JP2688431B2 - Method for producing carbon-based hollow body - Google Patents

Method for producing carbon-based hollow body

Info

Publication number
JP2688431B2
JP2688431B2 JP63320397A JP32039788A JP2688431B2 JP 2688431 B2 JP2688431 B2 JP 2688431B2 JP 63320397 A JP63320397 A JP 63320397A JP 32039788 A JP32039788 A JP 32039788A JP 2688431 B2 JP2688431 B2 JP 2688431B2
Authority
JP
Japan
Prior art keywords
hollow body
carbon
based hollow
condensate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63320397A
Other languages
Japanese (ja)
Other versions
JPH02167807A (en
Inventor
憲二 福田
敏 森
秀則 山下
信夫 松本
Original Assignee
三井鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井鉱山株式会社 filed Critical 三井鉱山株式会社
Priority to JP63320397A priority Critical patent/JP2688431B2/en
Publication of JPH02167807A publication Critical patent/JPH02167807A/en
Application granted granted Critical
Publication of JP2688431B2 publication Critical patent/JP2688431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は断熱材、軽量化材、導電性プラスチックフィ
ラー、吸着材等広範囲な分野で利用可能な炭素系中空体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing a carbon-based hollow body which can be used in a wide range of fields such as a heat insulating material, a weight reducing material, a conductive plastic filler, and an adsorbent.

<従来の技術> 炭素系中空体は耐熱性、耐薬品性、耐放射線性など優
れた性能を有する軽量材料としてその利用が期待されて
いる材料である。炭素系中空体の製造方法としては種々
の方法が知られているのが最も一般的な方法としては熱
可塑性の有機高分子材料、石油ピッチ、石炭ピッチなど
の瀝青物を原料とする方法がある。すなわち、瀝青物等
の原料に低沸点溶剤などの膨張剤を均一に混合したのち
適当な粒径の粉粒体とし、次いで加熱炭化することによ
り炭素中空体を得る方法(特公昭49−30253、特公昭61
−14110、特開昭61−83239など)、熱可塑性樹脂等の芯
材を、芯材より高融点の物質で被覆して多層構造の球体
のしたのち加熱炭化する方法(特公昭50−29837)ある
いは特定の瀝青物を粉砕し、加熱炭化することによる方
法(特公昭54−10948)などが知られている。
<Prior Art> Carbon-based hollow bodies are materials expected to be used as lightweight materials having excellent properties such as heat resistance, chemical resistance, and radiation resistance. Various methods are known as a method for manufacturing a carbon-based hollow body, and the most general method is a method using a bituminous material such as a thermoplastic organic polymer material, petroleum pitch, or coal pitch as a raw material. . That is, a raw material such as a bituminous material is uniformly mixed with an expanding agent such as a low boiling point solvent to obtain a powder having an appropriate particle size, and then carbonized by heating to obtain a carbon hollow body (Japanese Patent Publication No. Sho 49-30253, Japanese Patent Office Sho 61
-14110, JP-A-61-83239, etc.), a method of coating a core material such as a thermoplastic resin with a substance having a melting point higher than that of the core material to form a sphere having a multilayer structure and then heating and carbonizing it (Japanese Patent Publication No. 50-29837). Alternatively, a method in which a specific bituminous material is crushed and carbonized by heating (Japanese Patent Publication No. 54-10948) is known.

<発明が解決しようとしる課題> 前記従来法の中で、膨張剤を使用する方法は、それぞ
れの原料に適合した膨張剤の選出、有機溶剤類の取扱、
膨張剤含有粒子の調整方法、さらには熱処理時の条件設
定や取扱などが難かしいという問題点があり、また、多
層構造体を経る方法では比較的粒子径の大きい中空体し
か得られないという欠点があった。さらに、特定の石炭
等の瀝青物を粉砕し、加熱炭化する方法は、通常の瀝青
物はそのまま加熱炭化しようとすれば粒子間の融着を起
す恐れが多いので特定の限られた範囲の原料を使用しな
ければならず、しかも厳密な製造条件の制御が必要で操
作が難しいうえに、この方法で得られるものは、原料の
石炭等に由来する灰分が残留するため純度が低く、その
形状も真球とは言い難く、殻に割れをもつものが多いな
どの問題点を有しており、断熱材等の限られた用途にし
か使用できなかった。
<Problems to be Solved by the Invention> Among the conventional methods, the method of using a swelling agent includes selecting a swelling agent suitable for each raw material, handling an organic solvent,
There is a problem that it is difficult to adjust the expansion agent-containing particles, and further it is difficult to set conditions and handle the heat treatment, and the method of passing through the multilayer structure can obtain only a hollow body having a relatively large particle diameter. was there. Furthermore, a method of pulverizing a bituminous material such as a specific coal and heating and carbonizing it is that a normal bituminous material often causes fusion between particles if it is attempted to heat and carbonize as it is, so that a raw material in a specific limited range is used. In addition to being difficult to operate because strict control of manufacturing conditions is required, the product obtained by this method has low purity because of the residual ash derived from the raw material coal etc. However, it is difficult to say that it is a true sphere, and there are problems that many of them have cracks in the shell, and it could only be used for limited applications such as heat insulating materials.

本発明の目的は、簡単なプロセスにより、粒子径の揃
った真球状の炭素系中空体、金属含有炭素系中空体ある
いは多孔質炭素系中空体を製造する方法を提供すること
にある。
An object of the present invention is to provide a method for producing a spherical carbon-based hollow body, a metal-containing carbon-based hollow body or a porous carbon-based hollow body having a uniform particle size by a simple process.

<課題を解決するための手段> 本発明の方法は、実質的に芳香族スルホン酸類または
それらの塩の、一般式−(CH2−Tx−(CHR)
(式中、Tはベンゼン環またはナフタレン環、Rは水
素、炭素原子数1〜4のアルキル基またはベンゼン環、
n,m,xはそれぞれ0または1を表すが、n,mが共に0であ
ることはない)で表される結合による縮合体(以下芳香
族スルホン酸縮合体と略称する)、または該縮合体と水
溶性高分子化合物との混合物よりなる原料組成物を、微
粒子化したのち不活性ガス雰囲気下または減圧下に加熱
処理して、膨張化および炭化もしくは黒鉛化を行ない、
さらに必要により賦活処理することによる炭素系中空体
の製造方法である。
<Means for Solving the Problems> The method of the present invention is substantially the same as a compound represented by the general formula — (CH 2 ) n —T x — (CHR) m — of aromatic sulfonic acids or salts thereof.
(In the formula, T is a benzene ring or a naphthalene ring, R is hydrogen, an alkyl group having 1 to 4 carbon atoms or a benzene ring,
n, m, x each represent 0 or 1, but both n and m are not 0), a condensate (hereinafter abbreviated as aromatic sulfonic acid condensate) by a bond, or the condensation A raw material composition consisting of a mixture of a body and a water-soluble polymer compound is subjected to heat treatment under an inert gas atmosphere or under reduced pressure after being made into fine particles, to perform expansion and carbonization or graphitization,
Further, it is a method for producing a carbon-based hollow body by performing activation treatment if necessary.

本発明で使用する芳香族スルホン酸縮合体の例として
は、ナフタレンスルホン酸、アントラセンスルホン酸、
フェナトレンスルホン酸、クレオソート油、アントラセ
ン油、タールおよびピッチ等の多環芳香族化合物の混合
物をスルホン化したもの、トルエンスルホン酸、キシレ
ンスルホン酸、フェノール類スルホン酸およびこれらの
混合物もしくはそれらの塩などの芳香族スルホン酸化合
物をそれ自体公知の方法に従って前記一般式で表わされ
る結合を形成するように縮合させたものをあげることが
できるが、芳香族スルホン酸類またはそれらの塩を、ホ
ルマリン、パラホルムアルデヒド、ヘキサメチレンテト
ラミンあるいはその他のアルデヒド類を用いて結合させ
たものが一般的である。なお、芳香族スルホン酸塩を形
成する陽イオン成分としてはNa+,K+,Ca+2,NH4 +等があげ
られるが、あとの炭素工程における取扱の容易さの面で
はアンモニウム塩が好適である。
Examples of the aromatic sulfonic acid condensate used in the present invention include naphthalene sulfonic acid, anthracene sulfonic acid,
Phenatrene sulfonic acid, creosote oil, anthracene oil, sulfonated mixture of polycyclic aromatic compounds such as tar and pitch, toluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid and mixtures thereof or salts thereof. Aromatic sulfonic acid compounds such as, for example, formalin and paramin can be used as the aromatic sulfonic acid compounds or their salts, which are condensed by a method known per se so as to form a bond represented by the above general formula. It is general that they are bound using formaldehyde, hexamethylenetetramine or other aldehydes. As the cation component forming the aromatic sulfonate, Na + , K + , Ca +2 , NH 4 + and the like can be mentioned, but the ammonium salt is preferable from the viewpoint of easy handling in the subsequent carbon process. Is.

これらの芳香族スルホン酸縮合体は適宜精製して使用
してもよいが通常は未反応物等を含む反応混合物のまま
原料として使用すればよい。また、ポリスチレンスルホ
ン酸の如くビニル基を有する芳香族スルホン酸類を重合
させることによって得られるメチレン型結合を有する芳
香族スルホン酸類の重合体を原料として使用することも
できる。さらに、これらの縮合体は単一組成物だけでは
なく、二種以上の縮合物の混合物あるいは共重合、縮合
体の形で使用できることはもちろんである。本発明で使
用する芳香族スルホン酸縮合体の一例としてナフタレン
−β−スルホン酸アンモニウムのホルムアルデヒド縮合
体の例を示すと、同縮合体は単量体から200量体程度ま
での縮合体から成る混合物で、その数平均分子量は約20
00〜50000程度である。このものは乾燥すると容易に粉
砕可能なぜい弱な固型物となる。
These aromatic sulfonic acid condensates may be appropriately purified and used, but usually, they may be used as a raw material as they are as a reaction mixture containing unreacted substances. Alternatively, a polymer of aromatic sulfonic acids having a methylene type bond, which is obtained by polymerizing aromatic sulfonic acids having a vinyl group such as polystyrene sulfonic acid, can be used as a raw material. Further, it goes without saying that these condensates can be used not only in a single composition but also in the form of a mixture or copolymerization or condensate of two or more condensates. As an example of the aromatic sulfonic acid condensate used in the present invention, an example of a formaldehyde condensate of naphthalene-β-ammonium sulfonate is shown. The condensate is a mixture of a monomer and a condensate of up to about 200 mer. And its number average molecular weight is about 20.
It is about 00 to 50,000. When dried, it becomes a weak solid that can be easily crushed.

上記した縮合体は本発明で用いる縮合体の一例にすぎ
ず、芳香族スルホン酸類の種類および/またはその塩の
種類により本発明で用いうる縮合体を構成する量体数の
範囲もしくはその数平均分子量範囲がきまる。たとえば
クレオソート油スルホン化物の縮合体の場合は単量体か
ら40量体程度までの混合物でその数平均分子量が約2000
から5000程度のものが、フェナントレンスルホン酸の縮
合体の場合は単量体から30量体程度までの混合物でその
数平均分子量が約2500から5000程度のものが本発明にお
ける縮合体として使用できる。
The above-mentioned condensate is only one example of the condensate used in the present invention, and the range of the number of monomers constituting the condensate that can be used in the present invention or the number average thereof depending on the type of aromatic sulfonic acid and / or the salt thereof The molecular weight range is fixed. For example, in the case of a condensate of creosote oil sulfonate, the number average molecular weight is about 2000 in a mixture of monomers to about 40-mers.
In the case of a condensate of phenanthrenesulfonic acid, a mixture of monomers to about 30-mer having a number average molecular weight of about 2500 to 5000 can be used as the condensate in the present invention.

本発明の方法においては前記の芳香族スルホン酸縮合
体を乾燥し粉砕したのち、必要により微粉成分を除去す
る等の方法により1〜1000μmの微粒子とし、次の膨張
化工程に供する。微粒子の粒度は目的とする炭素系中空
体の性状に応じて前記粒度の範囲内で任意に調整すれば
よく、また適宜分級操作を施すことにより粒度の揃った
炭素系中空体を得ることができる。粒子径が1μm未満
では膨張時の粒子間の融着が多くなり、また1000μmを
超えると膨張後の粒子の真球形状の維持が困難となるの
で好ましくない。なお、縮合体の微粒子を得るためには
必ずしも乾燥、次いで粉砕の工程を経る必要はなく、適
宜噴霧乾燥や溶融物を適当な雰囲気中に分散させる等の
手段により微粒子状としてもよい。本発明の芳香族スル
ホン酸縮合体を原料とした場合、通常の粉砕手段による
粉砕品からほぼ真球状の中空体を得ることができるが、
できるだけ角のない粒子としておくのが好ましく、その
ためにはフラッシュエバポレーター等を用いて乾燥、造
粒を行うことが好ましい。
In the method of the present invention, the above-mentioned aromatic sulfonic acid condensate is dried and pulverized, and then, if necessary, fine powder components are removed to obtain fine particles of 1 to 1000 μm, and the fine particles are provided for the next expansion step. The particle size of the fine particles may be arbitrarily adjusted within the range of the particle size according to the properties of the target carbon-based hollow body, and a carbon-based hollow body having a uniform particle size can be obtained by performing an appropriate classification operation. . If the particle size is less than 1 μm, fusion between particles during expansion increases, and if it exceeds 1000 μm, it becomes difficult to maintain the true spherical shape of the particles after expansion, which is not preferable. In order to obtain the fine particles of the condensate, it is not always necessary to go through the steps of drying and pulverization, and the particles may be made into fine particles by means such as spray drying or dispersing the melt in an appropriate atmosphere. When the aromatic sulfonic acid condensate of the present invention is used as a raw material, a substantially spherical hollow body can be obtained from a pulverized product by a usual pulverizing means,
It is preferable that the particles have as few corners as possible, and for that purpose, it is preferable to carry out drying and granulation using a flash evaporator or the like.

次に芳香族スルホン酸縮合体の微粒子を不活性ガス雰
囲気中で最高温度450〜600℃に昇温加熱し熱処理する。
この熱処理により縮合体を構成する成分の一部分解によ
りアンモニア、水、SO2等のガスが発生し、粒子は膨張
して粒子径1〜4000μmの一時中空体が得られる。縮合
体の粒子系が小さいほど比表面積が大きくなるので分解
ガスは粒子外に放出され易くなり発泡し難くなるので膨
張時の昇温速度を大きくする必要がある。すなわち目的
とする中空体の粒子の大きさに応じ、また使用する原料
によって、最適昇温速度は異なるが、通常100〜250μm
の中空体を得る場合の昇温速度は20℃/min〜400℃/mi
n、好ましくは35〜100℃/minである。昇温速度が400℃/
minを超えても膨張粒子の形状が不揃いとなるが中空体
は得られるので、厳密に真球状の中空体を必要としない
場合には昇温速度が400℃/minを超えても差支えない。
熱処理を受ける原料微粒子の量が多くなり過ぎたり、原
料微粒子量に対する不活性ガスの量が相対的に少な過ぎ
ると粒子間の融着が起きる恐れがあるがこれを防止する
ため、減圧下で熱処理を行なうことは有効である。本発
明で使用する芳香族スルホン酸縮合体の場合膨張化は45
0〜600℃の温度でほぼ完了する。
Next, the fine particles of the aromatic sulfonic acid condensate are heated in the inert gas atmosphere to a maximum temperature of 450 to 600 ° C. and heat-treated.
This heat treatment partially decomposes the constituents of the condensate to generate gases such as ammonia, water and SO 2 and the particles expand to obtain a temporary hollow body having a particle diameter of 1 to 4000 μm. The smaller the particle size of the condensate, the larger the specific surface area, so that the decomposed gas is more likely to be released to the outside of the particle and less likely to foam, so that it is necessary to increase the temperature rising rate during expansion. That is, the optimum heating rate varies depending on the size of the particles of the target hollow body and the raw material used, but it is usually 100 to 250 μm.
The temperature rising rate for obtaining the hollow body is 20 ℃ / min ~ 400 ℃ / mi
n, preferably 35 to 100 ° C / min. Temperature rising rate is 400 ° C /
Even if it exceeds min, the shape of the expanded particles becomes irregular, but a hollow body can be obtained. Therefore, if a strictly spherical hollow body is not strictly required, the heating rate may exceed 400 ° C./min.
If the amount of raw material particles to be heat-treated becomes too large or the amount of inert gas relative to the amount of raw material particles is too small, fusion between particles may occur, but to prevent this, heat treatment under reduced pressure It is effective to do. In the case of the aromatic sulfonic acid condensate used in the present invention, the expansion is 45
Almost complete at a temperature of 0-600 ° C.

得られた一次中空体は、用途によってはそのままで使
用することもできるが通常はさらに炭化、黒鉛化さらに
は賦活処理を行って高機能性の炭素系中空体とする。す
なわち、一次中空体を膨張化工程に引続き、あるいは一
旦取出したのち、不活性ガス雰囲気中で500〜3000℃の
温度範囲で加熱し炭化する。炭化温度は製品の用途によ
り適宜選定することができる。すなわち、爆薬添加材、
浮力付与材、活性炭またはその原料等に使用する場合に
は500〜800℃での炭化で充分であり、断熱材、導電材、
電磁波シールド材、徐放性担体あるいは触媒等の用途の
ためには、より高温の800〜3000℃で炭化あるいは黒鉛
化を行うことが望ましい。炭化後あるいは炭化と同時
に、水蒸気やCO2等を用いて800〜1000℃で処理すること
により賦活し、活性炭の機能を有する炭素系中空体を得
ることができる。
The obtained primary hollow body can be used as it is depending on the application, but it is usually further carbonized, graphitized, and activated to obtain a highly functional carbon-based hollow body. That is, the primary hollow body is carbonized by heating in the temperature range of 500 to 3000 ° C. in an inert gas atmosphere after the expansion step or once taking out. The carbonization temperature can be appropriately selected depending on the application of the product. That is, explosive additive material,
When used as a buoyancy-imparting material, activated carbon or its raw material, carbonization at 500 to 800 ° C is sufficient.
For applications such as electromagnetic wave shielding materials, sustained-release carriers or catalysts, it is desirable to carry out carbonization or graphitization at a higher temperature of 800 to 3000 ° C. After or at the same time as the carbonization, the carbon-based hollow body having the function of activated carbon can be obtained by activating by treating with steam or CO 2 at 800 to 1000 ° C.

本発明の方法において、芳香族スルホン酸縮合体の粉
末を調整する段階で該縮合体100重量部に対し0.02〜20
重量部の水溶性高分子化合物を添加することにより、粉
末調整時の取扱性、膨張時の融着防止や真球形成性、あ
るいは強度等最終製品の性能を向上させることができ
る。
In the method of the present invention, in the step of adjusting the powder of the aromatic sulfonic acid condensate, 0.02 to 20 per 100 parts by weight of the condensate.
By adding parts by weight of the water-soluble polymer compound, the final product performance such as handleability during powder preparation, fusion prevention during expansion and true sphere formation, or strength can be improved.

本発明において使用する水溶性高分子化合物としては
各種の水あるいは水系溶媒に可溶ないしコロイド状に分
散可能な高分子化合物が使用できるが、エチレンオキシ
ド、プロピレンオキシド等の縮合物あるいはこれらと各
種アルコール、脂肪酸、アルキルアミン、アルキルフェ
ノール類との縮合物などのポリアルキレンオキシド系化
合物、ポリビニルアルコール、ポリビニルピロリドンな
どのポリビニル化合物、ポリアクリル酸、ポリアクリル
アミド、アクリル酸−アクリルアミドコポリマーなどの
ポリアクリル酸系化合物などが特に好適である。また本
発明の方法で主原料として用いられる芳香族スルホン酸
類またはそれらの塩のメチレン型縮合体の中でも水溶性
の大きいポリスチレンスルホン酸等はここでいう水溶性
高分子化合物として使用できる。
As the water-soluble polymer compound used in the present invention, a polymer compound soluble or colloidally dispersible in various kinds of water or an aqueous solvent can be used. Condensates of ethylene oxide, propylene oxide and the like or various alcohols, Polyalkylene oxide compounds such as fatty acid, alkylamine, and condensation products with alkylphenols, polyvinyl compounds such as polyvinyl alcohol and polyvinylpyrrolidone, polyacrylic acid compounds such as polyacrylic acid, polyacrylamide, acrylic acid-acrylamide copolymer, etc. It is particularly suitable. Further, among the methylene type condensates of aromatic sulfonic acids or their salts used as the main raw material in the method of the present invention, polystyrene sulfonic acid having high water solubility can be used as the water soluble polymer compound.

また、原料組成物中に各種の金属塩類を添加して膨張
化、炭化を行うことにより、金属成分が極めて細かく均
質に分散した炭素系中空体を得ることができる。この金
属含有炭素系中空体はそれぞれの目的に応じて使用する
金属塩の種類を変えることにより種々の用途に利用する
ことができる。すなわち、塩化亜鉛等を使用すれば賦活
処理が容易となって高性能の活性炭素系中空体を得るこ
とができ、銅、クロム、マンガン等の塩を使用すれば活
性炭の脱臭能力を高めることができる。また、鉄、ニッ
ケル、コバルト、モリブデン、金、白金等の塩を使用す
ることにより各種の触媒活性を有する炭素系中空体を、
鉄、銅等の塩を使用することにより電磁波シールド効果
の高い炭素系中空体を、アルミニウム、亜鉛等の塩を使
用することにより金属への分散性が良好な炭素系中空体
を、さらに、鉄、ニッケル、コバルト等の塩を使用する
ことによって磁性を有する炭素系中空体をそれぞれ得る
ことができる。
Further, by adding various metal salts to the raw material composition for expansion and carbonization, it is possible to obtain a carbon-based hollow body in which the metal components are extremely finely and uniformly dispersed. This metal-containing carbon-based hollow body can be used for various purposes by changing the type of metal salt used according to each purpose. That is, if zinc chloride or the like is used, activation treatment becomes easy and a high-performance activated carbon-based hollow body can be obtained, and if salts of copper, chromium, manganese, etc. are used, the deodorizing ability of activated carbon can be enhanced. it can. Further, by using a salt of iron, nickel, cobalt, molybdenum, gold, platinum or the like, a carbon-based hollow body having various catalytic activities,
By using a salt of iron, copper, etc., a carbon-based hollow body having a high electromagnetic wave shielding effect is obtained, and by using a salt of aluminum, zinc, etc., a carbon-based hollow body having good dispersibility in a metal, By using a salt of nickel, nickel, cobalt or the like, a carbon-based hollow body having magnetism can be obtained.

以下、実施例により本発明の方法をさらに具体的に説
明する。
Hereinafter, the method of the present invention will be described more specifically with reference to Examples.

実施例1 純度95%のナフタレン1280gに98%硫酸1050gを添加
し、160℃で2時間反応させてスルホン化したのち、減
圧下で未反応ナフタレンと反応生成水を系外に留去し
た。次いで35%ホルマリン水溶液857gを加え、105℃で
5時間反応させたのちアンモニア水で中和さ、東洋濾紙
(株)製No.5濾紙を用いて濾過し、濾液を蒸発乾固さ
せ、褐色の塊状物としてナフタレン−β−スルホン酸の
メチレン結合型の縮合物のアンモニウム塩を得た。該縮
合体の数平均分子量は3160であった。この褐色の塊状物
を破砕し、粒度を100〜150μmに調整後窒素気流中で室
温から200℃までを50℃/min、200℃から600℃までを35
℃/min、600℃から800℃までを40℃/minで昇温し、800
℃に到達後直ちに冷却することにより膨張化および炭化
処理を行ない48.5%の収率(縮合体の乾燥重量に対する
収率)で炭素系中空体を得た。このものは、第1図の顕
微鏡写真に示すように粒子径200〜300μmの真球状であ
り、かさ密度は0.25g/cm3であった。
Example 1 1280 g of naphthalene having a purity of 95% was added with 1050 g of 98% sulfuric acid and reacted at 160 ° C. for 2 hours for sulfonation, and then unreacted naphthalene and reaction product water were distilled out of the system under reduced pressure. Then, 857 g of a 35% formalin aqueous solution was added, and the mixture was reacted at 105 ° C for 5 hours, neutralized with aqueous ammonia, filtered using No. 5 filter paper manufactured by Toyo Roshi Kaisha, Ltd., and the filtrate was evaporated to dryness to give a brown powder. An ammonium salt of a methylene-bonded condensate of naphthalene-β-sulfonic acid was obtained as a lump. The number average molecular weight of the condensate was 3,160. This brown lump is crushed and the particle size is adjusted to 100-150 μm, then in a nitrogen stream from room temperature to 200 ℃ 50 ℃ / min, 200 ℃ to 600 ℃ 35
℃ / min, increase the temperature from 600 ℃ to 800 ℃ at 40 ℃ / min.
Immediately after the temperature reached ℃, the product was expanded and carbonized to obtain a carbon-based hollow body at a yield of 48.5% (yield based on the dry weight of the condensate). As shown in the micrograph of FIG. 1, this was a spherical shape with a particle diameter of 200 to 300 μm, and the bulk density was 0.25 g / cm 3 .

水銀ポロシメーターを用いてこの炭素系中空体の細孔
分布を測定した結果は第2図に示すとおりで、細孔の中
心は6×103Åであり、その細孔容量は1.83cc/gであっ
た。また、測定後の試料を観察すると、試料中に水銀が
圧入されたままであること、試料が全く破壊されていな
いことから、中心径6×103Åの細孔は中空体内部への
貫通孔であることが確認できた。
The result of measuring the pore distribution of this carbon-based hollow body using a mercury porosimeter is as shown in Fig. 2. The center of the pore is 6 × 10 3 Å, and its pore volume is 1.83cc / g. there were. Also, when observing the sample after measurement, since the mercury is still pressed into the sample and the sample is not broken at all, the pores with a center diameter of 6 × 10 3 Å show through holes to the inside of the hollow body. It was confirmed that

さらに、この炭素系中空体を900℃で30分間水蒸気雰
囲気下で賦活したところ、N2によるBET比表面積が1624m
2/g、かさ密度0.15g/cm3の活性炭素系中空体を得ること
ができた。
Furthermore, when this carbon-based hollow body was activated at 900 ° C. for 30 minutes in a steam atmosphere, the BET specific surface area by N 2 was 1624 m 2.
An activated carbon-based hollow body having a density of 2 / g and a bulk density of 0.15 g / cm 3 could be obtained.

実施例2 クレオソート油1700gに98%硫酸1050gを加え、160℃
で2時間反応させてスルホン化したのち、未反応油分と
反応生成水を系外に留去した。続いて35%ホルマリン水
溶液857gを加え、105℃で5時間反応させたのちアンモ
ニア水で中和し、東洋濾紙(株)製No.5濾紙を用いて濾
過し、濾液を蒸発乾固させて暗褐色塊状物を得た。本縮
合物の数平均分子量は2730であった。この暗褐色塊状物
100重量部に対しポリビニルアルコール(和光純薬製、
重合度約2000)2重量部および塩化第二鉄20重量部を加
え、水を添加して完全に溶解させたのち再度蒸発乾固
し、粉砕し、粒度を100〜150μmに調整後実施例1と同
様に熱処理して鉄成分が均一かつ微細に分散した炭素系
中空体を得た。このものは磁性を示し、かさ密度は0.27
g/cm3であった。この鉄含有炭素系中空体の細孔中心径
は2.6×102Åであり、その細孔容量(中空部分の容量を
含む)は0.83cc/gであった。同炭素系中空体を塩酸洗浄
し、鉄分を溶出させたところ、細孔中心径は1.3×102
となり、その細孔容量(中空部分の容量を含む)は1.27
cc/gに増加した。
Example 2 1050 g of 98% sulfuric acid was added to 1700 g of creosote oil, and the temperature was increased to 160 ° C.
After reacting for 2 hours with sulfonation, the unreacted oil and the water produced by the reaction were distilled out of the system. Subsequently, 857 g of a 35% formalin aqueous solution was added, and the mixture was reacted at 105 ° C for 5 hours, neutralized with ammonia water, filtered using No.5 filter paper manufactured by Toyo Roshi Kaisha, Ltd., and the filtrate was evaporated to dryness to darkness. A brown mass was obtained. The number average molecular weight of this condensate was 2730. This dark brown lump
100 parts by weight of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries,
After adding 2 parts by weight of a degree of polymerization of about 2000) and 20 parts by weight of ferric chloride to completely dissolve it by adding water, evaporate to dryness again and pulverize to adjust the particle size to 100 to 150 μm. Heat treatment was performed in the same manner as in (1) to obtain a carbon-based hollow body in which the iron component was uniformly and finely dispersed. This material exhibits magnetism and has a bulk density of 0.27
It was g / cm 3 . The center diameter of pores of this iron-containing carbon-based hollow body was 2.6 × 10 2 Å, and the pore volume (including the volume of the hollow portion) was 0.83 cc / g. When the carbon-based hollow body was washed with hydrochloric acid and the iron content was eluted, the central pore diameter was 1.3 × 10 2 Å
And the pore volume (including the volume of the hollow part) is 1.27.
Increased to cc / g.

実施例3 ナフタレン搾油(組成ナフタレンの沸点未満の低沸留
分4.2wt%、ナフタレン26.4wt%、β−メチル−ナフタ
レン49.0wt%、α−メチルナフタレン12.1wt%、ナフタ
レンとα−メチルナフタレンの中間沸点留分4.0wt%、
α−メチルナフタレンの沸点を越える高沸留分4.3wt
%)1420gに98%硫酸1200gを添加し、150℃で3時間反
応させてスルホン化したのち、減圧下で未反応油と反応
生成水を系外に留去した。次いで水を150g加えた後、35
%ホルマリン水溶液857gを加え、105℃で5時間反応さ
せたのち、残留硫酸当量の水酸化カルシウムを加え、硫
酸を石コウとして濾別した。濾液をアンモニア水で中和
した後、フラッシュエバポレーターを用いて水分を蒸発
させ、ナフタレン搾油−スルホン酸のメチレン結合型の
縮合物のアンモニウム塩の粉末を得た。この粉末を分級
処理し、37〜53μmの範囲の粒子とし、これを800℃に
保持した竪型炉中にN2気流下に落下させ膨張化および炭
化処理を行い、炭素系中空体を得た。このものは粒子系
60〜70μmの球状炭素系中空体であり、かさ密度は0.08
g/cm3であった。
Example 3 Naphthalene squeezed oil (composition naphthalene having a low boiling point of less than 4.2 wt%, naphthalene 26.4 wt%, β-methyl-naphthalene 49.0 wt%, α-methylnaphthalene 12.1 wt%, intermediate between naphthalene and α-methylnaphthalene) Boiling point fraction 4.0 wt%,
High-boiling fraction over the boiling point of α-methylnaphthalene 4.3wt
%) 1420 g of 98% sulfuric acid 1200 g was added, and the mixture was reacted at 150 ° C. for 3 hours for sulfonation, and then unreacted oil and water produced by reaction were distilled out of the system under reduced pressure. Then add 150 g of water, then 35
% Formalin aqueous solution (857 g) was added, and the mixture was reacted at 105 ° C. for 5 hours. Residual sulfuric acid equivalent calcium hydroxide was added, and sulfuric acid was filtered off as gypsum. After the filtrate was neutralized with aqueous ammonia, the water was evaporated using a flash evaporator to obtain a powder of an ammonium salt of a methylene bond type condensate of naphthalene pressed oil-sulfonic acid. The powder was classified to particles in the range of 37 to 53 μm, dropped into a vertical furnace kept at 800 ° C. under a N 2 stream for expansion and carbonization to obtain a carbon-based hollow body. . This is a particle system
It is a spherical carbon-based hollow body with a diameter of 60 to 70 μm and a bulk density of 0.08.
It was g / cm 3 .

<効果> 本発明の方法によれば、原料として芳香族スルホン酸
縮合体を使用し、微粒子化、膨張化、炭化処理を行い、
必要により黒鉛化、賦活処理を行うことにより、有機溶
剤等の膨張剤を使用せず、しかも通常のピッチ系材料の
炭素化に必要な不融化工程を必要とすることなく所望の
粒子径を有する炭素系中空体を製造することができる。
本発明の方法によって得られる炭素系中空体は、ほぼ真
球状で、孔径分布の狭い中空体内部への貫通孔を有する
量であって、断熱材、導電性プラスチックフィラー、電
子波シールド材、軽量化材、徐放性薬剤のカプセル、爆
薬、吸着材など多様な用途に利用が可能である。
<Effect> According to the method of the present invention, an aromatic sulfonic acid condensate is used as a raw material, finely divided, expanded and carbonized,
By performing graphitization and activation treatment as necessary, a desired particle diameter can be obtained without using an expanding agent such as an organic solvent and without requiring an infusibilizing step necessary for carbonization of a usual pitch-based material. A carbon-based hollow body can be manufactured.
The carbon-based hollow body obtained by the method of the present invention has a substantially spherical shape, and is an amount having a through hole to the inside of the hollow body having a narrow pore size distribution, which is a heat insulating material, a conductive plastic filler, an electron wave shielding material, and a lightweight. It can be used for various purposes such as chemicals, sustained release drug capsules, explosives and adsorbents.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法によって得られた炭素系中空体の
粒子構造の一例を示す図面代用顕微鏡写真(倍率300
倍)である。 第2図は、水銀ポロシメーターを用いて、本発明の方法
で得られた炭素系中空体の一例の細孔分布を測定した結
果を示すグラフの概略図である。
FIG. 1 is a drawing-substituting micrograph (magnification: 300) showing an example of the particle structure of a carbon-based hollow body obtained by the method of the present invention.
Times). FIG. 2 is a schematic diagram of a graph showing the results of measuring the pore distribution of an example of the carbon-based hollow body obtained by the method of the present invention, using a mercury porosimeter.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】実質的に芳香族スルホン酸類またはそれら
の塩の、一般式−(CH2−Tx−(CHR)−(式中、
Tはベンゼン環またはナフタレン環、Rは水素、炭素原
子数1〜4のアルキル基またはベンゼン環、n,m,xはそ
れぞれ0または1を表すが、n,mが共に0であることは
ない)で表される結合による縮合体、または該縮合体と
水溶性高分子化合物との混合物よりなる原料組成物を、
微粒子化したのち不活性ガス雰囲気下または減圧下に加
熱処理して、膨張化および炭化もしくは黒鉛化を行な
い、さらに必要により賦活処理することを特徴とする炭
素系中空体の製造方法。
1. A substantially aromatic sulfonic acids or their salts, the formula - (CH 2) n -T x - (CHR) m - ( wherein,
T is a benzene ring or naphthalene ring, R is hydrogen, an alkyl group having 1 to 4 carbon atoms or a benzene ring, n, m and x are 0 or 1, respectively, but n and m are not 0 at the same time. ) A condensate by a bond represented by, or a raw material composition comprising a mixture of the condensate and a water-soluble polymer compound,
A method for producing a carbon-based hollow body, which comprises subjecting to fine particles, followed by heat treatment in an inert gas atmosphere or under reduced pressure for expansion, carbonization or graphitization, and further activation treatment if necessary.
【請求項2】請求項1に記載の方法において、原料組成
物中に金属塩類を添加することによる金属含有炭素系中
空体の製造方法。
2. The method according to claim 1, wherein the metal-containing carbon-based hollow body is produced by adding a metal salt to the raw material composition.
【請求項3】請求項1に記載の方法において、原料組成
物中に金属塩類を添加することにより金属含有炭素中空
体を得、次いで酸処理により金属を溶出させるか、高温
熱処理により金属を昇華させることによる多孔質炭素系
中空体の製造方法。
3. The method according to claim 1, wherein a metal-containing hollow carbon body is obtained by adding a metal salt to the raw material composition, and then the metal is eluted by acid treatment or the metal is sublimated by high temperature heat treatment. A method for producing a porous carbon-based hollow body by:
JP63320397A 1988-12-21 1988-12-21 Method for producing carbon-based hollow body Expired - Fee Related JP2688431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320397A JP2688431B2 (en) 1988-12-21 1988-12-21 Method for producing carbon-based hollow body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320397A JP2688431B2 (en) 1988-12-21 1988-12-21 Method for producing carbon-based hollow body

Publications (2)

Publication Number Publication Date
JPH02167807A JPH02167807A (en) 1990-06-28
JP2688431B2 true JP2688431B2 (en) 1997-12-10

Family

ID=18121013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320397A Expired - Fee Related JP2688431B2 (en) 1988-12-21 1988-12-21 Method for producing carbon-based hollow body

Country Status (1)

Country Link
JP (1) JP2688431B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869216B2 (en) * 2008-08-25 2011-01-11 Honeywell International Inc. Composite avionics chassis

Also Published As

Publication number Publication date
JPH02167807A (en) 1990-06-28

Similar Documents

Publication Publication Date Title
US7195713B2 (en) Material for chromatography
JP4277065B2 (en) Molded activated carbon
JP2615140B2 (en) Method for producing porous carbonaceous material containing ultrafine metal particles
JPH09328308A (en) Activated carbon, its production and capacitor using the same
JPH1081889A (en) Powder for electroviscous fluid
JPH07165407A (en) Small spherical activated carbon made of ion exchanger
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
US20120119401A1 (en) Production of carbonaceous porous bodies for use in filtration systems
WO2017098314A1 (en) Method of obtaining mobile magnetic composite adsorbents
JP2688431B2 (en) Method for producing carbon-based hollow body
JPH08315825A (en) Manufacture of electrode for battery
JPS6141842B2 (en)
US20100196246A1 (en) Methods for mitigating agglomeration of carbon nanospheres using a crystallizing dispersant
JP3960397B2 (en) Electric double layer capacitor
CN109201002B (en) Carbon-coated transition metal carbide composite material, preparation method and adsorption application thereof
JPS6320762B2 (en)
JPH02271919A (en) Production of fine powder of titanium carbide
JP2857169B2 (en) Sulfone group-containing heat-resistant polymer material and method for producing the same
JP3197020B2 (en) Method for producing molecular sieve carbon
JPS6252116A (en) Production of formed activated carbon
JP4683175B2 (en) Porous molding
JPH0660864A (en) Electrode for secondary battery
JP2009215470A (en) Resorcinol-based spiral polymer and carbon, and process for producing the same
JP2702854B2 (en) Electrodes for secondary batteries
JPS5833172B2 (en) Method for producing granular molecular sieve carbon material from coal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees