JP2688009B2 - Method for recovering organic quaternary ammonium hydroxide from waste liquid - Google Patents

Method for recovering organic quaternary ammonium hydroxide from waste liquid

Info

Publication number
JP2688009B2
JP2688009B2 JP4337835A JP33783592A JP2688009B2 JP 2688009 B2 JP2688009 B2 JP 2688009B2 JP 4337835 A JP4337835 A JP 4337835A JP 33783592 A JP33783592 A JP 33783592A JP 2688009 B2 JP2688009 B2 JP 2688009B2
Authority
JP
Japan
Prior art keywords
quaternary ammonium
organic quaternary
waste liquid
ammonium hydroxide
cation exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4337835A
Other languages
Japanese (ja)
Other versions
JPH06154749A (en
Inventor
駿平 清水
俊連 長
茂雄 飯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Chemical Co Ltd
Original Assignee
Tama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Chemical Co Ltd filed Critical Tama Chemical Co Ltd
Priority to JP4337835A priority Critical patent/JP2688009B2/en
Priority to DE69307659T priority patent/DE69307659T2/en
Priority to US08/149,827 priority patent/US5439564A/en
Priority to KR1019930023774A priority patent/KR100264643B1/en
Priority to EP93118216A priority patent/EP0597460B1/en
Publication of JPH06154749A publication Critical patent/JPH06154749A/en
Priority to US08/438,962 priority patent/US5545309A/en
Application granted granted Critical
Publication of JP2688009B2 publication Critical patent/JP2688009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、廃液から水酸化有機
第四アンモニウムを回収する方法に係り、より詳しく
は、主として半導体装置、プリント基板、液晶表示装置
等の製造工程等から排出され、水酸化有機第四アンモニ
ウムやレジスト剥離物を含有する廃液から、有価物であ
る水酸化有機第四アンモニウムを効率的にかつ安価に回
収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering organic quaternary ammonium hydroxide from a waste liquid, and more specifically, it mainly discharges water from the manufacturing process of semiconductor devices, printed circuit boards, liquid crystal display devices, etc. The present invention relates to a method for efficiently and inexpensively recovering valuable quaternary organic ammonium hydroxide from a waste liquid containing organic quaternary ammonium oxide and resist stripped products.

【0002】[0002]

【従来の技術】近年、電気電子技術の発展に伴い、半導
体装置、プリント基板、液晶表示装置等の需要が高ま
り、これに伴ってホトエッチング後の現像工程で使用さ
れる現像液や、Siウエハや液晶ガラス基板の洗浄工程
で使用される洗浄液等のアルカリ水溶液の使用量が増大
し、同時にこれらの製造工程から排出されるアルカリ廃
液も急増している。そして、このような製造工程で使用
されるアルカリ水溶液については、半導体装置の集積度
が上り、また、プリント基板や液晶表示装置等における
パターンの微細化が進むにつれて、高純度化が要求され
るようになり、この高純度化に対応する必要から、例え
ば水酸化テトラメチルアンモニウム(TMAH)や水酸
化β−ヒドロキシエチルトリメチルアンモニウム(コリ
ン)等の水酸化有機第四アンモニウムの水溶液が多用さ
れている。
2. Description of the Related Art In recent years, the demand for semiconductor devices, printed circuit boards, liquid crystal display devices, etc. has increased with the development of electrical and electronic technologies, and the developer used in the developing process after photo-etching and Si wafers have been accordingly increased. The amount of alkaline aqueous solutions such as cleaning liquids used in the cleaning process of liquid crystal glass substrates and liquid crystal glass substrates is increasing, and at the same time, the amount of alkaline waste liquid discharged from these manufacturing processes is rapidly increasing. With regard to the alkaline aqueous solution used in such a manufacturing process, high purity is required as the degree of integration of semiconductor devices increases and as patterns in printed boards and liquid crystal display devices become finer. Since it is necessary to cope with this high purification, an aqueous solution of an organic quaternary ammonium hydroxide such as tetramethylammonium hydroxide (TMAH) or β-hydroxyethyltrimethylammonium hydroxide (choline) is often used.

【0003】このため、このような半導体装置、プリン
ト基板、液晶表示装置等の製造工程からのアルカリ廃液
については、現像液や洗浄液由来の水酸化有機第四アン
モニウムが通常100〜20,000ppm程度の濃度
で含有されており、また、現像液の場合にはレジストと
して使用されたキノンジアジドとフェノールノボラック
樹脂の混合物又は縮合物(光分解型ホトレジスト)等の
種々の感光性樹脂由来のレジスト剥離物が通常10〜
1,000ppm程度の濃度で含有されている。そこ
で、このような廃液については、従来においては、これ
を中和し、次いで活性汚泥により微生物分解処理して放
流するか、あるいは、適当に濃縮して燃焼処理している
のが実情であり、このために、このような廃液中に含ま
れているTMAHやコリン等の有用な物質も、この廃液
処理と共に廃棄されているのが現状である。
Therefore, in the alkaline waste liquid from the manufacturing process of such semiconductor devices, printed circuit boards, liquid crystal display devices, etc., the organic quaternary ammonium hydroxide derived from the developing solution or the cleaning solution is usually about 100 to 20,000 ppm. In the case of a developing solution, it is usually a resist stripper derived from various photosensitive resins such as a mixture or condensate of quinonediazide and phenol novolac resin used as a resist in the case of a developing solution (photodegradable photoresist). 10 to
It is contained at a concentration of about 1,000 ppm. Therefore, with respect to such a waste liquid, in the past, it is the actual situation that the waste liquid is neutralized, then microbially decomposed by activated sludge and discharged, or appropriately concentrated and burned. Therefore, at present, useful substances such as TMAH and choline contained in such waste liquid are also discarded together with the waste liquid treatment.

【0004】ところで、このような廃液からTMAHや
コリン等の有用な物質を回収したり、あるいは、現像液
として再生する試みも提案されている。すなわち、特開
昭60−247,641号公報においては、TMAH等
由来の有機第4級アンモニウムイオンを含有する排水を
逆浸透濾過で濃縮し、得られた濃縮水を電気分解し、濃
縮水中の有機第4級アンモニウムイオンを有機第4級ア
ンモニウムアルカリとして回収する方法が提案されてお
り、また、特開昭58−30,753号公報において
は、活性炭塔と濾過塔を用いてホトレジストを吸着除去
し、得られた濾液に現像原液を追加してpH調整するこ
とにより現像液を再生する方法が提案されている。
Attempts have also been made to recover useful substances such as TMAH and choline from such waste liquid, or to regenerate them as a developer. That is, in Japanese Patent Application Laid-Open No. 60-247,641, waste water containing organic quaternary ammonium ions derived from TMAH and the like is concentrated by reverse osmosis filtration, and the obtained concentrated water is electrolyzed to obtain the concentrated water. A method of recovering an organic quaternary ammonium ion as an organic quaternary ammonium alkali has been proposed. Further, in JP-A-58-30753, the photoresist is adsorbed and removed by using an activated carbon tower and a filtration tower. Then, a method of regenerating the developing solution by adding a developing stock solution to the obtained filtrate and adjusting the pH has been proposed.

