JP2688672B2 - Misfire detection device for internal combustion engine - Google Patents
Misfire detection device for internal combustion engineInfo
- Publication number
- JP2688672B2 JP2688672B2 JP7256091A JP7256091A JP2688672B2 JP 2688672 B2 JP2688672 B2 JP 2688672B2 JP 7256091 A JP7256091 A JP 7256091A JP 7256091 A JP7256091 A JP 7256091A JP 2688672 B2 JP2688672 B2 JP 2688672B2
- Authority
- JP
- Japan
- Prior art keywords
- ignition
- misfire
- value
- engine
- command signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ignition Installations For Internal Combustion Engines (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関の失火検出装
置に関し、特に燃料系に係る失火の検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting a misfire in an internal combustion engine, and more particularly to an apparatus for detecting a misfire in a fuel system.
【0002】[0002]
【従来の技術】内燃機関の気筒に吸入された燃料混合気
を点火するため該各気筒毎に点火プラグが設けられてい
る。通常、内燃機関の点火コイルにおいて発生された高
電圧は配電器を介して各気筒の点火プラグへ順次分配さ
れ、前記燃料混合気を点火する。この場合、点火プラグ
での点火が正常に行なわれない、すなわち失火が生ずる
と、種々の弊害が発生する。例えば、運転性能を悪化さ
せ、燃費を悪化させ、さらには未燃焼ガスの排気系路で
の後燃えにより排気ガス浄化装置における触媒温度の上
昇をまねく等の弊害である。従って、このような弊害を
もたらす失火は絶対に防止しなければならない。この失
火の原因を大別すると、燃料系に係るものと点火系に係
るものとがある。前者の燃料系に係るものは燃料混合気
のリーンまたはリッチに起因するものであり、後者の点
火系に係るものはいわゆるミス・スパークに起因するも
のである。ミス・スパークとは点火プラグに正常な火花
放電が生じないことを意味する。2. Description of the Related Art An ignition plug is provided for each cylinder for igniting a fuel-air mixture taken into a cylinder of an internal combustion engine. Normally, a high voltage generated in an ignition coil of an internal combustion engine is sequentially distributed to a spark plug of each cylinder via a power distribution device to ignite the fuel mixture. In this case, if ignition by the ignition plug is not performed normally, that is, if misfire occurs, various adverse effects occur. For example, the driving performance is deteriorated, the fuel efficiency is deteriorated, and furthermore, the unburned gas is post-burned in the exhaust system, resulting in an increase in the catalyst temperature in the exhaust gas purification device. Therefore, misfires that cause such adverse effects must be absolutely prevented. The causes of this misfire can be roughly classified into those related to the fuel system and those related to the ignition system. The former related to the fuel system is caused by lean or rich fuel mixture, and the latter related to the ignition system is caused by so-called miss spark. Miss spark means that a normal spark discharge does not occur in the spark plug.
【0003】従来の失火検出装置としては例えば、特公
昭51−22568号公報に記載されたものがある。こ
れは、点火回路の1次回路に配電器接点の開路毎に発生
する減衰振動電圧の周波数が、点火の場合は失火の場合
よりも高いことを利用するものである。As a conventional misfire detecting device, there is one disclosed in Japanese Patent Publication No. 51-22568. This makes use of the fact that the frequency of the damped oscillating voltage generated in the primary circuit of the ignition circuit every time the switch contacts are opened is higher in the case of ignition than in the case of misfire.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
失火検出装置は、点火回路に発生する減衰振動電圧の周
波数のみ、すなわち点火プラグの両電極間の放電の有無
のみを検出しているため、失火の原因が放電が発生した
が混合気がリーン又はリッチにより着火しないといった
燃料系に係るものか否かを判断することができず、迅速
な故障対策の上で必ずしも満足のいくものではなかっ
た。However, the conventional misfire detection device detects only the frequency of the damped oscillation voltage generated in the ignition circuit, that is, only the presence or absence of discharge between both electrodes of the ignition plug. However, it was not possible to judge whether or not the cause was due to the fuel system in which the mixture was not ignited due to lean or rich air-fuel mixture, and it was not always satisfactory in terms of quick troubleshooting.
【0005】本発明は上記事情に鑑みてなされたもので
あり、その目的とするところは、失火の原因が燃料系に
係るものか否かを検出することができる内燃機関の失火
検出装置を提供することにある。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a misfire detection device for an internal combustion engine which can detect whether or not a misfire is caused by a fuel system. Is to do.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明は、機関運転パラメータの値を検出する機関運
転状態検出手段と、前記機関運転パラメータの値に基づ
いて点火時期を決定して点火指令信号を発生する信号発
生手段と、前記点火指令信号に基づいて機関に備えられ
た点火プラグを放電させる為の高電圧を発生させる点火
手段と、前記点火手段に高電圧が発生された時の放電電
流値を検出する電流検出手段とを有する内燃機関の失火
検出装置において、前記点火指令信号発生後の点火手段
の放電電流値と所定値との比較をすることにより失火が
発生したか否かを判定する失火判定手段を備え、この失
火判定手段は、前記点火指令信号発生時から第1の所定
時間経過後で且つ第2の所定期間経過する以前において
前記放電電流の値が所定値より小さくなったとき失火で
あると判定するようにしたものである。Means for Solving the Problems The present invention to achieve the above object, the engine operating condition detecting means for detecting the value of the engine OPERATION parameter, to determine the ignition timing based on the value of the engine operating parameters Signal generating means for generating an ignition command signal, an ignition means for generating a high voltage for discharging an ignition plug provided in the engine based on the ignition command signal, and a high voltage for the ignition means. In a misfire detection device for an internal combustion engine having current detection means for detecting a discharge current value at the time, whether a misfire has occurred by comparing the discharge current value of the ignition means after the ignition command signal is generated with a predetermined value There is provided misfire determination means for determining whether or not the value of the discharge current is after a first predetermined time has elapsed and a second predetermined period has elapsed since the ignition command signal was generated. Is obtained so as to determine that the misfire when it becomes smaller than a predetermined value.
【0007】[0007]
【作用】本発明による内燃機関の失火検出装置の失火判
定手段は、点火指令信号発生時から第1の所定時間後で
且つ第2の所定時間前の期間において放電電流の値が所
定電流値より小さくなったとき燃料系に係る失火である
と判定する。これにより、失火状態を正確に把握でき、
燃料系に係る失火であるか否かを判定することができ
る。In the misfire determination means of the misfire detection device for the internal combustion engine according to the present invention, the value of the discharge current is greater than the predetermined current value in the period after the first predetermined time and before the second predetermined time after the ignition command signal is generated. When it becomes smaller, it is determined that there is a misfire related to the fuel system. This allows you to accurately understand the misfire condition,
It is possible to determine whether or not there is a misfire related to the fuel system.
【0008】[0008]
【実施例】以下、本発明の実施例を図面を用いて説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
【0009】図1は、本発明による内燃機関の失火検出
装置の一実施例を示す回路図である。本実施例は、燃料
系に係る失火(以下、「FI失火」と略記する)が生じ
た場合には点火プラグの放電電流の値が正常燃焼の場合
に生じることのない値である負の値となることを利用す
るものである。FIG. 1 is a circuit diagram showing one embodiment of a device for detecting misfire of an internal combustion engine according to the present invention. In this embodiment, when a misfire related to the fuel system (hereinafter, abbreviated as “FI misfire”) occurs, the value of the discharge current of the spark plug is a negative value that does not occur in the case of normal combustion. This is what is used.
