is formed.

また、△HJは実験的に求め、2個のデジタル出力式真
空センサで設定した正常吸着判定エリアであり、曲線15
と曲線16とは異状吸着、即ちNG判定される。
In addition, ΔH J is the normal adsorption judgment area that is experimentally determined and set by two digital output type vacuum sensors.
And curve 16 are abnormally adsorbed, that is, NG is determined.

ところが、前記したように、吸着ノズル4aの無負荷状
態での真空度が変動したとき、真空度曲線も、それにつ
れて、変動する。即ち、第15図に示すように、部品吸着
直前の真空度H0に対し、低いレベルから吸着が始まれ
ば、真空度曲線が全体的に低くなり、高いレベルから吸
着が始まれば、真空度曲線が全体的に高くなる。
However, as described above, when the vacuum degree of the suction nozzle 4a in the unloaded state changes, the vacuum degree curve also changes accordingly. That is, as shown in FIG. 15, with respect to the degree of vacuum H 0 immediately before the suction of the component, if the suction starts from a low level, the vacuum degree curve becomes low overall, and if the suction starts from a high level, the degree of vacuum curve Will be higher overall.

従って、第15図に示すように、低いレベルH0′から吸
着が始まった第14図に示す曲線15に対応する曲線は15′
となり、高いレベルH0″から吸着が始まった第14図に示
す曲線16に対応する曲線は16′となり、前記した正常吸
着判定エリア△HJに対して、曲線15′、16′ともにOK判
定となる。即ち、第13図(b)、(c)に示すような異
状吸着を誤って、OK判定してしまって、基板7への搭載
動作が行なわれる。従って、デジタル出力式真空センサ
を用いた部品吸着状態の判定装置では、エアー回路8の
圧力の変動に対応できず、誤った判定をして、不良基板
を発生させてしまうという問題があった。
Therefore, as shown in FIG. 15, the curve corresponding to the curve 15 shown in FIG. 14 in which adsorption started from a low level H 0 ′ is 15 ′.
The curve corresponding to the curve 16 shown in FIG. 14 in which the adsorption started from the high level H 0 ″ is 16 ′, and both the curves 15 ′ and 16 ′ are OK for the normal adsorption determination area ΔH J described above. That is, the abnormal suction as shown in FIGS. 13 (b) and 13 (c) is erroneously determined to be OK, and the mounting operation on the substrate 7 is performed. The component suction state determination device used cannot cope with the pressure fluctuation of the air circuit 8, and thus has a problem that a wrong determination is made and a defective substrate is generated.

[発明の目的] この発明は前記した事情に鑑みてなされたもので、そ
の目的とする処は、吸着ノズルエアー回路系の圧力変動
があっても容易に対応して、正確な判定を可能にする電
子部品搭載機における部品吸着判定方法を提供すること
にある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to easily respond to pressure fluctuations in the suction nozzle air circuit system to enable accurate determination. Another object of the present invention is to provide a component suction determination method for an electronic component mounting machine.

[発明の要点] この発明は前記した目的を達成するために、電子部品
搭載機における搭載ヘッドの吸着ノズルにより部品を真
空吸着し、その真空吸着の真空度情報をアナログ出力式
真空センサにより検出し、前記吸着ノズルの部品吸着状
態を判定する方法において、前記吸着ノズルの各種状態
における無負荷真空度と基準の無負荷真空度との差及び
当該差に対応した部品真空吸着時の真空度判定レベル範
囲を前記各種状態ごとに予め記憶させておき、前記真空
度センサにより検知した部品吸着前の無負荷真空度と前
記基準の無負荷真空度との差を算出し、記憶した中から
当該算出した差に対応する真空度判定レベル範囲を設定
し、この設定した真空度判定レベル範囲と前記真空セン
サにより検知した部品真空吸着時の真空度情報とを照合
して前記部品吸着状態を判定することを要点とする。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention vacuum-adsorbs a component by a suction nozzle of a mounting head in an electronic component mounting machine, and detects vacuum degree information of the vacuum suction by an analog output type vacuum sensor. In the method for determining the component suction state of the suction nozzle, the difference between the no-load vacuum degree and the reference no-load vacuum degree in various states of the suction nozzle, and the vacuum degree determination level at the time of component vacuum suction corresponding to the difference The range is stored in advance for each of the various states, and the difference between the no-load vacuum degree before component suction detected by the vacuum degree sensor and the reference no-load vacuum degree is calculated, and the difference is calculated from the stored values. Set the vacuum degree judgment level range corresponding to the difference, and collate the set vacuum degree judgment level range with the vacuum degree information at the time of component vacuum suction detected by the vacuum sensor. The main point is to determine the component suction state.

[実施例] 以下、この発明の一実施例を第1図乃至第4図を参照
して説明する。吸着ノズル4aのエアー回路8に真空発生
装置9が取付けられ、吸着ノズル4aと真空発生装置9と
の中間のエアー回路8にアナログ出力式真空センサ17が
取付けられ、このアナログ出力式真空センサ17が吸着直
前の真空度を検知し、その真空度情報をCPU11に伝達す
るが、前記吸着ノズル4aの各種状態、即ち、吸着ノズル
4aの吸着孔4bがクリーム半田または接着剤等を微量づつ
吸引して目づまり等の原因により吸着孔4bの孔断面積の
実質上の断面積の大小に伴う無負荷真空度、あるいは吸
着ノズル4aに作動する空気圧の変化、大気圧の変化、内
径の異なる異種ノズル等の各種の状態における無負荷真
空度とそれ等に対応する部品真空吸着時の真空度判定レ
ベル範囲とをCPU11に記憶させる。CPU11はこの真空度と
基準真空度H0とを比較し、その差に見合うだけOK判定エ
リアを補正する。この補正値は実験的に求め、予めCPU1
1に入力しておく。また、CPU11はXYロボット5を介して
吸着ノズル4aに指示するようになっている。
[Embodiment] One embodiment of the present invention will be described below with reference to FIGS. The vacuum generator 9 is attached to the air circuit 8 of the suction nozzle 4a, and the analog output type vacuum sensor 17 is attached to the air circuit 8 between the suction nozzle 4a and the vacuum generator 9. The degree of vacuum immediately before adsorption is detected, and the information on the degree of vacuum is transmitted to the CPU 11, but various states of the adsorption nozzle 4a, that is, the adsorption nozzle.
The suction hole 4b of 4a sucks a small amount of cream solder or adhesive etc. to cause clogging, etc., and the no-load vacuum degree or the suction nozzle 4a depending on the size of the cross-sectional area of the suction hole 4b. The CPU 11 stores a no-load vacuum degree in various states such as a change in air pressure, a change in atmospheric pressure, different nozzles having different inner diameters, and a vacuum degree determination level range corresponding to the no-load vacuum degree in vacuum suction of components. The CPU 11 compares this degree of vacuum with the reference degree of vacuum H 0 and corrects the OK determination area as much as the difference. This correction value is obtained experimentally, and the CPU1
Fill in 1. Further, the CPU 11 instructs the suction nozzle 4a via the XY robot 5.

なお、2aは吸着される部品である。 In addition, 2a is a component to be sucked.

なお、第2図及び第3図により補正について詳細を説
明すると、第2図はH0よりも低い真空度H0′から吸着が
始まったときの状態を示し、差圧△H0′に見合うだけ、
基準のOK判定エリア△HJが△HJ′に補正されている。従
って、第15図によって従来技術の問題点の項に前記した
曲線15′は補正されたOK判定エリア△HJ′から外れNGと
判定される。
Incidentally, when describing the details corrected by FIGS. 2 and 3 diagram, commensurate with FIG. 2 'shows a state in which suction is started from the differential pressure △ H 0' low degree of vacuum H 0 than H 0 Only
The reference OK judgment area ΔH J has been corrected to ΔH J ′. Thus, curve 15 described above in the section of the prior art problems by Figure 15 'is corrected OK determination area △ H J' is determined as NG off the.

また第3図はH0よりも高い真空度H0″から吸着が始ま
ったときの状態を示し、差圧△H0″に見合うだけ、基準
のOK判定エリア△HJが△HJ″に補正されている。従っ
て、第15図によって従来技術の問題点の項に前記した曲
線16′は補正されたOK判定エリア△HJ″から外れNGと判
定される。
Further, FIG. 3 shows the state when adsorption starts from a vacuum degree H 0 ″ which is higher than H 0 , and the reference OK judgment area ΔH J becomes ΔH J ″ as much as the differential pressure ΔH 0 ″. Therefore, the curve 16 'described in the section of the problem of the prior art according to Fig. 15 is judged to be NG out of the corrected OK judgment area ΔH J ″.

以上説明したように一定のOK判定エリア△HJによって
第15図に示すように、従来の部品の吸着判定法では第13
図(b)(c)のような異常吸着の際もOKと判定される
ものが、この実施例のように部品吸着の始まる直前にお
ける吸着ノズル4aのエアー回路8の実際の真空度と基準
真空度との差をセンサ17により検知した情報を受けたCP
U11がOK判定エリアを△HJ′または△HJ″に補正して設
定することにより、NGと判定されるようになるというよ
うに、この実施例の部品吸着判定方法は正確な判定を可
能にする。
As described above, with the constant OK determination area ΔH J , as shown in FIG.
What is judged to be OK even in the case of abnormal suction as shown in FIGS. (B) and (c) is the actual degree of vacuum and the reference vacuum of the air circuit 8 of the suction nozzle 4a immediately before the start of suction of parts as in this embodiment. CP that received the information detected by the sensor 17
U11 corrects and sets the OK judgment area to ΔH J ′ or ΔH J ″ so that it will be judged as NG, and the component suction judgment method of this embodiment can make an accurate judgment. To

次に第4図により吸着動作の工程を説明する。 Next, the steps of the suction operation will be described with reference to FIG.

I 吸着ノズル4aのエアー回路8系の実際の真空度
(H0′またはH0″)と基準真空度(H0)との差と補正す
るOK判定エリア(△HJ′または△HJ″)の関係を実験的
に求め、CPU11に入力する。
I OK determination area (ΔH J ′ or ΔH J ″) to correct the difference between the actual vacuum degree (H 0 ′ or H 0 ″) of the air circuit 8 system of the suction nozzle 4a and the reference vacuum degree (H 0 ). ) Experimentally, and input to CPU11.

II CPU11がIの情報を記憶する、 III CPU11が部品2aの吸着動作を指示する。The II CPU 11 stores the information I, and the III CPU 11 instructs the suction operation of the component 2a.

IV 吸着ノズル4aが部品2aを吸着する直前のエアー回路
8の真空度(H0′またはH0″)をセンサ17が検知し、CP
U11にその真空情報を伝達する。
The sensor 17 detects the vacuum degree (H 0 ′ or H 0 ″) of the air circuit 8 immediately before the IV suction nozzle 4a sucks the component 2a, and the CP
The vacuum information is transmitted to U11.

V CPU11がその情報と基準真空度(H0)との差(△
H0′または△H0″)を算出する。
The V CPU 11 determines the difference (△) between the information and the reference vacuum degree (H 0 ).
Calculate H 0 ′ or ΔH 0 ″).

VI IIの情報とVの吸着直前の真空度の差(△H0′また
は△H0″)とにより、CPU11が補正したOK判定エリア
(△HJ′または△HJ″)を設定する。
The OK determination area (ΔH J ′ or ΔH J ″) corrected by the CPU 11 is set based on the information of VI II and the difference in vacuum degree (ΔH 0 ′ or ΔH 0 ″) immediately before adsorption of V.

VII 吸着ノズル4aが部品2aを吸着する。VII The suction nozzle 4a sucks the component 2a.

VIII 部品2aを吸着後t1時間経過(定常吸着状態になっ
た)ときに、エアー回路8の真空度をセンサ17によって
検知する。
The sensor 17 detects the degree of vacuum of the air circuit 8 when t 1 hour has passed after the VIII component 2a is sucked (a steady suction state is reached).

IX VIIで検知された真空度をVIで設定されたOK判定エ
リア(△HJ′または△HJ″)によってCPU11が判定す
る。
The CPU 11 judges the degree of vacuum detected by IX VII by the OK judgment area (ΔH J ′ or ΔH J ″) set by VI.

X IXでの判定がNGになると、その部品2aの吸着を解除
した後に、IIIに戻り、再び同種部品の吸着動作開始をC
PU11が指示する。
When the judgment in X IX becomes NG, the suction of the component 2a is released, then the process returns to III and the suction operation start of the same type component is started again.
PU11 gives instructions.

XI IXでの判定がOKになると、部品搭載をCPU11が指示
する。
When the determination in XI IX becomes OK, the CPU 11 instructs the component mounting.

XII 部品2aを基板7に搭載する。The XII component 2a is mounted on the board 7.

[発明の効果] 以上詳細に説明したように、電子部品搭載機における
搭載ヘッドの吸着ノズルにより部品を真空吸着し、その
真空吸着の真空度情報をアナログ出力式真空センサによ
り検出し、前記吸着ノズルの各種状態における無負荷真
空度と基準の無負荷真空度との差及び当該差に対応した
部品真空吸着時の真空度判定レベル範囲を前記各種状態
ごとに予め記憶させておき、前記真空度センサにより検
知した部品吸着前の無負荷真空度と前記基準の無負荷真
空度との差を算出し、記憶した中から当該算出した差に
対応する真空度判定レベル範囲を設定し、この設定した
真空度判定レベル範囲と前記真空センサにより検知した
部品真空吸着時の真空度情報とを照合して前記部品吸着
状態を判定するので、前記吸着ノズルエアー回路系の無
負荷時の真空度が変動しても、その変動に、対応して設
定した部品の正常吸着時の真空度判定レベル範囲によっ
て、容易に正確な判定ができる。また、判定には1個の
アナログ出力式真空センサを使用するだけでよいので、
装置全体が小型にでき、かつ、製造コストも低減でき
る。
[Effects of the Invention] As described in detail above, a suction nozzle of a mounting head in an electronic component mounting machine vacuum-sucks a component, and vacuum degree information of the vacuum suction is detected by an analog output type vacuum sensor. The difference between the no-load vacuum degree in various states and the reference no-load vacuum degree, and the vacuum degree determination level range at the time of component vacuum suction corresponding to the difference are stored in advance for each of the various states. By calculating the difference between the no-load vacuum degree before component suction detected by the above and the reference no-load vacuum degree, a vacuum degree determination level range corresponding to the calculated difference is set from the stored values, and the set vacuum is set. Level determination level range and the vacuum degree information at the time of component vacuum suction detected by the vacuum sensor are collated to determine the component suction state, so that the suction nozzle air circuit system has no load. Even if the degree of vacuum changes, the accurate determination can be easily made by the range of the degree-of-vacuum determination level at the time of normal suction of the component set corresponding to the change. Also, since only one analog output type vacuum sensor needs to be used for the determination,
The entire device can be downsized and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
は部品吸着直前の無負荷真空度が基準値よりも低い場合
の正常吸着時の真空度判定レベル範囲を示す線図、第3
図は部品吸着直前の無負荷真空度が基準値よりも高い場
合の正常吸着時の真空度判定レベル範囲を示す線図、第
4図は第1図のフローチャート、第5図は電子部品搭載
機を示す斜視図、第6図は部品搭載ヘッド部とその周辺
を示す説明図、第7図は部品を正常に吸着した状態を示
す説明図、第8図は部品を異状吸着した状態を示す説明
図、第9図は従来の部品吸着判定方法を示すブロック
図、第10図は正常吸着及び異状吸着の場合の吸着ノズル
の真空度対時間線図、第11図は従来の部品吸着判定方法
のフローチャート、第12図は吸着孔が目づまりした状態
を示す縦断面図、第13図は円筒形部品の三種類の吸着状
態を示し、第13図(a)は正常、第13図(b)、(c)
は異常状態を示している。第14図は無負荷時の吸着真空
度が基準値の場合における従来の部品吸着判定方法によ
る第13図(a)、(b)、(c)の各場合に対する真空
度対時間線図、第15図は無負荷時の吸着真空度が上、下
する場合における従来の部品吸着判定法による第13図
(b)、(c)に対する真空度対時間線図である。 1……電子部品搭載機、2a……部品、4……搭載ヘッド
部(搭載ヘッド)、4a……吸着ノズル、11……CPU、17
……アナログ出力式真空センサ。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a vacuum degree judgment level range at the time of normal suction when the no-load vacuum degree immediately before suction of components is lower than a reference value. Three
Figure is a diagram showing the vacuum level judgment level range during normal suction when the no-load vacuum level immediately before component pick-up is higher than the reference value. Fig. 4 is the flow chart of Fig. 1. Fig. 5 is an electronic component mounting machine. FIG. 6 is an explanatory view showing a component mounting head portion and its periphery, FIG. 7 is an explanatory diagram showing a state where components are normally adsorbed, and FIG. 8 is an explanation showing a state where components are abnormally adsorbed. Fig. 9 is a block diagram showing a conventional component suction determination method, Fig. 10 is a vacuum degree vs. time diagram of a suction nozzle in the case of normal suction and abnormal suction, and Fig. 11 is a conventional component suction determination method. Flow chart, FIG. 12 is a vertical cross-sectional view showing a state where the suction holes are clogged, FIG. 13 shows three types of suction states of a cylindrical part, FIG. 13 (a) is normal, and FIG. 13 (b). , (C)
Indicates an abnormal state. FIG. 14 is a diagram showing the degree of vacuum versus time for each of the cases shown in FIGS. 13 (a), (b), and (c) according to the conventional method for determining the component suction when the suction vacuum degree with no load is a reference value. FIG. 15 is a vacuum versus time diagram for FIGS. 13 (b) and 13 (c) according to the conventional component suction determination method when the suction vacuum degree when no load is applied is increased or decreased. 1 ... Electronic component mounting machine, 2a ... Component, 4 ... Mounting head part (mounting head), 4a ... Suction nozzle, 11 ... CPU, 17
...... Analog output type vacuum sensor.

フロントページの続き (72)発明者 熊谷 誠 山形県東根市東根甲5400番地の1 山形 カシオ株式会社内 (56)参考文献 特開 平1−228735(JP,A) 実開 昭48−12684(JP,U) 実開 昭63−197026(JP,U)Front page continuation (72) Inventor Makoto Kumagai 1 5400 Higashioneko, Higashine, Yamagata Prefecture Yamagata Casio Co., Ltd. (56) Reference JP-A 1-228735 (JP, A) , U) Actual development Sho 63-197026 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子部品搭載機における搭載ヘッドの吸着
ノズルにより部品を真空吸着し、その真空吸着の真空度
情報を真空センサにより検出し、前記吸着ノズルの部品
吸着状態を判定する方法において、 前記吸着ノズルの各種状態における無負荷真空度と基準
の無負荷真空度との差及び当該差に対応した部品真空吸
着時の真空度判定レベル範囲を前記各種状態ごとに予め
記憶させておき、 前記真空度センサにより検知した部品吸着前の無負荷真
空度と前記基準の無負荷真空度との差を算出し、 記憶した中から当該算出した差に対応する真空度判定レ
ベル範囲を設定し、 この設定した真空度判定レベル範囲と前記真空センサに
より検知した部品真空吸着時の真空度情報とを照合して
前記部品吸着状態を判定することを特徴とする電子部品
搭載機における部品吸着判定方法。
1. A method of vacuum suctioning a component by a suction nozzle of a mounting head of an electronic component mounting machine, detecting vacuum degree information of the vacuum suction by a vacuum sensor, and determining a component suction state of the suction nozzle. The difference between the no-load vacuum degree in each state of the suction nozzle and the reference no-load vacuum degree, and the vacuum degree determination level range at the time of component vacuum suction corresponding to the difference are stored in advance for each of the various states. The difference between the no-load vacuum degree before component suction detected by the degree sensor and the reference no-load vacuum degree is calculated, and the vacuum degree judgment level range corresponding to the calculated difference is set from the stored values. Electronic component mounting characterized in that the component suction state is determined by collating the vacuum degree determination level range with the vacuum degree information at the time of component vacuum suction detected by the vacuum sensor. Method for component suction on machine.
JP63051738A 1988-03-07 1988-03-07 Electronic component mounting method for picking up components Expired - Lifetime JP2689403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051738A JP2689403B2 (en) 1988-03-07 1988-03-07 Electronic component mounting method for picking up components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051738A JP2689403B2 (en) 1988-03-07 1988-03-07 Electronic component mounting method for picking up components

Publications (2)

Publication Number Publication Date
JPH01228735A JPH01228735A (en) 1989-09-12
JP2689403B2 true JP2689403B2 (en) 1997-12-10

Family

ID=12895242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051738A Expired - Lifetime JP2689403B2 (en) 1988-03-07 1988-03-07 Electronic component mounting method for picking up components

Country Status (1)

Country Link
JP (1) JP2689403B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790694B2 (en) * 1990-01-26 1998-08-27 東芝メカトロニクス株式会社 Electronic component mounting equipment
JPH0810237Y2 (en) * 1990-10-05 1996-03-27 山形カシオ株式会社 Component mounting device
JP3652397B2 (en) * 1995-02-21 2005-05-25 三星テクウィン株式会社 Component mounting method and mounting device
JP4674220B2 (en) * 2007-03-05 2011-04-20 ヤマハ発動機株式会社 Component transfer device, surface mounter, and electronic component inspection device
JP6047723B2 (en) * 2012-07-12 2016-12-21 株式会社新川 Method of detecting relative position between die bonder and bonding tool and semiconductor die
CN117140805B (en) * 2023-10-26 2024-01-30 浩科机器人(苏州)有限公司 Tear sticky tape mechanism and tear sticky tape equipment

Also Published As

Publication number Publication date
JPH01228735A (en) 1989-09-12

Similar Documents

Publication Publication Date Title
USRE44384E1 (en) Method and device for mounting electronic component
US7231709B2 (en) Component mounting apparatus
US6041494A (en) Electronic part mounting method
JP6421320B2 (en) Component mounting method
US20050076497A1 (en) Apparatus and method for mounting electronic part
JP2689403B2 (en) Electronic component mounting method for picking up components
JP2007103777A (en) Method of packaging electronic component
WO2017064777A1 (en) Component mounter
JP3442109B2 (en) Electronic component mounting error correction method and component mounting device
JPH01183900A (en) Method for judging sucking of part in electronic part mounting machine
JP3537510B2 (en) Electronic component automatic mounting device and electronic component mounting method
JP4633912B2 (en) Electronic component mounting device
JPH11243300A (en) Component mounting device and mounting of component
JP2000059099A (en) Component mounting device
JP2634835B2 (en) Component adsorption determination method for electronic component mounting machine
JP7250157B2 (en) check device
JP3128408B2 (en) Recognition device and component mounting device with recognition function
JPS63186499A (en) Automatic correction of wear of attraction nozzle in electronic parts mounter
JP7044841B2 (en) Parts mounting method
JP4053080B2 (en) Component mounting method, apparatus therefor, and recording medium
JPH0645791A (en) Part mounting device
JP2548322B2 (en) How to check the component type in the electronic component mounting device
JPH11126995A (en) Component mounting device
JP3138104B2 (en) Electronic component automatic mounting device
JP2023039022A (en) Component mounting system and component mounting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11