【0005】しかしながら、前者の方法においては、高
価な逆浸透膜を用いてTMAH等の水酸化有機第四アン
モニウムを一定の濃度にまで物理的に濃縮する必要があ
り、この際に使用する逆浸透膜は、その耐久性を考慮す
ると長期に亘って使用可能なpH領域は実際にはpH1
0程度以下であり、廃液のpH値が高いとこの逆浸透膜
の耐久性が問題になって、この方法を適用できる廃液に
制限がある。しかも、この逆浸透濾過では、1回の逆浸
透濾過で濃縮できる濃縮倍率が高々4倍程度と低く、次
の電解工程での所望の濃度、例えば1〜2%程度まで濃
縮するためには通常複数回の逆浸透濾過操作が必要にな
るほか、通常濃縮倍率を一定にして操作が行われている
が、廃液の濃度が安定していないと得られる濃縮液の濃
度も安定せず、使い難いという問題があり、また、イオ
ンの一部が濾過液中に洩出するのが避けられないため、
濾過液を排出するためには2次処理が避けられず、有価
物の回収率も低下する。加えて、廃液中に含まれている
レジスト剥離物や界面活性剤もこの水酸化有機第四アン
モニウムと同時に濃縮され、これらが逆浸透膜に付着す
ることに起因すると思われるが、逆浸透膜の性能や耐久
性が低下し、水酸化有機第四アンモニウムの回収効率が
低下し、逆浸透膜の寿命が短いという問題がある。この
ため、この逆浸透濾過の方法によっても、多大な処理コ
ストがかかるほか、必ずしも満足できる結果が得られな
いという問題があった。また、後者の方法においても、
活性炭の吸着容量が小さくて相当量の使用が必要になる
が、高価であるために廃棄するには不経済でありすぎ、
一方、再使用するのも再生に高いコストがかかるという
問題がある。しかも、活性炭から金属イオンや微粒子等
の不純物の混入が避けられず、高純度の水酸化有機第四
アンモニウムを回収するには適当な方法であるとはいえ
ない。
However, in the former method, it is necessary to physically concentrate the organic quaternary ammonium hydroxide such as TMAH to a certain concentration using an expensive reverse osmosis membrane, and the reverse osmosis used at this time is required. Considering the durability of the membrane, the pH range that can be used for a long time is actually pH 1
If the pH value of the waste liquid is about 0 or less and the pH value of the waste liquid is high, the durability of the reverse osmosis membrane becomes a problem, and the waste liquid to which this method can be applied is limited. Moreover, in this reverse osmosis filtration, the concentration ratio that can be concentrated by one time of reverse osmosis filtration is as low as about 4 times at most, and it is usually necessary to concentrate to a desired concentration in the next electrolysis step, for example, about 1 to 2%. In addition to requiring multiple reverse osmosis filtration operations, it is usually performed with a constant concentration ratio, but if the concentration of the waste liquid is not stable, the concentration of the obtained concentrated liquid will not be stable and is difficult to use. There is also a problem that some of the ions leak out into the filtrate,
Secondary treatment is unavoidable in order to discharge the filtrate, and the recovery rate of valuables is also reduced. In addition, the resist stripper and the surfactant contained in the waste liquid are also concentrated at the same time as the organic quaternary ammonium hydroxide, and it is considered that these are attached to the reverse osmosis membrane. There are problems that the performance and durability are reduced, the recovery efficiency of the organic quaternary ammonium hydroxide is reduced, and the life of the reverse osmosis membrane is short. For this reason, this method of reverse osmosis filtration requires a great deal of processing cost and has a problem that satisfactory results cannot always be obtained. Also, in the latter method,
Activated carbon has a small adsorption capacity and requires a considerable amount of use, but it is too expensive to discard because it is expensive,
On the other hand, there is a problem in that the reuse also requires a high cost. Moreover, it is unavoidable that impurities such as metal ions and fine particles are mixed from the activated carbon, and this is not an appropriate method for recovering high-purity organic quaternary ammonium hydroxide.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者ら
は、少なくともこのような水酸化有機第四アンモニウム
を含有する廃液から、有価物である水酸化有機第四アン
モニウムをできるだけ高純度で、しかも、効率的にかつ
安価に回収する方法について鋭意研究を重ねた結果、こ
のような廃液を陽イオン交換体と接触させた際に、有機
第四アンモニウムイオンがこの陽イオン交換体に選択的
にかつ効率良く吸着されることを見出し、本発明を完成
した。従って、本発明の目的は、少なくとも水酸化有機
第四アンモニウムを含有する廃液から、有価物である水
酸化有機第四アンモニウムを比較的高純度で効率良くか
つ安価に回収することができる、廃液から水酸化有機第
四アンモニウムを回収する方法を提供することにある。
また、本発明の他の目的は、少なくとも水酸化有機第四
アンモニウムを含有する廃液から水酸化有機第四アンモ
ニウムを効率良く回収することにより、この水酸化有機
第四アンモニウムが回収された後の処理水についてはC
ODの低いクリーンな処理水とすることができる、廃液
から水酸化有機第四アンモニウムを回収する方法を提供
することにある。更に、本発明の他の目的は、少なくと
も水酸化有機第四アンモニウムとレジスト剥離物を含有
する廃液を陽イオン交換体と接触させ、有機第四アンモ
ニウムイオンのみを選択的にかつ効率良くこの陽イオン
交換体に吸着させ、両者を容易にかつ確実に分離して有
価物である水酸化有機第四アンモニウムを比較的高純度
でしかも効率的にかつ安価に回収することができる廃液
から水酸化有機第四アンモニウムを回収する方法を提供
することにある。
Therefore, the inventors of the present invention have prepared a valuable substance, organic quaternary ammonium hydroxide, from a waste liquid containing at least such organic quaternary ammonium hydroxide in a high purity as much as possible, and As a result of intensive studies on a method of efficiently and inexpensively recovering, when such a waste liquid was brought into contact with a cation exchanger, an organic quaternary ammonium ion was selectively and selectively applied to the cation exchanger. The present invention has been completed by finding that they are efficiently adsorbed. Therefore, an object of the present invention is to recover organic quaternary ammonium hydroxide, which is a valuable resource, from waste liquid containing at least organic quaternary ammonium hydroxide at a relatively high purity efficiently and inexpensively. It is to provide a method for recovering organic quaternary ammonium hydroxide.
Further, another object of the present invention is to efficiently recover organic quaternary ammonium hydroxide from a waste liquid containing at least organic quaternary ammonium hydroxide, thereby treating the organic quaternary ammonium hydroxide after recovery. For water C
It is to provide a method for recovering organic quaternary ammonium hydroxide from a waste liquid, which can be treated water with low OD and clean. Still another object of the present invention is to contact a waste liquid containing at least an organic quaternary ammonium hydroxide and a resist stripper with a cation exchanger to selectively and efficiently only the organic quaternary ammonium ion. Organic quaternary ammonium hydroxide, which is a valuable substance, can be easily and surely separated by adsorption on an exchanger, and valuable quaternary ammonium hydroxide can be recovered in a relatively high purity, efficiently and inexpensively from a waste liquid. It is to provide a method for recovering tetraammonium.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、少
なくとも水酸化有機第四アンモニウムを含有する廃液か
ら上記水酸化有機第四アンモニウムを回収する方法であ
り、廃液を陽イオン交換体と接触させて廃液中の有機第
四アンモニウムイオンを陽イオン交換体に吸着させる吸
着工程と、この有機第四アンモニウムイオンを吸着した
陽イオン交換体に溶離液を接触させて有機第四アンモニ
ウムイオンを溶離させる溶離工程と、この溶離工程で得
られた溶出液を電解して水酸化有機第四アンモニウム水
溶液を回収する電解工程とを含む、廃液から水酸化有機
第四アンモニウムを回収する方法である。また、本発明
は、上記電解工程では陽イオン交換膜を隔膜として用い
た電解槽で溶出液を電解し、この電解槽から抜き出され
た陽極液を溶離工程に循環させ、陽イオン交換体に吸着
した有機第四アンモニウムイオンの溶離液として使用す
る、廃液から水酸化有機第四アンモニウムを回収する方
法である。
That is, the present invention is a method for recovering the above organic quaternary ammonium hydroxide from a waste liquid containing at least organic quaternary ammonium hydroxide, which comprises contacting the waste liquid with a cation exchanger. Adsorption step of adsorbing the organic quaternary ammonium ion in the waste liquid to the cation exchanger, and elution to elute the organic quaternary ammonium ion by contacting the eluent with the cation exchanger adsorbing the organic quaternary ammonium ion It is a method of recovering organic quaternary ammonium hydroxide from waste liquid, which comprises a step and an electrolysis step of electrolyzing the eluate obtained in this elution step to recover an aqueous solution of organic quaternary ammonium hydroxide. Further, in the present invention, in the electrolysis step, the eluate is electrolyzed in an electrolytic cell using a cation exchange membrane as a diaphragm, and the anolyte extracted from the electrolytic cell is circulated in the elution step to form a cation exchanger. It is a method of recovering organic quaternary ammonium hydroxide from a waste liquid, which is used as an eluent of adsorbed organic quaternary ammonium ions.

【0008】本発明方法において、処理の対象となる廃
液は、少なくとも水酸化有機第四アンモニウムを含むも
のであり、また、これら以外に、水酸化有機第四アンモ
ニウムが現像液として使用される際にこの現像液の廃液
中に必然的に含まれてくるレジスト剥離物や、この現像
液中に必要に応じて添加される各種の界面活性剤や少量
のアルコール、エーテル等の他の有機物質等を含むもの
であってもよい。これらの他の有機物質は、それが陽イ
オンとして存在しない限り、陽イオン交換体に化学的に
吸着されることなくこの陽イオン交換体を通過し、水酸
化有機第四アンモニウムの吸着の障害にならない。しか
しながら、これらの他の有機物質があまり多量に存在す
ると、陽イオン交換体と接触させて得られた陽イオン交
換処理水のCOD値が高い値を示すことになり、活性汚
泥処理等のこれら他の有機物質を除去するための処理が
必要になる。ここで、半導体装置製造の現像工程から排
出される代表的な廃液の組成を示すと、水酸化有機第四
アンモニウムが500〜5,000ppm程度であり、
レジスト剥離物が10〜100ppm程度であり、ま
た、界面活性剤が0〜数10ppm程度である。
In the method of the present invention, the waste liquid to be treated contains at least organic quaternary ammonium hydroxide, and in addition to these, when organic quaternary ammonium hydroxide is used as a developing solution. The resist stripper that is inevitably included in the waste liquid of this developer, various surfactants and small amounts of other organic substances such as alcohol and ether that are added to this developer as necessary. It may include one. These other organic substances, unless they are present as cations, pass through the cation exchanger without being chemically adsorbed by the cation exchanger and interfere with the adsorption of the organic quaternary ammonium hydroxide. I won't. However, if these other organic substances are present in a too large amount, the COD value of the cation exchange-treated water obtained by contacting with the cation exchanger will show a high value, and these other substances such as activated sludge treatment will be shown. The treatment for removing the organic substance is required. Here, the composition of a typical waste liquid discharged from the developing process of semiconductor device manufacturing shows that the organic quaternary ammonium hydroxide is about 500 to 5,000 ppm,
The resist peeling material is about 10 to 100 ppm, and the surfactant is about 0 to several tens ppm.

【0009】本発明においては、先ず、このような廃液
を陽イオン交換体と接触させて廃液中の有機第四アンモ
ニウムイオンを陽イオン交換体に吸着させる。この吸着
工程で使用する陽イオン交換体については、それが水酸
化有機第四アンモニウム由来の有機第四アンモニウムイ
オンを効率良く吸着できるものであればよく、弱酸性陽
イオン交換体であっても、また、強酸性陽イオン交換体
であってもよい。そして、このイオン交換体の基体につ
いては、イオン交換樹脂等の有機質交換体であっても、
また、ゼオライト、シリカゲル等の無機質交換体であっ
てもよく、更に、その形状についても、粉状、粒状、膜
状、繊維状等の何れのものであってもよい。そして、こ
れらの陽イオン交換体については、例えば弱酸性陽イオ
ン交換体と強酸性陽イオン交換体との組合せ、無機質交
換体と有機質交換体との組合せ、異なる形状を有する複
数の陽イオン交換体の組合せ等、廃液の種類や性状、あ
るいは、この陽イオン交換体による処理の後の放流等を
勘案し、複数の陽イオン交換体を適宜組み合わせて使用
できる。これらの陽イオン交換体については、その取扱
性や経済性、イオン交換容量、不純物溶出の有無等の点
を考慮すると、好ましくは粒状の弱酸性陽イオン交換樹
脂及び/又は強酸性陽イオン交換樹脂である。
In the present invention, first, such a waste liquid is brought into contact with a cation exchanger to adsorb organic quaternary ammonium ions in the waste liquid onto the cation exchanger. Regarding the cation exchanger used in this adsorption step, it may be any one that can efficiently adsorb the organic quaternary ammonium ion derived from the organic quaternary ammonium hydroxide, even if it is a weakly acidic cation exchanger, It may also be a strong acid cation exchanger. And, regarding the substrate of this ion exchanger, even if it is an organic exchanger such as an ion exchange resin,
Further, it may be an inorganic exchanger such as zeolite or silica gel, and the shape thereof may be any of powder, granule, film, fiber and the like. These cation exchangers include, for example, a combination of a weakly acidic cation exchanger and a strongly acidic cation exchanger, a combination of an inorganic exchanger and an organic exchanger, and a plurality of cation exchangers having different shapes. A plurality of cation exchangers can be appropriately combined and used in consideration of the type and properties of the waste liquid, the release after treatment with the cation exchanger, and the like. These cation exchangers are preferably granular weakly acidic cation exchange resins and / or strongly acidic cation exchange resins in view of their handleability, economic efficiency, ion exchange capacity, and presence or absence of impurity elution. Is.

【0010】そして、この陽イオン交換体について、弱
酸性又は強酸性の何れのものを使用するかは、これら弱
酸性陽イオン交換体や強酸性陽イオン交換体が有する下
記の利害得失を考慮し、回収した水酸化有機第四アンモ
ニウムの再利用の用途や、吸着工程を通過した陽イオン
交換処理水の処理方法、後工程である溶離工程や電解工
程の方法等を考慮して、適宜選択するのがよい。 〔弱酸性陽イオン交換体と強酸性陽イオン交換体の利害
得失〕 使用可能なpH領域は、弱酸性陽イオン交換体が4
〜14であり、強酸性陽イオン交換体が0〜14であ
る。 有機第四アンモニウムイオンの吸着速度は、弱酸性
陽イオン交換体に比べて強酸性陽イオン交換体の方が速
い。 中性塩に対して、強酸性陽イオン交換体は分解能を
有するが、弱酸性陽イオン交換体は分解能がない。 吸着した有機第四アンモニウムイオンの溶離性につ
いては、弱酸性陽イオン交換体の場合には、強酸は勿
論、炭酸や酢酸のような比較的弱い酸を溶離液として使
用しても容易に溶離可能であり、比較的少量の酸の使用
で溶離することが可能である。これに対して、強酸性陽
イオン交換体の場合には、溶離液として強酸を用いても
容易ではなく、溶離率を上げるためには有機第四アンモ
ニウムイオンの10倍を越える大過剰の強酸を使用する
必要がある。 イオン交換容量については、一般的には、弱酸性陽
イオン交換体の方が強酸性陽イオン交換体より大きい。 溶離して回収した溶出液を電解して水酸化有機第四
アンモニウムを回収する場合、この電解工程の後半で遊
離酸濃度が高くなるが、溶離液が強酸であると電解膜や
電極の腐蝕の問題が生じる場合がある。
Regarding the cation exchanger, which is weakly acidic or strongly acidic is used, the following advantages and disadvantages of the weakly acidic cation exchanger and the strongly acidic cation exchanger are taken into consideration. , Reuse of the recovered organic quaternary ammonium hydroxide, the treatment method of the cation-exchange treated water that has passed through the adsorption step, the elution step or the electrolytic step method that is a subsequent step, etc. are selected as appropriate. Is good. [Advantages and disadvantages of weakly acidic cation exchanger and strongly acidic cation exchanger] The usable pH range is 4 for weakly acidic cation exchanger.
-14, and the strong acid cation exchanger is 0-14. The adsorption rate of organic quaternary ammonium ions is higher in the strongly acidic cation exchanger than in the weakly acidic cation exchanger. For neutral salts, strongly acidic cation exchangers have resolution, whereas weakly acidic cation exchangers have no resolution. Regarding the eluability of the adsorbed organic quaternary ammonium ion, in the case of a weakly acidic cation exchanger, it is possible to easily elute not only strong acids but also relatively weak acids such as carbonic acid and acetic acid as eluents. It is possible to elute using a relatively small amount of acid. On the other hand, in the case of a strongly acidic cation exchanger, it is not easy to use a strong acid as an eluent, and in order to increase the elution rate, a large excess of strong acid exceeding 10 times that of organic quaternary ammonium ions is required. Must be used. Regarding the ion exchange capacity, the weakly acidic cation exchanger is generally larger than the strongly acidic cation exchanger. When recovering the organic quaternary ammonium hydroxide by electrolyzing the eluate recovered by elution, the free acid concentration increases in the latter half of this electrolysis process, but if the eluent is a strong acid, corrosion of the electrolytic membrane and electrodes may occur. There may be problems.

【0011】ここで、陽イオン交換体としては、具体的
には、スチレン系、アクリル系、メタクリル系、テトラ
フルオロエチレン系等のポリマーやコポリマー、これら
のポリマーやコポリマーをジビニルベンゼン等の架橋剤
で変性させた変性ポリマーや変性コポリマーを基体と
し、これにスルフォン酸基やカルボン酸基を導入し、ゲ
ル型やポーラス型に形成された陽イオン交換樹脂や、ゼ
オライトやシリカゲル等の無機質陽イオン交換体が挙げ
られる。
Here, as the cation exchanger, specifically, styrene-based, acrylic-based, methacrylic-based, tetrafluoroethylene-based polymers or copolymers, and these polymers or copolymers with a crosslinking agent such as divinylbenzene. A cation exchange resin formed into a gel type or porous type by introducing a sulfonic acid group or carboxylic acid group into a modified modified polymer or modified copolymer as a substrate, or an inorganic cation exchanger such as zeolite or silica gel. Is mentioned.

【0012】また、廃液と陽イオン交換体とを接触させ
る陽イオン交換処理の方法については、陽イオン交換体
の種類や形状によって従来より知られている方法を適宜
採用できるものであり、例えば、カラムに陽イオン交換
体を充填して廃液を連続的に通過させるカラム方式、廃
液中に陽イオン交換体を添加して攪拌下に接触させ、そ
の後に濾過して固液分離するバッチ方式等を採用するこ
とができる。
As a cation exchange treatment method for contacting the waste liquid and the cation exchanger, a conventionally known method can be appropriately adopted depending on the type and shape of the cation exchanger. A column method in which the cation exchanger is packed in the column and the waste liquid is allowed to pass continuously, a batch method in which the cation exchanger is added to the waste liquid and contacted with stirring, followed by filtration to perform solid-liquid separation, etc. Can be adopted.

【0013】上記吸着工程で廃液中の有機第四アンモニ
ウムイオンを吸着した陽イオン交換体については、次に
種々の酸及び/又は塩の水溶液若しくは水からなる溶離
液と接触させ、陽イオン交換体から溶出液中に有機第四
アンモニウムイオンを溶離させる。この溶離工程で溶離
液として酸及び/又は塩の水溶液若しくは水の何れを使
用するかについては、使用した陽イオン交換体の種類や
後続の電解工程との関係で適宜決定されるが、酸水溶液
を使用する場合は、通常、酸の種類として塩酸、硝酸、
硫酸、炭酸等の無機酸類、酢酸、蟻酸等の有機酸類が使
用され、また、塩水溶液を使用する場合は、塩の種類と
して炭酸塩、重炭酸塩、硫酸塩等が好適であり、この塩
を形成する塩基としては溶離の対象となるものと同じ有
機第四アンモニウムである。また、それらの濃度につい
ても0.01〜20%という広範な範囲の中から適宜選
択されて使用され、更に、水を使用する場合は、不純物
の混入を避けるという観点から、好ましくは純水が使用
される。これらのうち好ましいのは、次の電解工程にお
いて電解時に陽極側で有害なガスが発生せず、また、消
耗せずに繰り返し使用可能な非電解性の酸であり、なか
でも高純度の水酸化有機第四アンモニウムを回収すると
いう観点から、より好ましくは炭酸であり、また、濃度
0.05〜2.0%程度の低濃度の硫酸である。
The cation exchanger having adsorbed the organic quaternary ammonium ion in the waste liquid in the above adsorption step is then contacted with an aqueous solution of various acids and / or salts or an eluent composed of water to form a cation exchanger. To elute organic quaternary ammonium ions in the eluate. Whether to use an aqueous solution of acid and / or salt or water as an eluent in this elution step is appropriately determined depending on the type of the cation exchanger used and the subsequent electrolysis step. When using, usually, hydrochloric acid, nitric acid,
Inorganic acids such as sulfuric acid and carbonic acid, organic acids such as acetic acid and formic acid are used, and when an aqueous salt solution is used, carbonates, bicarbonates, sulfates and the like are preferable as the type of salt. The base forming the is the same organic quaternary ammonium as the one to be eluted. Further, their concentration is also appropriately selected and used from a wide range of 0.01 to 20%, and when water is used, pure water is preferably used from the viewpoint of avoiding contamination of impurities. used. Of these, preferred are non-electrolytic acids that do not generate harmful gas on the anode side during electrolysis in the next electrolysis step and can be used repeatedly without being consumed, and among them, high purity hydroxide From the viewpoint of recovering the organic quaternary ammonium, carbonic acid is more preferable, and sulfuric acid having a low concentration of about 0.05 to 2.0% is preferable.

【0014】溶離工程で得られた溶出液を電解して水酸
化有機第四アンモニウム水溶液を回収する電解工程につ
いては、特に制限されるものではないが、高純度の水酸
化有機第四アンモニウム水溶液を回収する上で、好まし
くは特公昭63−15,355号公報記載の方法が採用
される。この方法は、陽イオン交換膜を隔壁として用い
た電解槽を使用し、その陽極室側に所定の滞留時間で溶
出液を循環させると共に、陰極室側には水酸化有機第四
アンモニウムの低濃度水溶液を循環させ、陽極と陰極と
の間に電流を流した際に陽極室側に生じた有機第四アン
モニウムイオンを選択的に陰極室側に移動させ、これに
よって陰極室側の水酸化有機第四アンモニウムの濃度を
高くし、この陰極室から高濃度の水酸化有機第四アンモ
ニウム水溶液を回収する方法である。
The electrolysis step of electrolyzing the eluate obtained in the elution step to recover the organic quaternary ammonium hydroxide aqueous solution is not particularly limited, but a high-purity organic quaternary ammonium hydroxide aqueous solution is used. For recovery, the method described in JP-B-63-15,355 is preferably used. This method uses an electrolytic cell that uses a cation exchange membrane as a partition, and circulates the eluate on the anode chamber side for a predetermined residence time, and at the cathode chamber side, a low concentration of organic quaternary ammonium hydroxide. The aqueous solution is circulated, and organic quaternary ammonium ions generated on the side of the anode chamber when a current is passed between the anode and the cathode are selectively moved to the side of the cathode chamber. This is a method in which the concentration of tetraammonium is increased and a high-concentration organic quaternary ammonium hydroxide aqueous solution is recovered from this cathode chamber.

【0015】そして、本発明においては、溶出液の電解
工程でその陽極室から抜き出された陽極液を溶離液とし
て循環使用し、陽イオン交換体に吸着した有機第四アン
モニウムイオンを溶離させながら電解して水酸化有機第
四アンモニウムを回収するのがよい。これによって、溶
離液として酸及び/又は塩の水溶液や水の何れを使用し
ても、溶離工程で溶離した溶出液中の水酸化有機第四ア
ンモニウムを電解工程でその陰極室側に移動させなが
ら、この電解工程の陽極室から抜き出された陽極液を再
び溶離液として循環使用するので、少量の溶離液の使用
によって陽イオン交換体に吸着した有機第四アンモニウ
ムイオンの溶離が可能になる。ここで、溶離液として最
初に酸水溶液を用いた場合には、通常、その溶出液には
酸及びその酸根と陽イオン交換体から溶離した有機第四
アンモニウムイオンとから生成する塩が含まれている。
そして、この溶出液を電解すると、上記塩の一部が分解
し、有機第四アンモニウムイオンが陰極室側に移動して
水酸化有機第四アンモニウムとなり、陽極室側ではその
量に相当する酸が生成する。それ故、陽極液は元の溶出
液よりその酸濃度が上昇し、また、有機第四アンモニウ
ムイオン濃度が低下しているので、この陽極液を溶離液
として再び溶離工程に循環させ、陽イオン交換体に吸着
した有機第四アンモニウムイオンの溶離に使用すること
ができ、この操作を繰り返すことで電解工程で有機第四
アンモニウムイオンを回収しながら溶離工程でこの有機
第四アンモニウムイオンの溶離を行うことができる。こ
れによって、溶離液として酸水溶液を使用する場合に、
低濃度の酸水溶液の使用が可能になり、電解膜や電極の
腐蝕の問題が減少し、また、遊離した酸根が電解膜を通
過して回収した水酸化有機第四アンモニウム水溶液中に
不純物として混入してくるのを可及的に防止することが
でき、高純度の水酸化有機第四アンモニウム水溶液を得
ることができる。
In the present invention, the anolyte extracted from the anode chamber in the electrolysis process of the eluate is circulated and used as an eluent to elute the organic quaternary ammonium ions adsorbed on the cation exchanger. It is preferable to recover the organic quaternary ammonium hydroxide by electrolysis. As a result, even when an aqueous solution of acid and / or salt or water is used as the eluent, the organic quaternary ammonium hydroxide in the eluate eluted in the elution step is moved to the cathode chamber side in the electrolysis step. Since the anolyte extracted from the anode chamber in this electrolysis step is reused as the eluent again, the organic quaternary ammonium ion adsorbed on the cation exchanger can be eluted by using a small amount of the eluent. Here, when an aqueous acid solution is first used as the eluent, the eluate usually contains an acid and a salt formed from the acid radical and an organic quaternary ammonium ion eluted from the cation exchanger. There is.
Then, when this eluate is electrolyzed, a part of the salt is decomposed, the organic quaternary ammonium ions move to the cathode chamber side to become organic quaternary ammonium hydroxide, and the acid corresponding to the amount is generated in the anode chamber side. To generate. Therefore, since the acid concentration of the anolyte is higher than that of the original eluate and the concentration of organic quaternary ammonium ions is lower, this anolyte is circulated again to the elution step as the eluent, and the cation exchange is performed. It can be used to elute the organic quaternary ammonium ion adsorbed on the body, and by repeating this operation, the organic quaternary ammonium ion can be eluted in the elution step while recovering the organic quaternary ammonium ion in the electrolysis step. You can As a result, when using an aqueous acid solution as the eluent,
The use of a low-concentration aqueous acid solution reduces the problem of corrosion of the electrolytic membrane and electrodes, and free acid radicals are mixed as impurities in the organic quaternary ammonium hydroxide aqueous solution recovered through the electrolytic membrane. It can be prevented as much as possible, and a high-purity organic quaternary ammonium hydroxide aqueous solution can be obtained.

【0016】また、溶離液として最初に塩水溶液を用い
たり、あるいは、酸及び塩の水溶液を用いたような場合
にも、溶出液中の塩が電解工程で分解され、上記酸水溶
液の場合と同様に、陰極室側に水酸化有機第四アンモニ
ウムが生成し、陽極室側に酸が生成する。従って、電解
工程の陽極室から抜き出される陽極液を溶離工程の溶離
液として循環させ、陽イオン交換体に吸着した有機第四
アンモニウムイオンの溶離に使用することができ、この
操作を繰り返すことにより、溶離工程で有機第四アンモ
ニウムイオンの溶離を行いながら電解工程で水酸化有機
第四アンモニウムを回収することができる。ここで使用
する塩としては、炭酸塩、重炭酸塩、硫酸塩等が好適で
あり、また、この塩を形成する塩基として最も好ましい
ものは溶離の対象となるものと同じ有機第四アンモニウ
ムである。そして、溶離液として水を使用する場合は、
陽イオン交換体としてはそれが弱酸性陽イオン交換体に
限られ、しかも、その溶離速度は酸水溶液や塩水溶液を
用いた場合よりも遅くなるが、電解膜や電極の腐蝕の問
題が全くなく、高純度の水酸化有機第四アンモニウム水
溶液の回収に適している。
When an aqueous salt solution is first used as the eluent, or when an aqueous solution of an acid and a salt is used, the salt in the eluent is decomposed in the electrolysis step, which is different from the case of the above aqueous acid solution. Similarly, organic quaternary ammonium hydroxide is produced on the cathode chamber side, and acid is produced on the anode chamber side. Therefore, the anolyte extracted from the anode chamber of the electrolysis step can be circulated as the eluent of the elution step and used for elution of the organic quaternary ammonium ion adsorbed on the cation exchanger, and by repeating this operation, The organic quaternary ammonium hydroxide can be recovered in the electrolysis step while the organic quaternary ammonium ions are eluted in the elution step. As the salt used here, carbonate, bicarbonate, sulfate and the like are preferable, and the most preferable base for forming this salt is the same organic quaternary ammonium as the one to be eluted. . And when using water as the eluent,
As a cation exchanger, it is limited to a weakly acidic cation exchanger, and its elution rate is slower than that when an acid aqueous solution or salt aqueous solution is used, but there is no problem of corrosion of the electrolytic membrane or electrode. Suitable for recovery of high-purity organic quaternary ammonium hydroxide aqueous solution.

【0017】ところで、陽イオン交換体と接触させる吸
着工程を経て得られた陽イオン交換処理水は、廃液中の
有機第四アンモニウムイオンが陽イオン交換体に吸着さ
れて除去されている。そして、廃液が例えば現像液由来
のものである場合には、この廃液中にレジスト剥離物が
存在するが、このレジスト剥離物の存在は有機第四アン
モニウムイオンの陽イオン交換体への吸着について障害
にならず、ほぼその全量が陽イオン交換体に吸着されず
にこの陽イオン交換体を通過し、陽イオン交換処理水中
に残存する。また、廃液が例えば洗浄液由来のものであ
る場合には、この廃液中に界面活性剤が存在し、陽イオ
ン交換体との接触を開始した当初にその一部が吸着され
るが、この界面活性剤の存在は有機第四アンモニウムイ
オンの陽イオン交換体への吸着について障害にならな
い。同様に、廃液中に少量のアルコールやエーテル等が
存在する場合にも、これらアルコールやエーテルはこの
陽イオン交換体に吸着されずに通過し、陽イオン交換処
理水に残存し、有機第四アンモニウムイオンの陽イオン
交換体への吸着について障害にならない。従って、陽イ
オン交換体と接触させて得られた陽イオン交換処理水に
ついては、それがどのようなCOD原因物質をどの程度
含有しているかに応じて、次の処理方法を決定するが、
例えば、半導体装置や液晶装置の製造のための現像工程
や洗浄工程で生じる廃液については、通常はレジスト剥
離物が主たるものであり、かかる場合にはこの陽イオン
交換処理水を活性炭処理してレジスト剥離物を除去した
り、あるいは、酸でpH7以下に調整することによりこ
のレジスト剥離物を沈澱させて分離除去することがで
き、また、界面活性剤が残存する場合にはこの界面活性
剤をレジスト剥離物と共に共沈させて可及的に分離除去
することができる。
By the way, in the cation exchange-treated water obtained through the adsorption step of contacting with the cation exchanger, the organic quaternary ammonium ion in the waste liquid is adsorbed by the cation exchanger and removed. Then, when the waste liquid is derived from a developer, for example, the resist stripping substance is present in the waste liquid, but the presence of the resist stripping substance hinders the adsorption of the organic quaternary ammonium ion to the cation exchanger. However, almost all of it does not adsorb to the cation exchanger and passes through this cation exchanger and remains in the cation exchange treated water. When the waste liquid is, for example, derived from a washing liquid, a surfactant is present in the waste liquid, and a part thereof is adsorbed at the beginning of contact with the cation exchanger. The presence of the agent does not hinder the adsorption of the organic quaternary ammonium ion to the cation exchanger. Similarly, even when a small amount of alcohol or ether is present in the waste liquid, these alcohols or ethers pass through the cation exchanger without being adsorbed, remain in the cation exchange-treated water, and remain in the organic quaternary ammonium. Does not hinder the adsorption of ions to the cation exchanger. Therefore, for the cation-exchange treated water obtained by contacting with the cation exchanger, the next treatment method is determined according to what kind of COD-causing substance and how much it contains.
For example, as for the waste liquid generated in the developing process and the cleaning process for manufacturing a semiconductor device or a liquid crystal device, the resist stripped substance is usually the main one. In such a case, the cation-exchange treated water is treated with activated carbon and the resist is removed. By removing the peeled product or adjusting the pH to 7 or less with an acid, the resist peeled product can be precipitated and separated and removed. In the case where the surfactant remains, the surfactant is used as a resist. It can be co-precipitated with the exfoliated material and separated and removed as much as possible.

【0018】ここで、レジスト剥離物や界面活性剤を沈
澱させて分離除去するためのpH調整に使用する酸とし
ては、特に限定されるものではないが、通常、塩酸、硝
酸、硫酸、炭酸等の無機酸類や酢酸、蟻酸等の有機酸類
が使用され、経済性や取扱性、あるいは、COD値に影
響しないという理由から、好ましくは塩酸、硝酸、硫
酸、炭酸等の無機酸類である。また、このpH調整によ
ってどの程度のpH値に調整するかについては、国の
「生活環境の保全に関する環境基準」の基準値がpH
6.5〜8.5であるので、例えばpH6.5に調整す
れば、濾過してそのまま放流することができる。このよ
うにしてpH調整により沈澱したレジスト剥離物や界面
活性剤は、これを濾過することで容易に分離除去するこ
とができる。
The acid used for adjusting the pH for precipitating and separating and removing the resist stripped product and the surfactant is not particularly limited, but usually hydrochloric acid, nitric acid, sulfuric acid, carbonic acid or the like. Inorganic acids and organic acids such as acetic acid and formic acid are used, and they are preferably inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and carbonic acid because they do not affect the economical efficiency, handleability or COD value. In addition, regarding the pH value to be adjusted by this pH adjustment, the standard value of the "Environmental Standard for Conservation of Living Environment"
Since it is 6.5 to 8.5, it can be filtered and discharged as it is if the pH is adjusted to 6.5, for example. The resist stripped product and the surfactant thus precipitated by adjusting the pH can be easily separated and removed by filtering the product.

【0019】なお、上記pH調整によりレジスト剥離物
や界面活性剤を除去して得られた処理水は、通常はその
まま放流するのに十分な程度にまでそのCOD値が低下
しているので、そのまま放流することができる。しかし
ながら、もしこの処理水が上記pH調整によっても分離
除去できないアルコールやエーテル等の有機物質を許容
し得ない程度に含んでいる場合には、必要により活性炭
処理や微生物による活性汚泥処理を行った後、放流す
る。この場合の活性汚泥処理の方法としては、従来より
知られている方法をそのまま採用することができ、特に
水酸化有機第四アンモニウム等の有機アルカリやレジス
ト剥離物あるいは界面活性剤が可及的に分離除去されて
いるので、この活性汚泥処理の負荷は通常極めて小さ
く、容易にクリーンな処理水とすることができる。ま
た、このようにpH調整で分離除去して回収されたレジ
スト剥離物や界面活性剤は、燃焼してあるいは産業廃棄
物として処理される。
The treated water obtained by removing the resist stripping material and the surfactant by the above pH adjustment usually has its COD value lowered to such an extent that it can be discharged as it is. Can be released. However, if this treated water contains unacceptable organic substances such as alcohol and ether that cannot be separated and removed by the above pH adjustment, after performing activated carbon treatment or activated sludge treatment with microorganisms as necessary. , Release. As the activated sludge treatment method in this case, a conventionally known method can be employed as it is, and in particular, an organic alkali such as organic quaternary ammonium hydroxide, a resist stripped product, or a surfactant is used as much as possible. Because of the separation and removal, the load of this activated sludge treatment is usually extremely small, and clean treated water can be easily obtained. Further, the resist stripped product and the surfactant thus separated and removed by the pH adjustment and collected are burned or treated as industrial waste.

【0020】[0020]

【作用】本発明の方法によれば、例えば水酸化有機第四
アンモニウムやレジスト剥離物を含有する廃液から有価
物である水酸化有機第四アンモニウムを回収する際に、
この廃液を陽イオン交換体と接触させて有機第四アンモ
ニウムイオンを陽イオン交換体に選択的に吸着させ、こ
の陽イオン交換体に吸着した有機第四アンモニウムイオ
ンを溶離し、次いで得られた溶出液を電解して水酸化有
機第四アンモニウムを回収するので、回収された水酸化
有機第四アンモニウム水溶液中に高分子物質のレジスト
剥離物等が混入するのを可及的に防止でき、しかも、高
分子物質のレジスト剥離物等が陽イオン交換体に付着し
てこの陽イオン交換体の性能を劣化させることがなく、
効率良くかつ確実に水酸化有機第四アンモニウムを回収
することができる。また、陽イオン交換体を通過して陽
イオン交換処理水中に残存するレジスト剥離物や界面活
性剤については、この陽イオン交換処理水を酸でpH7
以下に調整することで容易に分離させて除去することが
できる。
According to the method of the present invention, for example, in recovering valuable organic quaternary ammonium hydroxide from a waste liquid containing organic quaternary ammonium hydroxide and resist stripping products,
The waste liquid is brought into contact with a cation exchanger so that the organic quaternary ammonium ion is selectively adsorbed on the cation exchanger, the organic quaternary ammonium ion adsorbed on the cation exchanger is eluted, and then the obtained elution is carried out. Since the solution is electrolyzed to recover the organic quaternary ammonium hydroxide, it is possible to prevent as much as possible the inclusion of a polymeric material resist stripping material in the recovered organic quaternary ammonium hydroxide aqueous solution, and There is no deterioration of the performance of this cation exchanger due to adherence of polymeric resist strips to the cation exchanger.
The organic quaternary ammonium hydroxide can be recovered efficiently and reliably. For resist stripping products and surfactants that pass through the cation exchanger and remain in the cation exchange treated water, the cation exchange treated water is treated with an acid to adjust the pH to 7
It can be easily separated and removed by adjusting the following.

【0021】[0021]

【実施例】以下、実施例に基づいて、本発明を具体的に
説明する。レジストとして光分解型レジスト〔東京応化
工業(株)製商品名:OFPR8800〕を使用し、現
像液として0.261モル/lのTMAH水溶液を使用
する半導体装置製造の現像工程で生じた廃液〔pH:1
2、TMAH:2,000ppm、レジスト剥離物:3
8ppm、ノニオン型界面活性剤:46.9dyne/
cm〕を使用し、下記実施例に係る廃液の処理を行っ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. Using a photo-decomposable resist (trade name: OFPR8800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) as a resist, and using a TMAH aqueous solution of 0.261 mol / l as a developing solution, a waste liquid [pH] generated in a developing process of semiconductor device manufacturing. : 1
2, TMAH: 2,000 ppm, stripped resist: 3
8 ppm, nonionic surfactant: 46.9 dyne /
cm], and the waste liquid according to the following example was treated.

【0022】実施例1 陽イオン交換体として弱酸性陽イオン交換樹脂〔住友化
学(株)製商品名:C−464〕100mlを使用し、
これを長さ300mm×直径50mmのカラムに充填し
てイオン交換樹脂カラムを用意した。このイオン交換樹
脂カラムに通液速度20ml/分の速さで上記廃液10
リットルを通過させ、廃液中のTMAH20gを吸着さ
せた。
Example 1 100 ml of a weakly acidic cation exchange resin [trade name: C-464 manufactured by Sumitomo Chemical Co., Ltd.] was used as a cation exchanger.
This was packed in a column having a length of 300 mm and a diameter of 50 mm to prepare an ion exchange resin column. The waste liquid 10 was passed through the ion exchange resin column at a flow rate of 20 ml / min.
20 g of TMAH in the waste liquid was adsorbed by passing 1 liter.

【0023】次に、溶離液として0.015モル/lの
硫酸水溶液300mlを使用し、この溶離液をイオン交
換樹脂カラムに供給し、陽イオン交換樹脂に吸着したテ
トラメチルアンモニウムイオン(TMイオン)を溶離さ
せ、得られた溶出液を電解槽の陽極室に供給し、この陽
極室で展開した後、陽極室から抜き出される陽極液をイ
オン交換樹脂カラムに戻して流速100ml/分で循環
させた。また、陰極液として0.029モル/lのTM
AH水溶液230mlを使用し、この陰極液を流速10
0ml/分で陰極室に循環させた。陽極と陰極の間に電
圧24〜52V、電流2Aの直流電流を流して電解を行
った。約10時間、溶離と電解を並行して行い、0.7
02モル/lのTMAH水溶液320mlを回収した。
Next, 300 ml of 0.015 mol / l sulfuric acid aqueous solution was used as an eluent, and this eluent was supplied to an ion exchange resin column to adsorb tetramethylammonium ion (TM ion) on the cation exchange resin. And the resulting eluate is supplied to the anode chamber of the electrolytic cell and developed in this anode chamber, then the anolyte extracted from the anode chamber is returned to the ion exchange resin column and circulated at a flow rate of 100 ml / min. It was Also, as the catholyte, 0.029 mol / l TM
Using 230 ml of AH aqueous solution, this catholyte is supplied at a flow rate of 10
It was circulated in the cathode chamber at 0 ml / min. Electrolysis was carried out by passing a direct current of voltage 24 to 52 V and current 2 A between the anode and the cathode. Elution and electrolysis are performed in parallel for about 10 hours, and 0.7
320 ml of a 02 mol / l TMAH aqueous solution was recovered.

【0024】この様にして回収されたTMAH水溶液は
無色透明であり、レジスト剥離物は3ppm以下であっ
た。また、廃液中に存在したTMAHに対するTMAH
回収率は約99%であった。また、回収されたTMAH
水溶液を現像液として使用する0.261モル/lの濃
度に希釈し、黒鉛炉原子吸光光度法により金属不純物濃
度を、また、イオンクロマト法により陰イオン濃度をそ
れぞれ測定した。結果を表1に示す。
The TMAH aqueous solution thus recovered was colorless and transparent, and the amount of resist exfoliation product was 3 ppm or less. In addition, TMAH for TMAH existing in the waste liquid
The recovery rate was about 99%. Also, the collected TMAH
The aqueous solution was diluted to a concentration of 0.261 mol / l used as a developing solution, and the concentration of metal impurities was measured by the graphite furnace atomic absorption spectrophotometry and the concentration of anions was measured by the ion chromatography. Table 1 shows the results.

【0025】実施例2 陽イオン交換体として弱酸性陽イオン交換樹脂(ダウケ
ミカル社製商品名:MWC−1)100mlを使用し、
これを長さ300mm×直径50mmのカラムに充填し
てイオン交換樹脂カラムを用意した。このイオン交換樹
脂カラムに通液速度10ml/分の速さで上記廃液16
リットルを通過させ、廃液中のTMAH31gを吸着さ
せた。
Example 2 100 ml of a weakly acidic cation exchange resin (trade name: MWC-1 manufactured by Dow Chemical Co.) was used as a cation exchanger,
This was packed in a column having a length of 300 mm and a diameter of 50 mm to prepare an ion exchange resin column. The waste liquid 16 was passed through the ion exchange resin column at a flow rate of 10 ml / min.
The liter was passed to adsorb 31 g of TMAH in the waste liquid.

【0026】次に、純水400mlに炭酸ガスを吹き込
んでpHを4.8に調整して得られた炭酸水を溶離液と
して使用し、この溶離液をイオン交換樹脂カラムに供給
し、陽イオン交換樹脂に吸着したTMイオンを溶離さ
せ、得られた溶出液を電解槽の陽極室に供給し、この陽
極室で展開した後、陽極室から抜き出される陽極液に炭
酸ガスを50ml/分の速度で吹き込みながらイオン交
換樹脂カラムに戻して流速100ml/分で循環させ
た。また、陰極液として0.55モル/lのTMAH水
溶液312mlを使用し、この陰極液を流速100ml
/分で陰極室に循環させた。陽極と陰極の間に電圧22
〜55V、電流0.26〜2.0Aの直流電流を流して
電解を行った。約16時間、溶離と電解を並行して行
い、1.262モル/lのTMAH水溶液377mlを
回収した。
Next, carbonic acid gas was blown into 400 ml of pure water to adjust the pH to 4.8, and the obtained carbonated water was used as an eluent. The TM ions adsorbed on the exchange resin were eluted, the resulting eluate was supplied to the anode chamber of the electrolytic cell, and after developing in this anode chamber, carbon dioxide gas was added to the anode liquid extracted from the anode chamber at 50 ml / min. It was returned to the ion exchange resin column while being blown at a speed, and circulated at a flow rate of 100 ml / min. As the catholyte, 312 ml of 0.55 mol / l TMAH aqueous solution was used, and the catholyte had a flow rate of 100 ml.
/ Min circulated to the cathode chamber. Voltage 22 between anode and cathode
Electrolysis was carried out by applying a direct current of 55 V and a current of 0.26 to 2.0 A. Elution and electrolysis were performed in parallel for about 16 hours to recover 377 ml of a 1.262 mol / l TMAH aqueous solution.

【0027】この様にして回収されたTMAH水溶液は
無色透明であり、レジスト剥離物は3ppm以下であっ
た。また、廃液中に存在したTMAHに対するTMAH
回収率は約89%であった。また、回収されたTMAH
水溶液を現像液として使用する0.261モル/lの濃
度に希釈し、実施例1と同様にして金属不純物濃度と陰
イオン濃度とを測定した。結果を表1に示す。
The aqueous TMAH solution thus recovered was colorless and transparent, and the amount of resist peeled off was 3 ppm or less. In addition, TMAH for TMAH existing in the waste liquid
The recovery rate was about 89%. Also, the collected TMAH
The aqueous solution was diluted to a concentration of 0.261 mol / l used as a developing solution, and the metal impurity concentration and the anion concentration were measured in the same manner as in Example 1. Table 1 shows the results.

【0028】実施例3 陽イオン交換体として弱酸性陽イオン交換樹脂〔住友化
学(株)製商品名:C−464〕100mlを使用し、
これを長さ300mm×直径50mmのカラムに充填し
てイオン交換樹脂カラムを用意した。このイオン交換樹
脂カラムに通液速度20ml/分の速さで上記廃液10
リットルを通過させ、廃液中のTMAH22gを吸着さ
せた。
Example 3 100 ml of a weakly acidic cation exchange resin [trade name: C-464 manufactured by Sumitomo Chemical Co., Ltd.] was used as a cation exchanger,
This was packed in a column having a length of 300 mm and a diameter of 50 mm to prepare an ion exchange resin column. The waste liquid 10 was passed through the ion exchange resin column at a flow rate of 20 ml / min.
22 g of TMAH in the waste liquid was adsorbed by passing 1 liter.

【0029】次に、溶離液として0.14%酢酸水溶液
(pH3.8)400mlを使用し、この溶離液をイオ
ン交換樹脂カラムに供給し、陽イオン交換樹脂に吸着し
たTMイオンを溶離させ、得られた溶出液を電解槽の陽
極室に供給し、この陽極室で展開した後、陽極室から抜
き出される陽極液をイオン交換樹脂カラムに戻して流速
100ml/分で循環させた。また、陰極液として0.
54モル/lのTMAH水溶液312mlを使用し、こ
の陰極液を流速100ml/分で陰極室に循環させた。
陽極と陰極の間に電圧55V、電流0.3〜1.1Aの
直流電流を流して電解を行った。約12時間、溶離と電
解を並行して行い、1.052モル/lのTMAH水溶
液375mlを回収した。
Next, 400 ml of 0.14% acetic acid aqueous solution (pH 3.8) was used as an eluent, and this eluent was supplied to an ion exchange resin column to elute the TM ions adsorbed on the cation exchange resin. The obtained eluate was supplied to the anode chamber of the electrolytic cell, developed in this anode chamber, and then the anolyte extracted from the anode chamber was returned to the ion exchange resin column and circulated at a flow rate of 100 ml / min. Further, as a catholyte,
312 ml of 54 mol / l TMAH aqueous solution was used, and this catholyte was circulated in the cathode chamber at a flow rate of 100 ml / min.
Electrolysis was performed by applying a direct current of 55 V and a current of 0.3 to 1.1 A between the anode and the cathode. Elution and electrolysis were performed in parallel for about 12 hours to recover 375 ml of a 1.052 mol / l TMAH aqueous solution.

【0030】この様にして回収されたTMAH水溶液は
無色透明であり、レジスト剥離物は3ppm以下であっ
た。また、廃液中に存在したTMAHに対するTMAH
回収率は約94%であった。また、回収されたTMAH
水溶液を現像液として使用する0.261モル/lの濃
度に希釈し、実施例1と同様にして金属不純物濃度と陰
イオン濃度とを測定した。結果を表1に示す。
The TMAH aqueous solution thus recovered was colorless and transparent, and the amount of resist peeled off was 3 ppm or less. In addition, TMAH for TMAH existing in the waste liquid
The recovery rate was about 94%. Also, the collected TMAH
The aqueous solution was diluted to a concentration of 0.261 mol / l used as a developing solution, and the metal impurity concentration and the anion concentration were measured in the same manner as in Example 1. Table 1 shows the results.

【0031】実施例4 陽イオン交換体として強酸性陽イオン交換樹脂〔三菱化
成(株)製商品名:SK−112〕500mlを使用
し、これを長さ300mm×直径80mmのカラムに充
填してイオン交換樹脂カラムを用意した。このイオン交
換樹脂カラムに通液速度25ml/分の速さで上記廃液
50リットルを通過させ、廃液中のTMAH100gを
吸着させた。
Example 4 500 ml of a strongly acidic cation exchange resin [trade name: SK-112 manufactured by Mitsubishi Kasei Co., Ltd.] was used as a cation exchanger, and this was packed in a column having a length of 300 mm and a diameter of 80 mm. An ion exchange resin column was prepared. 50 L of the waste liquid was passed through the ion-exchange resin column at a flow rate of 25 ml / min to adsorb 100 g of TMAH in the waste liquid.

【0032】次に、溶離液として0.05モル/lの硫
酸水溶液200mlを使用し、この溶離液をイオン交換
樹脂カラムに供給し、陽イオン交換樹脂に吸着したTM
イオンを溶離させ、得られた溶出液を電解槽の陽極室に
供給し、この陽極室で展開した後、陽極室から抜き出さ
れる陽極液をイオン交換樹脂カラムに戻して流速200
ml/分で循環させた。また、陰極液として0.06モ
ル/lのTMAH水溶液800mlを使用し、この陰極
液を流速200ml/分で陰極室に循環させた。陽極と
陰極の間に電圧25〜50V、電流2.5Aの直流電流
を流して電解を行った。約25時間、溶離と電解を並行
して行い、0.65モル/lのTMAH水溶液1,10
0mlを回収した。
Next, 200 ml of a 0.05 mol / l sulfuric acid aqueous solution was used as an eluent, the eluent was supplied to an ion exchange resin column, and the TM adsorbed on the cation exchange resin was used.
Ions are eluted, the resulting eluate is supplied to the anode chamber of the electrolytic cell, and after developing in this anode chamber, the anolyte extracted from the anode chamber is returned to the ion exchange resin column and the flow rate is 200
Circulated at ml / min. Further, 800 ml of 0.06 mol / l TMAH aqueous solution was used as the catholyte, and this catholyte was circulated in the cathode chamber at a flow rate of 200 ml / min. Electrolysis was performed by applying a direct current of 25 to 50 V and a current of 2.5 A between the anode and the cathode. Elution and electrolysis are performed in parallel for about 25 hours, and a 0.65 mol / l TMAH aqueous solution 1,10
0 ml was collected.

【0033】この様にして回収されたTMAH水溶液は
無色透明であり、レジスト剥離物は3ppm以下であっ
た。また、廃液中に存在したTMAHに対するTMAH
回収率は約61%であった。また、回収されたTMAH
水溶液を現像液として使用する0.261モル/lの濃
度に希釈し、実施例1と同様にして金属不純物濃度と陰
イオン濃度とを測定した。結果を表1に示す。
The TMAH aqueous solution thus recovered was colorless and transparent, and the amount of resist peeled off was 3 ppm or less. In addition, TMAH for TMAH existing in the waste liquid
The recovery rate was about 61%. Also, the collected TMAH
The aqueous solution was diluted to a concentration of 0.261 mol / l used as a developing solution, and the metal impurity concentration and the anion concentration were measured in the same manner as in Example 1. Table 1 shows the results.

【0034】実施例5 陽イオン交換体として弱酸性陽イオン交換樹脂〔オルガ
ノ(株)製商品名:IRC−50〕50mlを使用し、
これを長さ300mm×直径50mmのカラムに充填し
てイオン交換樹脂カラムを用意した。このイオン交換樹
脂カラムに通液速度20ml/分の速さで上記廃液10
リットルを通過させ、廃液中のTMAH14.6gを吸
着させた。
Example 5 As a cation exchanger, 50 ml of a weakly acidic cation exchange resin [trade name: IRC-50 manufactured by Organo Corporation] was used,
This was packed in a column having a length of 300 mm and a diameter of 50 mm to prepare an ion exchange resin column. The waste liquid 10 was passed through the ion exchange resin column at a flow rate of 20 ml / min.
1 liter was passed through to adsorb 14.6 g of TMAH in the waste liquid.

【0035】次に、溶離液として純水400mlを使用
し、この溶離液をイオン交換樹脂カラムに供給し、陽イ
オン交換樹脂に吸着したTMイオンを溶離させ、得られ
た溶出液を電解槽の陽極室に供給し、この陽極室で展開
した後、陽極室から抜き出される陽極液をイオン交換樹
脂カラムに戻して流速100ml/分で循環させた。ま
た、陰極液として0.54モル/lのTMAH水溶液3
50mlを使用し、この陰極液を流速50ml/分で陰
極室に循環させた。陽極と陰極の間に電圧55V、電流
0.1〜0.38Aの直流電流を流して電解を行った。
約23時間、溶離と電解を並行して行い、0.67モル
/lのTMAH水溶液369mlを回収した。
Next, 400 ml of pure water was used as the eluent, this eluent was supplied to the ion exchange resin column, the TM ions adsorbed on the cation exchange resin were eluted, and the resulting eluate was stored in the electrolytic cell. After being supplied to the anode chamber and developed in this anode chamber, the anolyte extracted from the anode chamber was returned to the ion exchange resin column and circulated at a flow rate of 100 ml / min. In addition, as a catholyte, 0.54 mol / l TMAH aqueous solution 3
50 ml were used and this catholyte was circulated in the cathode compartment at a flow rate of 50 ml / min. Electrolysis was carried out by applying a direct current of 55 V and a current of 0.1 to 0.38 A between the anode and the cathode.
Elution and electrolysis were performed in parallel for about 23 hours, and 369 ml of a 0.67 mol / l TMAH aqueous solution was recovered.

【0036】この様にして回収されたTMAH水溶液は
無色透明であり、レジスト剥離物は3ppm以下であっ
た。また、廃液中に存在したTMAHに対するTMAH
回収率は約36%であった。また、回収されたTMAH
水溶液を現像液として使用する0.261モル/lの濃
度に希釈し、実施例1と同様にして金属不純物濃度と陰
イオン濃度とを測定した。結果を表1に示す。
The TMAH aqueous solution thus recovered was colorless and transparent, and the amount of resist exfoliation was 3 ppm or less. In addition, TMAH for TMAH existing in the waste liquid
The recovery rate was about 36%. Also, the collected TMAH
The aqueous solution was diluted to a concentration of 0.261 mol / l used as a developing solution, and the metal impurity concentration and the anion concentration were measured in the same manner as in Example 1. Table 1 shows the results.

【0037】[0037]

【表1】 表1の結果から明らかなように、各実施例1〜5で回収
されたTMAH水溶液は、現像液として使用したTMA
H水溶液と比べて遜色無いほどの高純度であった。
[Table 1] As is clear from the results in Table 1, the TMAH aqueous solutions recovered in Examples 1 to 5 were used as the developer.
The purity was as high as that of the H aqueous solution.

【0038】[0038]

【発明の効果】本発明方法によれば、少なくとも水酸化
有機第四アンモニウムを含有する廃液から、有価物であ
る水酸化有機第四アンモニウムを高純度で、しかも、効
率的にかつ安価に回収することができると共に、この水
酸化有機第四アンモニウムが回収された後の処理水につ
いてはCODの低いクリーンな処理水とすることができ
る。また、廃液が水酸化有機第四アンモニウムとレジス
ト剥離物を含有する場合であっても、有機第四アンモニ
ウムイオンのみを選択的にかつ効率良く陽イオン交換体
に吸着させることができ、両者を容易にかつ確実に分離
して有価物である水酸化有機第四アンモニウムを高純度
で回収することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, valuable organic quaternary ammonium hydroxide is recovered from waste liquid containing at least organic quaternary ammonium hydroxide with high purity, efficiently and at low cost. In addition, the treated water after the recovery of the organic quaternary ammonium hydroxide can be clean treated water with low COD. Even when the waste liquid contains the organic quaternary ammonium hydroxide and the resist stripper, only the organic quaternary ammonium ion can be selectively and efficiently adsorbed to the cation exchanger, which facilitates both. In addition, the organic quaternary ammonium hydroxide, which is a valuable substance, can be recovered in high purity with high purity.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも水酸化有機第四アンモニウム
を含有する廃液から上記水酸化有機第四アンモニウムを
回収する方法であり、廃液を陽イオン交換体と接触させ
て廃液中の有機第四アンモニウムイオンを陽イオン交換
体に吸着させる吸着工程と、この有機第四アンモニウム
イオンを吸着した陽イオン交換体に溶離液を接触させて
有機第四アンモニウムイオンを溶離させる溶離工程と、
この溶離工程で得られた溶出液を電解して水酸化有機第
四アンモニウム水溶液を回収する電解工程とを含むこと
を特徴とする廃液から水酸化有機第四アンモニウムを回
収する方法。
1. A method for recovering the organic quaternary ammonium hydroxide from a waste liquid containing at least organic quaternary ammonium hydroxide, which comprises contacting the waste liquid with a cation exchanger to remove organic quaternary ammonium ions in the waste liquid. An adsorption step of adsorbing to a cation exchanger, an elution step of contacting an eluent to the cation exchanger having adsorbed the organic quaternary ammonium ion to elute the organic quaternary ammonium ion,
And a step of electrolyzing the eluate obtained in the elution step to recover an organic quaternary ammonium hydroxide aqueous solution.
【請求項2】 電解工程では陽イオン交換膜を隔膜とし
て用いた電解槽で溶出液を電解し、この電解槽から抜き
出された陽極液を溶離工程に循環させ、陽イオン交換体
に吸着した有機第四アンモニウムイオンの溶離液として
使用する請求項1記載の廃液から水酸化有機第四アンモ
ニウムを回収する方法。
2. In the electrolysis step, the eluate is electrolyzed in an electrolysis cell using a cation exchange membrane as a diaphragm, and the anolyte extracted from the electrolysis cell is circulated in the elution step and adsorbed on the cation exchanger. The method for recovering organic quaternary ammonium hydroxide from the waste liquid according to claim 1, which is used as an eluent for organic quaternary ammonium ions.
【請求項3】 陽イオン交換体が弱酸性陽イオン交換樹
脂である請求項1記載の廃液から水酸化有機第四アンモ
ニウムを回収する方法。
3. The method for recovering organic quaternary ammonium hydroxide from a waste liquid according to claim 1, wherein the cation exchanger is a weakly acidic cation exchange resin.
【請求項4】 廃液が少なくとも水酸化有機第四アンモ
ニウムとレジスト剥離物とを含有する請求項1記載の廃
液から水酸化有機第四アンモニウムを回収する方法。
4. The method for recovering organic quaternary ammonium hydroxide from a waste liquid according to claim 1, wherein the waste liquid contains at least organic quaternary ammonium hydroxide and a resist stripper.
【請求項5】 溶離液が酸及び/又は塩の水溶液若しく
は水である請求項1記載の廃液から水酸化有機第四アン
モニウムを回収する方法。
5. The method for recovering organic quaternary ammonium hydroxide from a waste liquid according to claim 1, wherein the eluent is an aqueous solution of acid and / or salt or water.
JP4337835A 1992-11-10 1992-11-26 Method for recovering organic quaternary ammonium hydroxide from waste liquid Expired - Lifetime JP2688009B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4337835A JP2688009B2 (en) 1992-11-26 1992-11-26 Method for recovering organic quaternary ammonium hydroxide from waste liquid
DE69307659T DE69307659T2 (en) 1992-11-10 1993-11-10 Method for the treatment of organic waste water containing quaternary ammonium hydroxide
US08/149,827 US5439564A (en) 1992-11-10 1993-11-10 Method of processing organic quaternary ammonium hydroxide-containing waste liquid
KR1019930023774A KR100264643B1 (en) 1992-11-10 1993-11-10 Method of processing organic quaternary ammonium hydroxide-containing waste liquid
EP93118216A EP0597460B1 (en) 1992-11-10 1993-11-10 Method of processing organic quaternary ammonium hydroxide-containing waste liquid
US08/438,962 US5545309A (en) 1992-11-10 1995-05-11 Method of processing organic quaternary ammonium hydroxide-containing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337835A JP2688009B2 (en) 1992-11-26 1992-11-26 Method for recovering organic quaternary ammonium hydroxide from waste liquid

Publications (2)

Publication Number Publication Date
JPH06154749A JPH06154749A (en) 1994-06-03
JP2688009B2 true JP2688009B2 (en) 1997-12-08

Family

ID=18312422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337835A Expired - Lifetime JP2688009B2 (en) 1992-11-10 1992-11-26 Method for recovering organic quaternary ammonium hydroxide from waste liquid

Country Status (1)

Country Link
JP (1) JP2688009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079762A (en) 2011-10-28 2014-06-27 가부시키가이샤 도쿠야마 Method for producing tetraalkylammonium salt solution

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284401B1 (en) * 1987-03-24 1993-06-02 Hashimoto Corporation Telephone equipment with multiple function
JP4561967B2 (en) * 2004-05-19 2010-10-13 オルガノ株式会社 Method and apparatus for recovering water from waste water containing tetraalkylammonium ions
JP5062093B2 (en) * 2008-08-06 2012-10-31 栗田工業株式会社 Method for recovering water-soluble organic solvent having amino group
JP2016153373A (en) * 2013-06-24 2016-08-25 株式会社トクヤマ Manufacturing method of high concentration tetraalkylammonium salt solution
US9115050B2 (en) * 2013-12-30 2015-08-25 Sachem, Inc. Process for improved recovery of onium hydroxide from compositions containing process residues

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079762A (en) 2011-10-28 2014-06-27 가부시키가이샤 도쿠야마 Method for producing tetraalkylammonium salt solution

Also Published As

Publication number Publication date
JPH06154749A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
US5439564A (en) Method of processing organic quaternary ammonium hydroxide-containing waste liquid
JP3671644B2 (en) Photoresist developing waste liquid recycling method and apparatus
KR100441197B1 (en) Process and equipment for recovering developer from photoresist development waste and reusing it
JP3543915B2 (en) Recycling treatment method for photoresist developing waste liquid
JP4142432B2 (en) Process for removing onium hydroxide from solutions containing onium compounds
JP2688009B2 (en) Method for recovering organic quaternary ammonium hydroxide from waste liquid
JP2730610B2 (en) Method for treating wastewater containing organic quaternary ammonium hydroxide
US5874204A (en) Process for rejuvenation treatment of photoresist development waste
KR101987409B1 (en) Method for producing tetraalkylammonium salt solution
JPH04228587A (en) Method for recovering tetraalkylammonium hydroxide
JP3216998B2 (en) Purification and recovery of tetraalkylammonium hydroxide from waste developer
JP2000126766A (en) Treatment of tetraalkylammonium ion-containing liquid
WO2011074495A1 (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP3656338B2 (en) Photoresist development waste liquid processing method
JP4561967B2 (en) Method and apparatus for recovering water from waste water containing tetraalkylammonium ions
JP3364308B2 (en) Wastewater treatment method and apparatus
JP2003215810A (en) Method for recovering developer from photoresist developer waste liquid
JPH11142380A (en) Method for recycling photoresist developer waste solution
US20240018020A1 (en) Purification method and purification apparatus for liquid to be processed containing tetraalkylammonium ions
JPH10165933A (en) Apparatus for recovery treatment of tetraalkylammonium hydroxide solution from photoresist developing waste solution
JP3663804B2 (en) Photoresist development waste liquid processing method
JPH11128691A (en) Apparatus for regenerating and recovering photoresist developer
JP2007296444A (en) Method and system for treating waste water
JPH1053567A (en) Purification and recovery of tetraalkylammonium hydroxide from waste developer liquor
JP2000093955A (en) Method for treating spent photoresist developer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 16