【0010】図1において、電源電圧VBが供給される
電源端子T1は一次側コイル2と二次側コイル3とから
成る点火コイル(点火手段)1と接続され、一次側コイ
ル2と二次側コイル3とは互いにその一端で接続され、
一次側コイル2の他端はトランジスタ4のコレクタに接
続され、トランジスタ4のベースは点火指令信号Aが入
力される入力端子T2に接続され、そのエミッタは接地
されている。また、二次側コイル3の他端は電流検出手
段6を介して点火プラグ5の中心電極5aに接続され、
点火プラグ5の接地電極5bは接地されている。電流検
出手段6のコイル61にはコイル3を流れる電流に応じ
て電流が流れ、このコイル61は電圧発生抵抗62に接
続され、この抵抗62はコイル61を流れる電流に応じ
た電圧を発生する。電流検出手段6の出力側はECU7
のフィルタ手段71、A/D変換器72を介してCPU
73に接続されている。さらに、CPU73は、入力回
路74を介して、各種機関運転パラメータ(機関回転
数、機関負荷等のパラメータ)の値を検出する機関運転
パラメータセンサ(機関運転状態検出手段)8に接続さ
れ、また、点火指令信号Aを増幅する駆動回路75を介
してトランジスタ4のベースに接続されている。上記C
PU73は、該機関運転状態に基づき点火時期を決定し
て点火指令信号Aを発生する信号発生手段と、失火か否
かを判定する失火判定手段とを有する。In FIG. 1, a power supply terminal T1 to which a power supply voltage VB is supplied is connected to an ignition coil (ignition means) 1 comprising a primary coil 2 and a secondary coil 3, and the primary coil 2 and the secondary coil 3 are connected to each other. The coil 3 is connected to one end of the coil 3,
The other end of the primary coil 2 is connected to the collector of the transistor 4, the base of the transistor 4 is connected to the input terminal T2 to which the ignition command signal A is input, and the emitter is grounded. The other end of the secondary coil 3 is connected to the center electrode 5a of the ignition plug 5 via the current detecting means 6,
The ground electrode 5b of the spark plug 5 is grounded. A current flows through the coil 61 of the current detecting means 6 according to the current flowing through the coil 3. The coil 61 is connected to a voltage generating resistor 62, which generates a voltage according to the current flowing through the coil 61. The output side of the current detecting means 6 is an ECU 7
Through the filter means 71 and the A / D converter 72
73. Further, the CPU 73 is connected via an input circuit 74 to an engine operation parameter sensor (engine operation state detecting means) 8 for detecting values of various engine operation parameters (parameters such as an engine speed and an engine load). It is connected to the base of the transistor 4 via a drive circuit 75 for amplifying the ignition command signal A. The above C
The PU 73 has signal generation means for determining an ignition timing based on the engine operation state and generating an ignition command signal A, and misfire determination means for determining whether or not a misfire has occurred.
【0011】図2は図1の回路の失火検出動作を実行す
るためのプログラムを示すフローチャートであり、図3
は点火指令信号Aの発生により二次側コイル3に生じる
放電電流、すなわち点火プラグ5の両電極5a,5b間
を流れる放電電流(以下、単に「放電電流」という)を
示すタイムチャートであり、図3において、実線は燃料
混合気の正常点火時の放電電流を示し、点線はFI失火
時の放電電流を示す。次に、図3を用いて各放電電流特
性について説明する。FIG. 2 is a flowchart showing a program for executing the misfire detecting operation of the circuit of FIG.
Is a time chart showing a discharge current generated in the secondary coil 3 due to the generation of the ignition command signal A, that is, a discharge current flowing between the two electrodes 5a and 5b of the ignition plug 5 (hereinafter, simply referred to as "discharge current"); In FIG. 3, the solid line shows the discharge current at the time of normal ignition of the fuel mixture, and the dotted line shows the discharge current at the time of FI misfire. Next, each discharge current characteristic will be described with reference to FIG.
【0012】まず、正常点火時の放電電流特性(実線で
示す特性)について説明する。点火指令信号A発生時刻
t0の直後においては、点火電圧が点火プラグ電極間の
燃料混合気の絶縁を破壊する値まで増加する。その後絶
縁破壊に伴い電流は流れる(曲線a)。この電流は絶縁
破壊初期の突入電流であり、大きな電流が流れる。例え
ば図3に示すように放電電流Iの値が正常点火判別用基
準電流Ifire0の値を越えたとき(I>Ifire0となった
とき)燃料混合気の絶縁は破壊され、絶縁破壊前の容量
放電状態から誘導放電へと移行し、放電電流Iが流れる
コイルに蓄えられた誘導エネルギーが放出される(曲線
b)。これに伴い放電電流Iは零に向かって低下する。First, the discharge current characteristic during normal ignition (the characteristic indicated by the solid line) will be described. Immediately after the ignition command signal A generation time t0, the ignition voltage increases to a value that breaks the insulation of the fuel mixture between the spark plug electrodes. Thereafter, a current flows with the dielectric breakdown (curve a). This current is an inrush current at the beginning of dielectric breakdown, and a large current flows. Such as the discharge current when the value of I exceeds the value of the normal ignition determination reference current Ifire 0 (when becomes I> Ifire 0) of the fuel-air mixture insulation 3 is destroyed, before breakdown The state shifts from the capacity discharge state to the induction discharge, and the induction energy stored in the coil through which the discharge current I flows is released (curve b). Accordingly, the discharge current I decreases toward zero.
【0013】次に、燃料混合気が燃料供給系の異常等に
よりリーン状態やカット状態となりFI失火を生じたと
きの放電電流特性(点線で示す特性)について説明す
る。点火指令信号A発生時刻t0の直後においては、正
常点火時と同様、点火電圧が点火プラグ電極間の燃料混
合気の絶縁を破壊する値まで増加する。その後絶縁破壊
に伴い電流は流れる。この電流は絶縁破壊初期の突入電
流であり、大きな電流が流れるが、このときの放電電流
(容量放電電流)のピーク値は、燃料混合気に占める空
気の割合が正常点火時よりも多く、燃料混合気の絶縁耐
力が大きくなり、正常点火時の電流値よりも低くなる
(曲線a’)。この後、正常点火時と同様に誘導放電状
態へ移行するが、容量放電時に正常点火時の場合に比べ
多くのエネルギーを消費している、又、誘導放電時の電
圧が正常点火に比べ高いため誘導放電時間が短くなる
(曲線b’)。この結果、コイル内残留エネルギーによ
る再度の容量放電へと移行する。この放電電流は逆方向
に流れ、やがて零となる(曲線c’)。これは、誘導放
電の後、高圧電線の浮遊容量等に電荷が蓄積されるため
コイルの残留エネルギーで放出されて逆方向の電流とな
るためである。このエネルギーはその後減衰され零とな
る。Next, a description will be given of the discharge current characteristic (characteristic indicated by a dotted line) when the fuel mixture becomes lean or cut due to an abnormality in the fuel supply system or the like and FI misfire occurs. Immediately after the ignition command signal A generation time t0, the ignition voltage increases to a value that breaks the insulation of the fuel mixture between the spark plug electrodes, as in the normal ignition. After that, current flows with dielectric breakdown. This current is an inrush current at the beginning of dielectric breakdown, and a large current flows. At this time, the peak value of the discharge current (capacity discharge current) is such that the proportion of air in the fuel mixture is larger than that during normal ignition, The dielectric strength of the air-fuel mixture increases and becomes lower than the current value during normal ignition (curve a ′). Thereafter, the state shifts to the inductive discharge state as in the case of normal ignition.However, more energy is consumed than in the case of normal ignition at the time of capacitive discharge, and the voltage at the time of induction discharge is higher than that of normal ignition. The induction discharge time becomes shorter (curve b '). As a result, a transition is made to capacity discharge again due to residual energy in the coil. This discharge current flows in the opposite direction and eventually becomes zero (curve c ′). This is because, after the induction discharge, electric charges are accumulated in the stray capacitance or the like of the high-voltage electric wire, so that the electric charge is released by the residual energy of the coil and becomes a current in the opposite direction. This energy is then attenuated to zero.
【0014】次に、図1の回路の動作について図2、図
3を用いて説明する。Next, the operation of the circuit of FIG. 1 will be described with reference to FIGS.
【0015】まず、点火指令信号Aが発生したか否かを
示すIGフラグ(Flag IG)に「1」が立っているか
否かを判定する(ステップS1)。「1」は点火指令信
号Aが発生したことを示す。IGフラグに「1」を立て
る処理は図2のルーチンとは別のルーチン例えば点火時
期演算処理ルーチンで行う。点火指令信号Aの発生前に
おいては「1」は立っていないので、ステップS1にお
ける判断は否定となり、ステップS2,S3へ移行し、
ECU8のタイマ(点火指令信号A発生後の経過時間を
計測するタイマ)に第1および第2の所定時間Tmis0お
よびTmis1を設定し、IGフラグに「0」を立て、図2
のフローの動作を終了する。所定時間Tmis0およびTmi
s1は、点火指令信号Aの発生時刻t0から時刻t1およ
びt2までの時間である。時刻t1は点火プラグ電極間
において容量放電状態が終わり、誘導放電状態へ移行し
た後の時刻であり、時刻t2は点火プラグ電極間の電圧
が略ゼロとなる時刻である(図3参照)。なお、上記T
mis0,Tmis1の値は、機関運転状態(機関運転パラメー
タ値)、例えば機関回転数、機関負荷、バッテリー電
圧、機関温度等に応じてマップ又はテーブルから読み出
される値である。後述のFI失火判定基準電流Ifire1
の値(所定電流値)も同様である。First, it is determined whether or not "1" is set in an IG flag (Flag IG) indicating whether or not the ignition command signal A has been generated (step S1). “1” indicates that the ignition command signal A has been generated. The process of setting the IG flag to "1" is performed by a routine different from the routine of FIG. 2, for example, an ignition timing calculation processing routine. Before the ignition command signal A is generated, “1” does not rise, so the determination in step S1 is negative, and the process proceeds to steps S2 and S3.
The first and second predetermined times Tmis 0 and Tmis 1 are set in the timer of the ECU 8 (the timer that measures the elapsed time after the ignition command signal A is generated), and the IG flag is set to "0", as shown in FIG.
The operation of the flow is ended. Predetermined time Tmis 0 and Tmi
s 1 is the time from the time t0 when the ignition command signal A is generated to the times t1 and t2. Time t1 is a time after the capacitive discharge state ends between the spark plug electrodes and transition to the inductive discharge state, and time t2 is a time when the voltage between the spark plug electrodes becomes substantially zero (see FIG. 3). Note that the above T
The values of mis 0 and T mis 1 are values read from a map or table according to the engine operating state (engine operating parameter value), for example, engine speed, engine load, battery voltage, engine temperature, and the like. FI misfire determination reference current Ifire 1 described later
The same applies to the value of (predetermined current value).
【0016】次に、点火指令信号Aが発生してIGフラ
グに「1」が立つと、ステップS1からS4へ移行し
て、ECU8のタイマにおいて第1の所定時間Tmis0が
経過したか否かを判断する。所定時間Tmis0が経過して
いない場合には、図2の動作を終了する。所定時間Tmi
s0が経過している場合には次に第2の所定時間Tmis1が
経過したか否かを判断する(ステップS5)。所定時間
Tmis1が経過している場合には、FI失火と判定される
可能性は無いので、フラグIGに「0」を立て(ステッ
プS3)、図2の動作を終了する。所定時間Tmis1が経
過していない場合には、放電電流Iの値が基準電流Ifi
re1の値(図3では負の値)よりも小さいか否かを判断
し(ステップS6)、I<Ifire1であればFI失火と
判定して図2の動作を終了し(ステップS7、図3の点
線で示す特性曲線参照)、I≧Ifire1であればFI失
火でないと判定して図2の動作を終了する。上記ステッ
プS1,S4〜S7を所定時間Tmis1が経過するまで繰
り返す。Next, when the ignition command signal A is generated and the IG flag is set to "1", the process proceeds from step S1 to S4, and it is determined whether or not the first predetermined time Tmis 0 has elapsed in the timer of the ECU 8. To judge. If the predetermined time Tmis 0 has not elapsed, the operation of FIG. 2 ends. Predetermined time Tmi
When s 0 has elapsed, it is next determined whether or not the second predetermined time Tmis 1 has elapsed (step S5). When the predetermined time Tmis 1 has elapsed, there is no possibility of being determined to be a FI misfire, so the flag IG is set to "0" (step S3), and the operation of FIG. 2 ends. When the predetermined time Tmis 1 has not elapsed, the value of the discharge current I is the reference current Ifi.
It is judged whether or not it is smaller than the value of re 1 (negative value in FIG. 3) (step S6), and if I <Ifire 1 , it is judged to be FI misfire and the operation of FIG. 2 is ended (step S7, If I ≧ Ifire 1 ( see the characteristic curve shown by the dotted line in FIG. 3), it is determined that FI misfire has not occurred, and the operation in FIG. 2 ends. Step S1, and repeats until the predetermined time TMIS 1 has elapsed the S4 to S7.
【0017】なお、図3においてはIfire1の値を負の
値としたが、零又は零よりわずかに大きい正の値とし
て、正常点火時にFI失火と誤判定しないように所定時
間Tmis1を短く設定するようにしてもよい。Although the value of Ifire 1 is set to a negative value in FIG. 3, it is set to zero or a positive value slightly larger than zero so that the predetermined time Tmis 1 is shortened so as to prevent erroneous determination of FI misfire during normal ignition. It may be set.
【0018】[0018]
【発明の効果】以上詳述したように本発明は、機関運転
パラメータの値を検出する機関運転状態検出手段と、前
記機関運転パラメータの値に基づいて点火時期を決定し
て点火指令信号を発生する信号発生手段と、前記点火指
令信号に基づいて機関に備えられた点火プラグを放電さ
せる為の高電圧を発生させる点火手段と、前記点火手段
に高電圧が発生された時の放電電流値を検出する電流検
出手段とを有する内燃機関の失火検出装置において、前
記点火指令信号発生後の点火手段の放電電流値と所定値
との比較をすることにより失火が発生したか否かを判定
する失火判定手段を備え、この失火判定手段は、前記点
火指令信号発生時から第1の所定時間経過後で且つ第2
の所定期間経過する以前において前記放電電流の値が所
定値より小さくなったとき失火であると判定することに
より、燃料系に係る失火であるか否かを正確に判定で
き、故障個所の早期発見や適切な故障対策が可能であ
る。The present invention as described in detail above, according to the present invention includes the engine operating condition detecting means for detecting a value of the engine OPERATION <br/> parameter, to determine the ignition timing based on the value of the engine operating parameters Signal generating means for generating an ignition command signal, ignition means for generating a high voltage for discharging an ignition plug provided in the engine based on the ignition command signal, and when a high voltage is generated for the ignition means In a misfire detection device for an internal combustion engine having a current detection means for detecting a discharge current value of, whether or not a misfire has occurred by comparing a discharge current value of the ignition means after the ignition command signal is generated with a predetermined value. A misfire determining means for determining whether or not the second misfire determining means is the second predetermined time after the ignition command signal is generated and the second misfire determining means.
By determining that there is a misfire when the value of the discharge current becomes smaller than the predetermined value before the lapse of the predetermined period of time, it is possible to accurately determine whether or not there is a misfire related to the fuel system, and early detection of a failure location It is possible to take appropriate troubleshooting measures.
【図1】本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing one embodiment of the present invention.
【図2】図1の回路の失火検出動作を実行するためのプ
ログラムを示すフローチャートである。FIG. 2 is a flowchart showing a program for executing a misfire detection operation of the circuit of FIG. 1;
【図3】放電電流を示すタイムチャートである。FIG. 3 is a time chart showing a discharge current.
1 点火コイル 2 一次側コイル 3 二次側コイル 5 点火プラグ 6 電流検出手段 7 ECU 8 機関運転パラメータセンサ(機関運転状態検出手
段) 73 CPUDESCRIPTION OF SYMBOLS 1 Ignition coil 2 Primary coil 3 Secondary coil 5 Spark plug 6 Current detection means 7 ECU 8 Engine operation parameter sensor (engine operation state detection means) 73 CPU
フロントページの続き (72)発明者 黒田 恵隆 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 新井 秀明 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内Front Page Continuation (72) Inventor Eitaka Kuroda 1-4-1 Chuo, Wako-shi, Saitama, Ltd. Inside Honda R & D Co., Ltd. (72) Inventor Hideaki Arai 1-14-1 Chuo, Wako-shi, Saitama Honda R & D Co., Ltd. In the laboratory
Claims (1)
運転状態検出手段と、前記機関運転パラメータの値に基
づいて点火時期を決定して点火指令信号を発生する信号
発生手段と、前記点火指令信号に基づいて機関に備えら
れた点火プラグを放電させる為の高電圧を発生させる点
火手段と、前記点火手段に高電圧が発生された時の放電
電流値を検出する電流検出手段とを有する内燃機関の失
火検出装置において、前記点火指令信号発生後の点火手
段の放電電流値と所定値との比較をすることにより失火
が発生したか否かを判定する失火判定手段を備え、この
失火判定手段は、前記点火指令信号発生時から第1の所
定時間経過後で且つ第2の所定期間経過する以前におい
て前記放電電流の値が所定値より小さくなったとき失火
であると判定することを特徴とする内燃機関の失火検出
装置。And 1. A engine OPERATION parameter engine operating condition detecting means for detecting a value of a signal generating means for generating an ignition command signal to determine the ignition timing based on the value of the engine operating parameter, wherein the ignition command Internal combustion having ignition means for generating a high voltage for discharging an ignition plug provided in the engine based on a signal, and current detection means for detecting a discharge current value when a high voltage is generated in the ignition means In the engine misfire detection device, there is provided misfire determination means for determining whether or not misfire has occurred by comparing a discharge current value of the ignition means after the ignition command signal is generated with a predetermined value. Is a misfire when the value of the discharge current becomes smaller than a predetermined value after a first predetermined time has elapsed and a second predetermined period has elapsed since the ignition command signal was generated. And a misfire detection device for an internal combustion engine.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7256091A JP2688672B2 (en) | 1991-03-12 | 1991-03-12 | Misfire detection device for internal combustion engine |
US07/846,636 US5221904A (en) | 1991-03-07 | 1992-03-05 | Misfire-detecting system for internal combustion engines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7256091A JP2688672B2 (en) | 1991-03-12 | 1991-03-12 | Misfire detection device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04284176A JPH04284176A (en) | 1992-10-08 |
JP2688672B2 true JP2688672B2 (en) | 1997-12-10 |
Family
ID=13492872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7256091A Expired - Fee Related JP2688672B2 (en) | 1991-03-07 | 1991-03-12 | Misfire detection device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2688672B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5383350A (en) * | 1994-01-13 | 1995-01-24 | Gas Research Institute | Sensor and method for detecting misfires in internal combustion engines |
WO2015156371A1 (en) * | 2014-04-10 | 2015-10-15 | 株式会社デンソー | Control device and ignition device |
JP6375674B2 (en) * | 2014-04-10 | 2018-08-22 | 株式会社デンソー | Control device |
JP6322500B2 (en) * | 2014-07-02 | 2018-05-09 | 株式会社Soken | Ignition control device |
-
1991
- 1991-03-12 JP JP7256091A patent/JP2688672B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04284176A (en) | 1992-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1316723A2 (en) | Ignition device for internal combustion engine | |
US6539930B2 (en) | Ignition apparatus for internal combustion engine | |
JPH05149230A (en) | Knocking detecting device for internal combustion engine | |
JP2678986B2 (en) | Misfire detection device for internal combustion engine | |
US6691555B2 (en) | Firing state discrimination system for internal combustion engines | |
JP2688672B2 (en) | Misfire detection device for internal combustion engine | |
JPH05256242A (en) | Misfire detecting device for internal combustion engine | |
JPH05263741A (en) | Misfire detecting device for internal combustion engine | |
JP2705041B2 (en) | Misfire detection device for internal combustion engine | |
JP2641997B2 (en) | Misfire detection device for internal combustion engine | |
JPH0544624A (en) | Detection device for combustion condition of gasoline engine and flying spark miss | |
JP4180298B2 (en) | Misfire detection device | |
JP3449972B2 (en) | Misfire detection device for internal combustion engine | |
JP2003222066A (en) | Accidental fire detecting device | |
JP3084673B1 (en) | Ignition circuit having misfire detection function for internal combustion engine | |
JPH04284175A (en) | Misfire detecting device for internal combustion engine | |
JP4521502B2 (en) | Ignition device for internal combustion engine | |
JPH0565866A (en) | Misfire detecting device for internal combustion engine | |
JPH04279768A (en) | Mis fire detector for internal combustion engine | |
JP2689361B2 (en) | Misfire detection device for internal combustion engine | |
JP3120392B1 (en) | Ignition device having engine misfire detection function | |
JPH1137031A (en) | Ion current detecting device | |
JP2003286933A (en) | Ignition device for internal combustion engine | |
JP2005048649A (en) | Capacitor discharge type ignitor for internal combustion engine | |
JP3186327B2 (en) | Ion current detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970701 |
|
LAPS | Cancellation because of no payment of annual fees |