JP2688708B2 - Polyester monofilament and method for producing the same - Google Patents

Polyester monofilament and method for producing the same

Info

Publication number
JP2688708B2
JP2688708B2 JP63245256A JP24525688A JP2688708B2 JP 2688708 B2 JP2688708 B2 JP 2688708B2 JP 63245256 A JP63245256 A JP 63245256A JP 24525688 A JP24525688 A JP 24525688A JP 2688708 B2 JP2688708 B2 JP 2688708B2
Authority
JP
Japan
Prior art keywords
heat shrinkage
monofilament
temperature
shrinkage stress
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63245256A
Other languages
Japanese (ja)
Other versions
JPH0291212A (en
Inventor
忠則 岩間
明 木下
隆之 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Monofilament Co Ltd
Original Assignee
Toray Monofilament Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Monofilament Co Ltd filed Critical Toray Monofilament Co Ltd
Priority to JP63245256A priority Critical patent/JP2688708B2/en
Publication of JPH0291212A publication Critical patent/JPH0291212A/en
Application granted granted Critical
Publication of JP2688708B2 publication Critical patent/JP2688708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規特性を有するポリエステルモノフィラ
メントおよびその製造方法に関するものであり、さらに
詳しくは伸長弾性率、熱収縮応力およびこの熱収縮応力
の最大点(ピーク温度)が高く、かつ熱収縮率が小さい
という産業布帛用途に好適な新規特性を有するポリエス
テルモノフィラメントおよびその効率的な製造方法に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a polyester monofilament having novel properties and a method for producing the same, and more specifically, to an elongation modulus, a heat shrinkage stress and a maximum of the heat shrinkage stress. The present invention relates to a polyester monofilament having a high point (peak temperature) and a small heat shrinkage ratio, which has novel properties suitable for industrial fabric applications, and an efficient production method thereof.

(従来の技術) ポリエステルの中でもポリエチレンテレフタレート
(以下PETと略称する)は、すぐれた化学的、物理的性
質を有しており、従来から産業用モノフィラメントとし
て広く使用されている。
(Prior Art) Among polyesters, polyethylene terephthalate (hereinafter abbreviated as PET) has excellent chemical and physical properties and has been widely used as an industrial monofilament.

そして、例えば抄紙装置用、過布用、ゴム補強用お
よびスクリーン紗用などの産業用布帛の分野に用いる資
材モノフィラメントには、熱収縮率が小さく、しかも伸
長弾性率、熱収縮応力およびピーク温度が高いという特
性が要求されている。
Then, for example, a material monofilament used in the field of industrial fabrics such as for paper machines, for over-clothing, for rubber reinforcement and for screen gauze has a small thermal shrinkage, and further has an elongation elastic modulus, a thermal shrinkage stress and a peak temperature. High quality is required.

すなわち、熱収縮率の大きいモノフィラメントは、製
織加工時に布帛の織面修正が容易である反面、熱セット
などに対する寸法安定性に欠け、布帛の仕上寸法を損な
うという問題があった。
That is, although the monofilament having a large heat shrinkage ratio can easily modify the woven surface of the cloth at the time of weaving, it has a problem that it lacks dimensional stability against heat setting and impairs the finished size of the cloth.

また、モノフィラメントの伸長弾性率および熱収縮応
力が低い場合、とくに熱収縮応力が低い場合には、生機
セット時に布帛のナックル部における経糸・緯糸相互の
押付け力が上がらないため、布帛の使用時に目ずれを起
こしやすく、布帛の走査安定性の阻害や皺の発生などの
不具合を招くばかりか、目ずれによる皺の発生は、その
部分が破壊しやすくなるため、さらに布帛の使用寿命が
著しく短くなるという好ましくない結果を招く。
Also, when the elongation modulus and heat shrinkage stress of the monofilament are low, especially when the heat shrinkage stress is low, the pressing force between the warp and weft threads in the knuckle part of the fabric does not increase when the greige is set. Misalignment is likely to occur, which causes problems such as impairing the scanning stability of the fabric and wrinkles. In addition, wrinkles caused by misalignment make it easier to destroy the part, which further shortens the service life of the fabric. That is not desirable.

さらに、熱収縮応力が高いモノフィラメントであって
も、ピーク温度が低いと、布帛の製織時における熱セッ
トをピーク温度以上で行った場合に、一旦最大熱収縮応
力で締付けられたナックル部の締付力が、最大ピーク温
度以上に加熱されることによって低下し、例えば指でし
ごいただけで容易に目ずれを生じる程度の布帑しか与え
ることができない。
Further, even if the monofilament has a high heat shrinkage stress, if the peak temperature is low, when the heat setting during weaving of the fabric is performed at the peak temperature or higher, the knuckle part once tightened with the maximum heat shrinkage stress is tightened. The force is reduced by heating above the maximum peak temperature, and it is possible to apply only a cloth pouch that can be easily misaligned with a finger, for example.

この様な状況から、産業用ポリエステルモノフィラメ
ントとしての特性改良を目指した種々の検討が行なわれ
ている。
Under such circumstances, various studies have been conducted with the aim of improving the properties of industrial polyester monofilaments.

例えば、PETモノフィラメントの低収縮率化を目的と
したものとしては、熱水中で延伸後、PETの融点より
も5〜40℃低い温度で弛緩熱処理する方法(特開昭48−
18517号公報)および80〜100℃の水中で一段延伸し、
200〜300℃の気体中または150〜200℃の液体中で二段延
伸した後、300〜400℃の気体中または200〜250℃の液体
中で弛緩熱処理する方法(特公昭53−9298号公報)が提
案されているが、これらの方法で得られたPETモノフィ
ラメントは、低収縮率化が達成され、布帛の寸法安定性
は得られるものの、伸長弾性率および熱収縮応力が低下
するため、生機セットによる織り面修正がしにくいこと
に加えて、布帛の使用時に目ずれを起こしやすく、皺の
発生および短寿命化などの不具合を招くばかりか、スク
リーン紗などのメッシュ構造物にした場合に、目ずれに
よるメッシュむらを発生するという問題があった。
For example, for the purpose of reducing the shrinkage rate of PET monofilament, a method of stretching in hot water and then subjecting it to relaxation heat treatment at a temperature 5 to 40 ° C. lower than the melting point of PET (JP-A-48-
18517) and a single step in water at 80 to 100 ° C,
A method of performing a two-stage stretching in a gas of 200 to 300 ° C or a liquid of 150 to 200 ° C, and then performing a relaxation heat treatment in a gas of 300 to 400 ° C or a liquid of 200 to 250 ° C (Japanese Patent Publication No. 53-9298). ) Have been proposed, the PET monofilament obtained by these methods achieves a low shrinkage ratio and achieves the dimensional stability of the fabric, but the elongation elastic modulus and the heat shrinkage stress decrease, so In addition to making it difficult to correct the woven surface by setting, misalignment is likely to occur when using the fabric, causing not only defects such as wrinkles and shortening of life, but also when using a mesh structure such as a screen gauze, There is a problem that mesh irregularity occurs due to misalignment.

また、特開昭58−22081号公報および特開昭59−7
6917号公報では、熱収縮応力を高めたPET繊維が提案さ
れているが、これらのPET繊維は、その200℃乾熱収縮率
が20%以上と大きすぎるため、布帛の仕上げ寸法を著し
く損うという不具合を包含している。
Further, JP-A-58-22081 and JP-A-59-7
In the 6917 publication, PET fibers having an increased heat shrinkage stress have been proposed, but since these PET fibers have a too large dry heat shrinkage of 200 ° C. of 20% or more, the finish dimension of the fabric is significantly impaired. It includes the defect.

さらに、特開昭59−187618号公報では、熱収縮率が
低く、しかも熱収縮応力の高いPET繊維が知られている
が、このPET繊維のピーク温度は100℃以下と低いため
に、布帛の高温熱セット時にナックル部の締付力が低下
し、容易に目ずれを起こすという問題を残していた。
Further, in JP-A-59-187618, a PET fiber having a low heat shrinkage ratio and a high heat shrinkage stress is known, but since the peak temperature of this PET fiber is as low as 100 ° C. or lower, There was a problem that the tightening force of the knuckle part was lowered during high temperature heat setting, and misalignment was easily caused.

さらにまた、PETモノフィラメントの製法として、8
5〜95℃の水浴中で3.3〜3.5倍に一段延伸し、150〜260
℃の気体中で1.7〜2.3倍に二段延伸した後、200〜260℃
の気体中で1.0〜0.95倍で熱処理する方法(特公昭57−2
3006号公報)、85〜100℃の湿熱中で2.0〜2.5倍に一
段延伸し、200〜300℃の気体中で2.0〜4.0倍に二段延伸
した後、200〜300℃の気体中で1.0〜0.9倍で熱処理する
方法(特開昭60−126317号公報)および70〜100℃の
水中で4〜6倍に一段延伸し、融点より15℃低い温度で
全延伸倍率が6.0〜7.5倍になるよう二段延伸した後、融
点より15℃低い温度で0〜5%の制限収縮下に熱処理す
る方法(特公昭56−4644号公報)などが知られている
が、これら高温延伸/弛緩熱処理による方法では、伸長
弾性率が不十分であったり、熱収縮応力が低すぎたり、
また熱収縮率が大きかったりするPETモノフィラメント
しか得ることができず、産業用とした場合の製織性や目
ずれに問題を包含するものであった。
Furthermore, as a manufacturing method of PET monofilament, 8
Stretched one step 3.3 to 3.5 times in a water bath at 5 to 95 ℃, 150 to 260
200-260 ℃ after stretching 1.7 to 2.3 times in a gas at ℃
Heat treatment at 1.0 to 0.95 times in the above gas (Japanese Patent Publication No.57-2)
No. 3006), a single stretch of 2.0 to 2.5 times in a humid heat of 85 to 100 ° C., a double stretch of 2.0 to 4.0 times in a gas of 200 to 300 ° C., and a 1.0 scale in a gas of 200 to 300 ° C. Heat treatment at ~ 0.9 times (JP-A-60-126317) and single stretching in water at 70 ~ 100 ° C by 4 ~ 6 times, and the total draw ratio becomes 6.0 ~ 7.5 times at a temperature 15 ° C lower than the melting point. After the two-stage drawing, the method of heat-treating at a temperature lower than the melting point by 15 ° C. and a restricted shrinkage of 0 to 5% (Japanese Patent Publication No. 56-4644) is known. In the method, the elongation elastic modulus is insufficient, the heat shrinkage stress is too low,
Moreover, only PET monofilaments having a large heat shrinkage can be obtained, and this involves problems in weavability and misalignment when used for industrial purposes.

(発明が解決しようとする課題) このように、産業用布帛としての分野に用いるPETモ
ノフィラメントには、熱収縮率が小さく、しかも伸長弾
性率、熱収縮応力およびそのピーク温度が高いという特
性が要求されているものの、これらの4特性を均衡に満
足するものは知られておらず、従来のPETモノフィラメ
ントは上記したいずれかの特性または2種以上の特性を
欠き、製織時の織面修正不良や布帛使用時の目ずれ発生
などの問題を残すものであった。
(Problems to be Solved by the Invention) As described above, the PET monofilament used in the field of industrial fabrics is required to have characteristics that the thermal shrinkage rate is small and the elongation elastic modulus, the thermal shrinkage stress and the peak temperature thereof are high. However, it is not known that these four properties are balancedly satisfied, and the conventional PET monofilament lacks any one of the above-mentioned properties or two or more properties, resulting in poor surface modification during weaving and However, the problems such as the occurrence of misalignment when using the fabric remain.

なお、目ずれ対策としては、織り密度の増大や太糸化
によって布帛を構成する各糸の自由度を制限する方法が
知られているが、この方法は使用原材料の増大によるコ
ストアップばかりか、布帛の用途によっては過や乾燥
効率の低下などを招くため好適ではない。
As a measure for misalignment, there is known a method of limiting the degree of freedom of each yarn constituting the fabric by increasing the weaving density and thickening the yarn, but this method not only increases the cost by increasing the raw materials used, Depending on the use of the cloth, it may cause excess or decrease in drying efficiency, which is not preferable.

かかる状況に鑑み、本発明の目的は、布帛織面の熱修
正を容易に行うことができ、かつ熱寸法安定性がすぐれ
ると共に、布帛の使用時に目ずれを起こすことがなく、
安定した織面の保持が可能なPETモノフィラメントおよ
びその製造方法を提供することにある。
In view of such a situation, an object of the present invention is to easily perform heat correction on a woven surface of a fabric, and to have excellent thermal dimensional stability, without causing misalignment when the fabric is used,
It is an object of the present invention to provide a PET monofilament capable of maintaining a stable woven surface and a method for producing the same.

そして、上記本発明の目的は、伸長弾性率、熱収縮応
力およびこの熱収縮応力のピーク温度が高く、かつ熱収
縮率が小さいという新規特性を有するPETモノフィラメ
ントにより達成可能であり、かつ上記特性を有するPET
モノフィラメントは、比較的低温で延伸し、次いで高温
で定長熱処理するという独特のプロセスにより取得でき
ることが見出され、本発明を完成するに至った。
The above-mentioned object of the present invention can be achieved by a PET monofilament having a novel property that the elongation modulus, the heat shrinkage stress and the peak temperature of the heat shrinkage stress are high, and the heat shrinkage ratio is small, and Have PET
It was found that the monofilament can be obtained by a unique process of drawing at a relatively low temperature and then subjecting to a fixed length heat treatment at a high temperature, and completed the present invention.

(課題を解決するための手段) すなわち本発明は、エチレンテレフタレート単位を85
重量%以上含有し、極限粘度が0.64以上のポリエステル
からなるモノフィラメントであって、昇温速度100℃/
分で加熱昇温する過程における熱収縮応力の最大点が20
0℃以上に存在し、かつ下記特性を具備することを特徴
とするポリエステルモノフィラメントおよびエチレンテ
レフタレート単位を85重量%以上含有し、極限粘度が0.
64以上のポリエステルを水浴中に溶融紡糸し、得られた
未延伸糸を80〜100℃の温度で3.5〜5.0倍に一段延伸
し、次いで110〜140℃の温度で全延伸倍率が5.0〜5.8倍
になるよう二段延伸した後、180〜260℃の温度で0.98〜
1.05倍の実質定長下に熱処理することを特徴とする下記
特性を有するポリエステルモノフィラメントの製造方法
を、その要旨とするものである。
(Means for Solving the Problems) That is, the present invention provides an ethylene terephthalate unit containing 85 units.
A monofilament made of polyester having an intrinsic viscosity of 0.64 or more in an amount of at least 100% by weight and having a heating rate of 100 ° C /
The maximum point of heat shrinkage stress in the process of heating and heating in minutes is 20
A polyester monofilament characterized by being present at 0 ° C. or higher and having the following characteristics and containing ethylene terephthalate unit in an amount of 85% by weight or more, and having an intrinsic viscosity of 0.
A polyester of 64 or more is melt-spun in a water bath, the obtained undrawn yarn is drawn in one stage at 3.5 to 5.0 times at a temperature of 80 to 100 ° C., and then the total draw ratio is 5.0 to 5.8 at a temperature of 110 to 140 ° C. After being double-stretched so that it doubles, 0.98-at a temperature of 180-260 ℃
A gist of the present invention is a method for producing a polyester monofilament having the following characteristics, which is characterized by heat treatment under a substantially constant length of 1.05 times.

最大熱収縮応力≧0.25g/d 3%伸長弾性率≧95% 200℃乾熱収縮率≦15% 本発明において用いる素材ポリマは、ポリエチレンテ
レフタレートおよびエチレンテレフタレート単位を85重
量%以上含有する共重合ポリエステルまたはこれらポリ
エステルを主成分とするブレンド物であり、エチレンテ
レフタレート単位以外の共重合単位としてはエチレンイ
ソフタレート単位、ブチレンテフタレート単位、ブチレ
ンイソフタレート単位などが挙げられる。
Maximum heat shrinkage stress ≧ 0.25 g / d 3% Elongation elastic modulus ≧ 95% 200 ° C. Dry heat shrinkage ≦ 15% The raw material polymer used in the present invention is a copolymerized polyester containing 85% by weight or more of polyethylene terephthalate and ethylene terephthalate units. Alternatively, it is a blend containing these polyesters as a main component, and examples of copolymerization units other than ethylene terephthalate units include ethylene isophthalate units, butylene terephthalate units, and butylene isophthalate units.

ただし、本発明のポリエステルモノフィラメントは、
オルソクロルフェノール中、25℃で測定した極限粘度は
0.65以上、とくに0.70以上の範囲にあることが重要であ
り、0.65未満の場合には、たとえ本発明の方法で製造し
ても十分な熱収縮応力および伸長弾性率が得られないた
め好ましくない。
However, the polyester monofilament of the present invention,
The intrinsic viscosity measured at 25 ° C in orthochlorophenol is
It is important to be in the range of 0.65 or more, particularly 0.70 or more, and if it is less than 0.65, sufficient heat shrinkage stress and elongation elastic modulus cannot be obtained even by the method of the present invention, which is not preferable.

なお、本発明のポリエステルモノフィラメントは、ブ
レンドされた他の熱可塑性重合体を少割合含有すること
ができ、さらには耐熱剤、耐光剤、耐候剤、可塑剤、艶
消剤、研磨剤、滑剤、帯電防止剤、染料および顔料など
の通常の添加剤を含有することができる。
The polyester monofilament of the present invention may contain a small proportion of another blended thermoplastic polymer, and further, a heat-resistant agent, a light-resistant agent, a weather-resistant agent, a plasticizer, a matting agent, an abrasive, a lubricant, Conventional additives such as antistatic agents, dyes and pigments can be included.

そして、本発明のポリエステルモノフィラメントは、
昇温速度100℃/分で加熱昇温する過程における熱収縮
応力の最大点(ピーク温度)が200℃以上に存在し、か
つ下記3特性を満足することが重要である。
And, the polyester monofilament of the present invention,
It is important that the maximum point (peak temperature) of heat shrinkage stress in the process of heating and heating at a heating rate of 100 ° C./min exists at 200 ° C. or higher and the following three characteristics are satisfied.

最大熱収縮応力≧0.25g/d 3%伸長弾性率≧95% 200℃乾熱収縮率≦15% ここで、熱収縮反力の最大点(ピーク温度)とは、カ
ネボウエンジニアリング社製熱応力測定機(タイプKE−
2L型)を用い、初加重0.05g/d、昇温速度100℃の条件で
熱収縮応力を測定する際に、最大熱収縮応力ピークが発
現する温度である。
Maximum heat shrinkage stress ≧ 0.25g / d 3% Elongation modulus ≧ 95% 200 ℃ Dry heat shrinkage ≦ 15% Here, the maximum point (peak temperature) of heat shrinkage reaction force is Kanebo Engineering's thermal stress measurement. Machine (type KE-
2L type) is the temperature at which the maximum heat shrinkage stress peak appears when the heat shrinkage stress is measured under the conditions of initial load of 0.05 g / d and heating rate of 100 ° C.

すなわち、図面にモデル図を示したように、測定雰囲
気温度(横軸)を徐々に昇温して行くと、熱収縮応力
(縦軸)はほぼ直線的に増加し、やがて最大のピークを
描いた後下降する。この最大ピークが発現する温度が熱
収縮応力の最大点(ピーク温度)であり、このピーク温
度に対応する熱収縮応力が最大熱収縮応力である。
That is, as shown in the model diagram in the drawing, when the measured atmosphere temperature (horizontal axis) is gradually increased, the heat shrinkage stress (vertical axis) increases almost linearly, and eventually the maximum peak is drawn. And then descend. The temperature at which this maximum peak appears is the maximum point of heat shrinkage stress (peak temperature), and the heat shrinkage stress corresponding to this peak temperature is the maximum heat shrinkage stress.

そして、上記ピーク温度と最大熱収縮応力の関係にお
いて、ピーク温度が200℃以上、とくに220℃以上にあ
り、かつ最大熱収縮応力が0.25g/d以上、とくに0.30g/d
以上にある2要件を満足する必要があり、ピーク温度が
200℃未満では布帛の製織時に、とくに熱セットなどで
目ずれを生じ易くなり、また最大熱収縮応力が0.25g/d
未満では布帛の熱セットによる表面修正が困難となるば
かりか、熱セット後にナックル部や糸相互間の押付け力
不足により、布帛使用時に目ずれを生じ易くなるため好
ましくない。
And, in the relationship between the peak temperature and the maximum heat shrinkage stress, the peak temperature is 200 ℃ or more, particularly 220 ℃ or more, and the maximum heat shrinkage stress is 0.25 g / d or more, particularly 0.30 g / d
It is necessary to satisfy the above two requirements, and the peak temperature
If the temperature is less than 200 ° C, misalignment is likely to occur during weaving of the fabric, especially in heat setting, and the maximum heat shrinkage stress is 0.25 g / d.
If it is less than the range, not only is it difficult to modify the surface of the fabric by heat setting, but also the knuckle portion and the pressing force between the yarns after the heat setting are insufficient, whereby misalignment is likely to occur when the fabric is used, which is not preferable.

なお、本発明のポリエステルモノフィラメントであっ
ても、布帛製造時にピーク温度以上で熱セットする場合
には目ずれを生じる場合があるが、本発明のポリエステ
ルモノフィラメントによれば120〜200℃の温度で容易に
熱セット効果を得ることができるため、ピーク温度以上
の温度で熱セットする必要がなく、布帛の目ずれに関す
る不具合を効果的に解消することができる。
Even with the polyester monofilament of the present invention, when heat setting is performed at a peak temperature or higher during fabric production, misalignment may occur, but according to the polyester monofilament of the present invention, it is easy at a temperature of 120 to 200 ° C. Since it is possible to obtain the heat setting effect, it is not necessary to perform heat setting at a temperature equal to or higher than the peak temperature, and it is possible to effectively eliminate the problem of misalignment of the cloth.

また、本発明のポリエステルモノフィラメントは、JI
S L1013 1981 7.9.伸長弾性率B法によって測定した
3%伸長弾性率が95%以上、とくに98%以上であること
が必要であり、この3%伸長弾性率が95%未満のモノフ
ィラメントで織成した布帛は、ナックル部の経糸と緯糸
間相互の押付け力が弱くて目ずれを生じ易く、例えば紗
紙網などのベルト状布帛として用いる場合の走行安定性
が失われ、さらには目ずれ部分が皺になってその部分か
ら破損する傾向があり、耐久寿命を著しく損なうため好
ましくない。さらには、スクリーン紗などのメッシュ構
造物に用いる場合には、目ずれによるメッシュ規格外れ
が生ずるため好ましくない。
Further, the polyester monofilament of the present invention has a JI
S L1013 1981 7.9. Elongation elastic modulus It is necessary that the 3% elongation elastic modulus measured by the B method is 95% or more, particularly 98% or more, and this 3% elongation elastic modulus is woven with monofilaments less than 95%. The fabric has a weak pressing force between the warp yarn and the weft yarn in the knuckle portion and is liable to cause misalignment. For example, running stability is lost when the fabric is used as a belt-like fabric such as a mesh net, and the misaligned portion is wrinkled. It tends to be damaged from that portion, and the durability life is significantly impaired, which is not preferable. Furthermore, when it is used for a mesh structure such as a screen gauze, the mesh specification deviates due to misalignment, which is not preferable.

さらに、本発明のポリエステルモノフィラメントは、
JIS L1013 1981 7.15.(2)乾熱収縮率B法により
測定した200℃乾熱収縮率が15%以下、とくに12%以下
にある必要があり、200℃乾熱収縮率が15%を越える場
合には、布帛製織時における寸法変化が著しく、目的と
する網の目開きが得られないなどの支障が生ずるため好
ましくない。
Furthermore, the polyester monofilament of the present invention,
JIS L1013 1981 7.15. (2) Dry heat shrinkage measured by the B method: 200 ℃ dry heat shrinkage must be 15% or less, especially 12% or less, when 200 ℃ dry heat shrinkage exceeds 15% Is not preferable because the dimensional change during weaving of the cloth is remarkable and the desired mesh opening cannot be obtained.

伸長弾性率、熱収縮応力、この熱収縮応力のピーク温
度および熱収縮率を上述の範囲に満足する本発明のポリ
エステルモノフィラメントは、布帛製織時の熱修正を容
易に行うことができ、かつ熱寸法安定性がすぐれると共
に、布帛の使用時に目ずれを起こすことがなく、安定し
た織面の保持が可能であり、産業布帛用途に好適な新規
特性を有している。
Elongation elastic modulus, heat shrinkage stress, peak temperature of this heat shrinkage stress and the polyester monofilament of the present invention satisfying the heat shrinkage in the above-mentioned range, can be easily heat-corrected at the time of fabric weaving, and thermal dimensions. In addition to being excellent in stability, it is possible to maintain a stable woven surface without causing misalignment when the cloth is used, and it has new characteristics suitable for industrial cloth applications.

次に、上記新規特性を有する本発明のポリエステルモ
ノフィラメントの製造方法について説明する。
Next, a method for producing the polyester monofilament of the present invention having the above new characteristics will be described.

本発明のポリエステルモノフィラメントを製造するに
際しては、まず極限粘度0.65以上のポリエステルを常法
によりエクストルーダーの紡糸口金から溶融押出し、水
浴中で冷却固化することにより未延伸糸を得る。
In the production of the polyester monofilament of the present invention, first, a polyester having an intrinsic viscosity of 0.65 or more is melt-extruded from a spinneret of an extruder by a conventional method and then cooled and solidified in a water bath to obtain an undrawn yarn.

得られた未延伸糸は引き続いて高伸長弾性率および高
熱収縮応力を得るための延伸に供されるが、一段のみの
延伸では十分な高倍率が得られないことから二段階で延
伸される。
The obtained undrawn yarn is subsequently subjected to drawing for obtaining a high elongation elastic modulus and a high heat shrinkage stress, but it is drawn in two steps because a sufficiently high draw ratio cannot be obtained by only one step drawing.

まず、一段目延伸は比較的低温の高倍率延伸、すなわ
ち80〜100℃、とくに85〜95℃の温度で3.5〜5.0倍、と
くに3.8〜4.5倍の条件が採用される。
First, the first stage drawing is carried out at a relatively low temperature and a high draw ratio, that is, at a temperature of 80 to 100 ° C, especially 85 to 95 ° C, a condition of 3.5 to 5.0 times, especially 3.8 to 4.5 times.

一段目延伸温度が100℃を越えると延伸張力が著しく
低下し、延伸が困難になるばかりか、伸長弾性率の高い
モノフィラメントがえられず、逆に80℃未満では延伸時
に断糸し易くなるため好ましくない。
If the first-stage drawing temperature exceeds 100 ° C, the drawing tension will be significantly reduced, making it difficult to draw and not producing a monofilament with a high elongation elastic modulus. Not preferable.

また、一段目延伸倍率が3.5倍未満では延伸むらを生
じて均一でしかも伸長弾性率と熱収縮応力の高いモノフ
ィラメントを得ることが出来ず、逆に5.0倍を越えると
次の二段目延伸において断糸し易くなるため好ましくな
い。
Further, if the first stage draw ratio is less than 3.5 times, it is not possible to obtain a monofilament that is uniform and has high elongation elastic modulus and high heat shrinkage stress, and conversely, if it exceeds 5.0 times, in the next second stage draw. It is not preferable because the yarn is easily broken.

この一段目延伸に用いる熱媒体としては、モノフィラ
メントの表面から容易に除去することができ、しかもモ
ノフィラメントにたいし物理的、化学的な変化を本質的
に与えることがない物質であればいかなるものをも用い
ることができるが、比較的低温延伸であることから、経
済的には温水浴または加熱空気浴が好適である。
As the heat medium used for the first-stage drawing, any substance can be easily removed from the surface of the monofilament and is not a substance which physically or chemically changes the monofilament. However, a hot water bath or a heated air bath is economically preferable because it is a relatively low temperature drawing.

次に、二段目延伸は安定な延伸性を得るために一段目
延伸温度よりは若干高めではあるが、比較的低温で、し
かも比較的高倍率な延伸条件、すなわち110〜140℃、と
くに120〜130℃の温度で、全延伸倍率が5.0〜5.8倍、と
くに5.3〜5.5倍となるような条件が採用される。
Next, the second stage stretching is slightly higher than the first stage stretching temperature in order to obtain stable stretchability, but at a relatively low temperature and a relatively high draw ratio, that is, 110 to 140 ° C, especially 120 ° C. The conditions are such that at a temperature of up to 130 ° C, the total draw ratio is 5.0 to 5.8 times, especially 5.3 to 5.5 times.

二段目延伸温度が140℃を越えると伸長弾性率と熱収
縮応力の高いモノフィラメントがえられず、逆に110℃
未満では延伸時に断糸し易くなるため好ましくない。
When the second drawing temperature exceeds 140 ℃, the monofilament with high elongation modulus and high heat shrinkage stress cannot be obtained.
If it is less than the above range, the yarn is easily broken during drawing, which is not preferable.

また、二段目延伸倍率が低すぎると伸長弾性率と熱収
縮応力の高いモノフィラメントを得ることが出来ず、逆
に高すぎる場合には断糸し易くなるばかりか、次の熱処
理を行っても収縮率の低いモノフィラメントを得ること
ができないため好ましくない。
Further, if the second draw ratio is too low, a monofilament having a high elongation elastic modulus and a high heat shrinkage stress cannot be obtained. On the contrary, if it is too high, not only the yarn is easily broken, but also the next heat treatment is performed. It is not preferable because a monofilament having a low shrinkage cannot be obtained.

この二段目延伸に用いる熱媒体としては、モノフィラ
メントの表面から容易に除去することができ、しかもモ
ノフィラメントにたいし物理的、化学的な変化を本質的
に与えることがない物質であればいかなるものをも用い
ることができるが、高沸点の不活性液体を満たした液体
浴、空気炉、不活性ガス炉、赤外線炉および高周波炉な
どの加熱装置が好ましく用いられる。
The heat medium used in the second stage drawing is any substance that can be easily removed from the surface of the monofilament and that does not essentially give physical or chemical changes to the monofilament. Can also be used, but a heating device such as a liquid bath filled with an inert liquid having a high boiling point, an air furnace, an inert gas furnace, an infrared furnace, and a high-frequency furnace is preferably used.

このようにして延伸されたモノフィラメントは、延伸
により得られた高伸長弾性率と高熱収縮応力を損なうこ
となく、収縮率を低下させ、しかも熱収縮応力のピーク
温度を高めるために、熱処理に供される。
The monofilament thus stretched is subjected to a heat treatment in order to reduce the shrinkage ratio and increase the peak temperature of the heat shrinkage stress without impairing the high elongation elastic modulus and the high heat shrinkage stress obtained by the stretching. It

熱処理は180〜260℃、とくに200〜240℃の高温下に、
0.98〜1.05倍、とくに1.0〜1.03倍の実質定長下に行わ
れる。
Heat treatment at 180-260 ℃, especially at high temperature of 200-240 ℃,
It is performed under a substantially constant length of 0.98 to 1.05 times, especially 1.0 to 1.03 times.

熱処理温度が260℃を越えるとモノフィラメントが溶
融断糸し易くなるばかりか、伸長弾性率と熱収縮応力の
高いモノフィラメントが得られず、逆に180℃未満では
モノフィラメントの伸長弾性率と熱収縮応力は高くなる
ものの、ピーク温度が低下すると共に、収縮率も大きく
なるため好ましくない。
When the heat treatment temperature exceeds 260 ° C, not only the monofilament is easily melt-broken, but also a monofilament having a high elongation elastic modulus and heat shrinkage stress cannot be obtained. Although it increases, the peak temperature decreases and the shrinkage ratio increases, which is not preferable.

また、熱処理倍率が低下すると収縮率は低くなるもの
の、伸長弾性率と熱収縮応力の高いモノフィラメントを
得ることができず、逆に高すぎても伸長弾性率と熱収縮
応力の高いモノフィラメントが得られなくなるため好ま
しくない。
Further, when the heat treatment ratio decreases, the shrinkage ratio decreases, but it is not possible to obtain a monofilament having a high elongation elastic modulus and heat shrinkage stress. Conversely, if it is too high, a monofilament having a high elongation elastic modulus and heat shrinkage stress can be obtained. It is not preferable because it disappears.

この実質定長熱処理における効果の発現理由について
は明らかではないが、定長領域での高温熱処理によっ
て、低温で生じた分子間の歪みが効果的に除去されて、
伸長弾性率と熱収縮応力の著しい低下を生ずることな
く、収縮率が低下し、しかもピーク温度が高くなるもの
と考えられる。
Although the reason why the effect in the substantially constant length heat treatment is expressed is not clear, the high temperature heat treatment in the constant length region effectively removes the intermolecular strain generated at the low temperature,
It is considered that the shrinkage rate decreases and the peak temperature rises without causing a significant decrease in the elongation elastic modulus and the heat shrinkage stress.

この熱処理に用いる加熱装置としては、上述した二段
目延伸と同様な高沸点の不活性液体を満たした液体浴、
空気炉、不活性ガス炉、赤外線炉および高周波炉などが
挙げられる。
As a heating device used for this heat treatment, a liquid bath filled with an inert liquid having a high boiling point similar to the above-described second stage drawing,
Examples thereof include an air furnace, an inert gas furnace, an infrared furnace, a high frequency furnace, and the like.

このようにして得られる本発明のポリエステルモノフ
ィラメントは、伸長弾性率、熱収縮応力およびこの熱収
縮応力のピーク温度が高く、かつ熱収縮率が小さいとい
う新規特性を有しており、たとえば抄紙装置用、過布
用、ゴム補強用およびスクリーン紗用などの産業用布帛
として用いる際に、布帛織り面の熱修正を容易に行うこ
とができ、かつ熱寸法安定性がすぐれると共に、布帛の
使用時に目ずれを起こすことがなく、安定した織面の保
持が可能であるというすぐれた効果を発揮する。
The polyester monofilament of the present invention thus obtained has a novel property that the elongation modulus, the heat shrinkage stress and the peak temperature of the heat shrinkage stress are high, and the heat shrinkage rate is small, for example, for papermaking machines. When used as an industrial cloth for over-clothing, rubber reinforcement, screen gauze, etc., the woven surface of the cloth can be easily heat-corrected, and the thermal dimensional stability is excellent, and at the time of using the cloth. It has the excellent effect of being able to maintain a stable woven surface without causing misalignment.

以下に実施例を挙げて本発明をさらに詳述する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1〜5、比較例1〜12 極限粘度0.71のポリエチレンテレフタレート(東レ
(株)製T301T)を日本製鋼(株)40mmφエクストルー
ダーに供し、紡糸温度290℃でノズルから押出し、水浴
中で冷却固化することにより2150デニールの未延伸糸を
得た。
Examples 1 to 5 and Comparative Examples 1 to 12 Polyethylene terephthalate having an intrinsic viscosity of 0.71 (T301T manufactured by Toray Industries, Inc.) was subjected to a 40 mmφ extruder of Nippon Steel Co., Ltd., extruded from a nozzle at a spinning temperature of 290 ° C., and cooled in a water bath. By solidifying, 2150 denier undrawn yarn was obtained.

この未延伸糸について表−1に示した条件で一段目延
伸(温水浴使用)、二段目延伸(乾熱浴使用)および熱
処理(乾熱浴使用)を行い、それぞれ390デニールの延
伸モノフィラメントを得た。
The unstretched yarn was subjected to the first stage drawing (using a hot water bath), the second stage drawing (using a dry heat bath) and the heat treatment (using a dry heat bath) under the conditions shown in Table 1 to obtain 390 denier drawn monofilaments. Obtained.

各モノフィラメントについて、3%伸長弾性率、最大
熱収縮応力とそのピーク温度および200℃乾熱収縮率を
測定した結果を表−1に併せて示す。
Table 1 also shows the measurement results of 3% elongation elastic modulus, maximum heat shrinkage stress and its peak temperature and 200 ° C. dry heat shrinkage rate for each monofilament.

なお、一段目延伸温度を70℃とした場合(比較例10)
は、延伸倍率4.5倍で断糸し、延伸不可能となった。
When the first drawing temperature was 70 ° C (Comparative Example 10)
Was broken at a draw ratio of 4.5 times and could not be drawn.

また、一段目延伸温度を90℃、延伸倍率を5.3倍とし
た場合(比較例11)は、4延伸温度120℃、全延伸倍率
5.8倍の二段目延伸途中で断糸し、延伸不可能となっ
た。
When the first stage drawing temperature is 90 ° C and the drawing ratio is 5.3 times (Comparative Example 11), the 4th drawing temperature is 120 ° C and the total drawing ratio is
During the second-stage drawing of 5.8 times, the yarn was broken and it became impossible to draw.

さらに、一段目延伸温度を90℃、延伸倍率を3.5倍と
し、二段目延伸温度を100℃とした場合(比較例12)
は、全延伸倍率5.8倍で断糸し、延伸不可能となった。
Further, when the first stage stretching temperature is 90 ° C, the stretching ratio is 3.5 times, and the second stage stretching temperature is 100 ° C (Comparative Example 12).
Was broken at a total draw ratio of 5.8 times and could not be drawn.

表−1の結果から明らかなように、本発明の方法によ
り得られたポリエステルモノフィラメント(No.1〜5)
は、延伸弾性率、熱収縮応力およびこの熱収縮応力のピ
ーク温度が高く、かつ熱収縮率が小さいという新規特性
を有している。
As is clear from the results of Table-1, polyester monofilaments (No. 1 to 5) obtained by the method of the present invention
Has a novel property that the stretching elastic modulus, the heat shrinkage stress and the peak temperature of the heat shrinkage stress are high and the heat shrinkage rate is small.

(発明の効果) 以上説明したように、本発明のポリエステルモノフィ
ラメントは、伸長弾性率、熱収縮応力およびこの熱収縮
応力のピーク温度が高く、かつ熱収縮率が小さいという
新規特性を有しており、たとえば抄紙装置用、過布
用、ゴム補強用およびスクリーン紗用などの産業用布帛
として用いる際に、布帛織り面の熱修正を行うことがで
き、かつ熱寸法安定性がすぐれると共に、布帛の使用時
に目ずれを起こすことがなく、安定した織面の保持が可
能であるというすぐれた効果を発揮する。
(Effects of the Invention) As described above, the polyester monofilament of the present invention has novel characteristics that the elongation modulus, the heat shrinkage stress, and the peak temperature of the heat shrinkage stress are high and the heat shrinkage rate is small. For example, when it is used as an industrial cloth for a paper machine, over-clothing, rubber reinforcement, screen cloth, etc., the woven surface of the cloth can be heat-corrected and the thermal dimensional stability is excellent, and the cloth is excellent. It does not cause misalignment during use, and exhibits the excellent effect of being able to maintain a stable woven surface.

そして、上記特性を有する本発明のポリエステルモノ
フィラメントは、比較的低温で二段延伸した後、比較的
高温で定長処理するという効果的な方法により容易に製
造することができる。
The polyester monofilament of the present invention having the above characteristics can be easily manufactured by an effective method in which two-stage drawing is performed at a relatively low temperature and then a fixed length treatment is performed at a relatively high temperature.

【図面の簡単な説明】[Brief description of the drawings]

図面はモノフィラメントの最大収縮応力とそのピーク温
度の発現状態を示すモデル図(グラフ)である。
The drawing is a model diagram (graph) showing the state of development of the maximum shrinkage stress of the monofilament and its peak temperature.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−7280(JP,A) 特開 昭57−143551(JP,A) 特開 平2−200137(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-51-7280 (JP, A) JP-A-57-143551 (JP, A) JP-A-2-200137 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エチレンテレフタレート単位を85重量%以
上含有し、極限粘度が0.64以上のポリエステルからなる
モノフィラメントであって、昇温速度100℃/分で加熱
昇温する過程における熱収縮応力の最大点が200℃以上
に存在し、かつ下記特性を具備することを特徴とするポ
リエステルモノフィラメント。 最大熱収縮応力≧0.25g/d 3%伸長弾性率≧95% 200℃乾熱収縮率≦15%
1. A monofilament made of polyester having an ethylene terephthalate unit content of 85% by weight or more and an intrinsic viscosity of 0.64 or more, the maximum point of heat shrinkage stress in the process of heating at a heating rate of 100 ° C./min. Is present at 200 ° C. or higher, and has the following characteristics, a polyester monofilament. Maximum heat shrinkage stress ≧ 0.25g / d 3% Elongation modulus ≧ 95% 200 ℃ Dry heat shrinkage ≦ 15%
【請求項2】エチレンテレフタレート単位を85重量%以
上含有し、極限粘度が0.65以上のポリエステルを水浴中
に溶融紡糸し、得られた未延伸糸を80〜100℃の温度で
3.5〜5.0倍に一段延伸し、次いで110〜140℃の温度で全
延伸倍率が5.0〜5.8倍になるよう二段延伸した後、180
〜260℃の温度で0.98〜1.05倍の実質定長下に熱処理す
ることを特徴とする請求項(1)に記載の特性を有する
ポリエステルモノフィラメントの製造方法。
2. A polyester containing 85% by weight or more of ethylene terephthalate units and having an intrinsic viscosity of 0.65 or more is melt-spun in a water bath, and the obtained undrawn yarn is heated at a temperature of 80 to 100 ° C.
It is drawn in one step at 3.5 to 5.0 times, then in two steps at a temperature of 110 to 140 ° C so that the total draw ratio becomes 5.0 to 5.8 times, and then 180
The method for producing a polyester monofilament having the characteristics according to claim (1), wherein the heat treatment is performed at a temperature of ˜260 ° C. under a substantially constant length of 0.98 to 1.05 times.
JP63245256A 1988-09-29 1988-09-29 Polyester monofilament and method for producing the same Expired - Fee Related JP2688708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245256A JP2688708B2 (en) 1988-09-29 1988-09-29 Polyester monofilament and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245256A JP2688708B2 (en) 1988-09-29 1988-09-29 Polyester monofilament and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0291212A JPH0291212A (en) 1990-03-30
JP2688708B2 true JP2688708B2 (en) 1997-12-10

Family

ID=17130974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245256A Expired - Fee Related JP2688708B2 (en) 1988-09-29 1988-09-29 Polyester monofilament and method for producing the same

Country Status (1)

Country Link
JP (1) JP2688708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006013142U1 (en) 2006-08-26 2006-11-16 Textron Verbindungstechnik Gmbh & Co. Ohg Self-tapping blind rivet has curved tip with friction-producing surface which heats surface of workpiece and softens it so that bore is produced without cutting it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517280A (en) * 1974-07-09 1976-01-21 Kureha Seni Kk DORENSHII TOZAI
JPS57143551A (en) * 1981-02-27 1982-09-04 Daicel Ltd Holder for impregnating liquid containing volatile substance
JPH02200137A (en) * 1989-01-26 1990-08-08 Kobayashi Pharmaceut Co Ltd Suction core material in drug spraying vessel

Also Published As

Publication number Publication date
JPH0291212A (en) 1990-03-30

Similar Documents

Publication Publication Date Title
JP3893995B2 (en) Resin composition and molded body
JP3704015B2 (en) Polyketone fiber and method for producing the same
JP2006524295A (en) Polyester-based composite fiber excellent in latent crimpability and production method thereof
JP3953052B2 (en) Composite fiber and method for producing the same
JP2688708B2 (en) Polyester monofilament and method for producing the same
US20050233140A1 (en) Polytrimethylene terephtalate conjugate fiber and method of preparing the same
JPH11172528A (en) Production of polyester melt-forming product
JP2002180333A (en) Polyester-based short fiber having latent crimp developing property and method for producing the same
KR20010094489A (en) Polyester fiber and preparation thereof
KR100476471B1 (en) Di-shrink blended yarn and its manufacturing method.
JP3786004B2 (en) Aliphatic polyester resin composition, molded article and method for producing the same
JP3649215B2 (en) Method for producing high-strength polybutylene terephthalate fiber
CN101570900A (en) Low shrinkage polyamide fiber and uncoated fabric for airbags made of the same
JP4562907B2 (en) Polyester composite fiber for stretch woven and knitted fabric and method for producing the same
JP2003293237A (en) Method for polylactic acid fiber
JP3128529B2 (en) Method for producing cationically dyeable spontaneously extensible polyester filament yarn, and method for producing fabric using filament yarn obtained by the method
JP4003506B2 (en) Polylactic acid fiber having 31 helical structure
JP2004027415A (en) Low-shrinkage polyester fiber and method for producing the same
JP3863051B2 (en) Polyester spotted yarn
EP0753608A2 (en) Spun yarn of polybenzazole fiber
JP2968381B2 (en) Polyester fiber for textile
JP3622305B2 (en) Polyester fabric canvas
JPS6088117A (en) Preparation of high-modulus yarn
JPH11229228A (en) Hollow multifilament and woven fabric
JP2000034641A (en) Polyamide-based yarn fabric and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees