JP2684927B2 - Optical element substrate - Google Patents

Optical element substrate

Info

Publication number
JP2684927B2
JP2684927B2 JP4180557A JP18055792A JP2684927B2 JP 2684927 B2 JP2684927 B2 JP 2684927B2 JP 4180557 A JP4180557 A JP 4180557A JP 18055792 A JP18055792 A JP 18055792A JP 2684927 B2 JP2684927 B2 JP 2684927B2
Authority
JP
Japan
Prior art keywords
optical element
substrate
sic
copper
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4180557A
Other languages
Japanese (ja)
Other versions
JPH05346497A (en
Inventor
順一 緒方
哲始 沼田
誠 加藤
陽一 吉永
幹之 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP4180557A priority Critical patent/JP2684927B2/en
Publication of JPH05346497A publication Critical patent/JPH05346497A/en
Application granted granted Critical
Publication of JP2684927B2 publication Critical patent/JP2684927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えば電子加速器か
らでる放射光等を利用するために使用する光学素子の基
板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate of an optical element used to utilize radiation emitted from an electron accelerator, for example.

【0002】[0002]

【従来の技術】例えばシンクロトン放射による放射光を
集光するベントミラ−等の光学素子は、その表面が非常
に高精度な平面になっていることが必要である。このた
め光学素子の基板としては研磨によって精度の出し易い
硬い材料が適している。したがって従来からX線等に使
用する光学素子の基板材料としてはSiC等の焼結セラ
ミックスが多く使用されている。そしてSiC等のセラ
ミックスは機械的強度を得るために気孔率が零に近いも
のが使用されている。
2. Description of the Related Art For example, an optical element such as a vent mirror for converging light emitted by synchrotron radiation requires that its surface be a plane with extremely high precision. Therefore, a hard material whose precision is easily obtained by polishing is suitable for the substrate of the optical element. Therefore, conventionally, sintered ceramics such as SiC are often used as a substrate material of an optical element used for X-rays and the like. Ceramics such as SiC are used which have a porosity close to zero in order to obtain mechanical strength.

【0003】特に、X線に使用する光学素子の基板材料
としてはSiCが最もよく使われている。これは光学素
子にX線を照射すると、そのエネルギにより光学素子の
温度が上昇する。この光学素子を効率良く冷却するため
には基板の熱伝導率が高いことが要求される。そこでセ
ラミックスの中でも熱伝導率が約100W/m・Kと比較
的高いSiCが使用されている。
In particular, SiC is most often used as a substrate material for an optical element used for X-rays. This is because when the optical element is irradiated with X-rays, the energy thereof raises the temperature of the optical element. In order to efficiently cool this optical element, it is required that the substrate has high thermal conductivity. Therefore, among ceramics, SiC having a relatively high thermal conductivity of about 100 W / m · K is used.

【0004】[0004]

【発明が解決しようとする課題】上記のように基板とし
てSiC等のセラミックスを使用した光学素子に照射す
るX線のエネルギがより大きくなると、光学素子を冷却
していても光学素子の表面に温度むらが発生する。この
ため光学素子に熱変形が起り、使用できなくなる場合も
ある。これを防ぐためには基板の熱伝導率をより高めて
光学素子を極力均一な温度分布になるように冷却すると
良い。しかしながらSiC等のセラミックス自体の熱伝
導率は上げることは困難であり、光学素子を極力均一な
温度分布になるように冷却することは容易でなかった。
As described above, when the energy of the X-rays applied to the optical element using ceramics such as SiC as the substrate becomes larger, even if the optical element is cooled, the temperature of the surface of the optical element becomes higher. The unevenness occurs. As a result, the optical element may be deformed by heat and may not be usable. In order to prevent this, it is preferable to further increase the thermal conductivity of the substrate and cool the optical element so that the temperature distribution is as uniform as possible. However, it is difficult to increase the thermal conductivity of ceramics such as SiC, and it has been difficult to cool the optical element so that the temperature distribution is as uniform as possible.

【0005】また、X線等を集光するために光学素子を
ベントミラ−として使用する場合には、光学素子に曲げ
応力が作用するため、基板材料には高い靭性や延性が必
要である。しかしながらSiC等のセラミックス自体の
機械的特性には限界があり、ベントミラ−として使用す
るために曲げ応力を与えると破壊してしまう場合もしば
しばあった。
Further, when an optical element is used as a bent mirror to collect X-rays and the like, a bending stress acts on the optical element, so that the substrate material is required to have high toughness and ductility. However, the mechanical properties of ceramics such as SiC itself are limited, and it often breaks when a bending stress is applied for use as a vent mirror.

【0006】この発明はかかる短所を解決するためにな
されたものであり、熱伝導率と機械的特性を高め、安定
して使用することができる光学素子基板を得ることを目
的とするものである。
The present invention has been made to solve the above disadvantages, and an object of the present invention is to obtain an optical element substrate which has improved thermal conductivity and mechanical properties and can be stably used. .

【0007】[0007]

【課題を解決するための手段】この発明に係る光学素子
基板は、素材として気孔率が5〜50%であるセラミッ
クスを使用し、該セラミックスの気孔中に熱伝導率が約
400W/m・Kの銅又は銀を含浸したことを特徴とす
る。
The optical element substrate according to the present invention uses ceramics having a porosity of 5 to 50% as a raw material, and the thermal conductivity of the ceramics is approximately within the pores.
It is characterized by being impregnated with 400 W / m · K of copper or silver .

【0008】上記セラミックスとしては気孔率が5〜50
%のSiCを使用し、金属材料としては銅を使用するこ
とが好ましい。
The above ceramics have a porosity of 5 to 50.
% SiC and copper is preferably used as the metallic material.

【0009】[0009]

【作用】この発明においては、セラミックスの5〜50%
の気孔に熱伝導率の高い金属、例えば銅を含浸させて熱
伝導率をセラミックス自体の熱伝導率よりも高くすると
ともに、全体の靭性,延性等の機械的特性を高める。
Function: In the present invention, 5 to 50% of ceramics
The pores are impregnated with a metal having a high thermal conductivity, such as copper, so that the thermal conductivity is higher than that of the ceramic itself and the mechanical properties such as overall toughness and ductility are enhanced.

【0010】[0010]

【実施例】図1はこの発明の一実施例のミラーを示す断
面図である。図に示すように、X線5の反射や集光に使
用するミラー1は基板2と、基板2の表面に形成された
蒸着膜3と、蒸着膜3の表面に形成された例えば白金の
薄膜4を有する。基板2は、素材として5〜50%の気
孔率を有するSiCの焼結体を使用し、このSiCの焼
結体の気孔に銅を含浸させた材料から形成されている。
そして、その表面は研磨により平坦にしてあり、この基
板2の表面にSiCを蒸着して蒸着膜3が形成されてい
る。SiCの焼結体の気孔に銅を含浸させる方法は公知
の方法、例えば特開昭49−99512号公報や特再平
2−808114号公報(特願平2−502390号)
に示されているように、溶融銅浴が入れられた高圧容器
内にSiCの焼結体を入れて真空にしSiCの焼結体の
気孔内のガスを脱気してから、SiCの焼結体を溶融銅
浴中に沈め、窒素又はアルゴンガスで高圧容器内を加圧
してSiCの焼結体の気孔内に銅を含浸させる。この銅
を含浸したSiCの焼結体を溶融銅浴から取り出して徐
冷することによりSiCの焼結体の気孔に銅を含浸させ
た材料を得ることができる。
1 is a sectional view showing a mirror according to an embodiment of the present invention. As shown in the figure, a mirror 1 used for reflecting and condensing X-rays 5 is a substrate 2, a vapor deposition film 3 formed on the surface of the substrate 2, and a thin film of platinum, for example, formed on the surface of the vapor deposition film 3. Have 4. The substrate 2 is made of a material in which a SiC sintered body having a porosity of 5 to 50% is used as a material, and the pores of the SiC sintered body are impregnated with copper.
The surface of the substrate 2 is made flat by polishing, and a vapor deposition film 3 is formed by vapor-depositing SiC on the surface of the substrate 2. A method of impregnating the pores of a sintered SiC body with copper is known.
Method, for example, JP-A-49-99512 and Japanese Patent
No. 2-808114 (Japanese Patent Application No. 2-502390)
High pressure vessel containing molten copper bath as shown in
Put the SiC sintered body into the inside and make it a vacuum.
After degassing the gas in the pores, melt the SiC sintered body with molten copper.
Submerge in bath and pressurize high pressure vessel with nitrogen or argon gas
Then, copper is impregnated into the pores of the SiC sintered body. This copper
The SiC sintered body impregnated with is taken out from the molten copper bath and slowly
By cooling, the pores of the SiC sintered body are impregnated with copper.
Can obtain the material.

【0011】上記のようにSiC焼結体の5〜50%の気
孔に銅を含浸させた基板2の組織の状態を図2に示す。
図2に示すようにSiCの結晶粒子6同志の境界である
粒界7や気孔8に銅9が充填され、極めて緻密な組織に
なっている。このように熱の伝導を妨げる粒界7や気孔
8を熱伝導の良い銅9で緊密にすることにより、熱の伝
導を妨げる要因を小さくすることができる。すなわちS
iCの焼結体のみからなる場合の熱伝導率は約100W/
m・Kであるが、5〜50%の気孔8を有するSiCの焼
結体に熱伝導率が約400W/m・Kの銅9を含浸させる
と、熱伝導率は約200W/m・Kと2倍にすることができ
た。したがってミラ−1に高エネルギのX線が照射され
て熱が加えられても、その熱の分散を高め、かつ冷却効
果を高めることができるから、ミラ−1の温度分布を均
一にすることができる。
FIG. 2 shows the texture of the substrate 2 in which 5 to 50% of the pores of the SiC sintered body are impregnated with copper as described above.
As shown in FIG. 2, the grain boundaries 7 and pores 8 that are boundaries between the SiC crystal grains 6 are filled with copper 9 and have an extremely dense structure. In this way, by making the grain boundaries 7 and the pores 8 that hinder the heat conduction close by the copper 9 having good heat conductivity, the factors that hinder the heat conduction can be reduced. That is, S
The thermal conductivity is about 100W / when it is composed only of the sintered body of iC.
Although it is m · K, when a SiC sintered body having 5 to 50% of pores 8 is impregnated with copper 9 having a thermal conductivity of about 400 W / m · K, the thermal conductivity is about 200 W / m · K. I was able to double. Therefore, even if heat is applied to the Mira-1 by being irradiated with high-energy X-rays, it is possible to enhance the dispersion of the heat and enhance the cooling effect, so that the temperature distribution of the Mira-1 can be made uniform. it can.

【0012】また、SiCの粒界7や気孔8に銅9が充
填されて、基板2全体としての靭性,延性等の機械的特
性を高めることができる。したがってX線を集光するた
めにミラ−1に曲げを加えてベントミラ−とする場合に
も、安定してミラ−1を湾曲することができる。
Further, the grain boundaries 7 and pores 8 of SiC are filled with copper 9, so that the mechanical properties such as toughness and ductility of the substrate 2 as a whole can be improved. Therefore, even when the mirror 1 is bent to form a bent mirror to collect X-rays, the mirror 1 can be stably curved.

【0013】ここでSiCの焼結体の気孔率を5〜50%
としたのは、気孔率を5%以下にすると靭性,延性等の
機械的特性があまり改善されず、気孔率を50%以上にす
ると基板の耐熱特性が劣化するからである。
Here, the porosity of the SiC sintered body is 5 to 50%.
The reason is that when the porosity is 5% or less, mechanical properties such as toughness and ductility are not improved so much, and when the porosity is 50% or more, the heat resistance of the substrate is deteriorated.

【0014】なお、上記実施例はSiCの焼結体の気孔
8等に銅9を充填した場合について説明したが、熱伝導
の良い銀等を充填しても良い。
In the above embodiment, the case where the pores 8 and the like of the SiC sintered body are filled with copper 9 has been described, but silver or the like having good thermal conductivity may be filled.

【0015】[0015]

【発明の効果】この発明は以上説明したように、セラミ
ックスの5〜50%の気孔に熱伝導率が約400W/m
・Kの銅又は銀を含浸させて光学素子の基板を形成し、
その結果基板の熱伝導率がセラミックス自体の熱伝導率
よりも高くなるので、基板を均一に冷却することがで
き、X線等の照射による温度むらが発生することを防止
することができる。
As described above, the present invention has a thermal conductivity of about 400 W / m in 5 to 50% of the pores of ceramics.
· Impregnated with copper or silver of K to form a substrate for optical elements,
As a result, the thermal conductivity of the substrate becomes higher than that of the ceramic itself, so that the substrate can be cooled uniformly and the occurrence of temperature unevenness due to irradiation with X-rays or the like can be prevented.

【0016】また、セラミックスの気孔に銅又は銀を
たして組織間の付着力を高めることにより、基板全体の
靭性,延性等の機械的特性を高めることができる。
Further, by filling the pores of the ceramic with copper or silver to enhance the adhesive force between the tissues, the mechanical properties such as toughness and ductility of the entire substrate can be enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例のミラ−を示す断面図であ
る。
FIG. 1 is a sectional view showing a mirror of an embodiment of the present invention.

【図2】基板のの組織状態を示す説明図である。FIG. 2 is an explanatory diagram showing a textured state of a substrate.

【符号の説明】[Explanation of symbols]

1 ミラ− 2 基板 3 蒸着膜 4 薄膜 6 SiCの結晶粒子 8 気孔 9 銅 DESCRIPTION OF SYMBOLS 1 Mira 2 Substrate 3 Evaporated film 4 Thin film 6 SiC crystal particles 8 Porosity 9 Copper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉永 陽一 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 浅野 幹之 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平1−228000(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Yoshinaga 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Within Nippon Kokan Co., Ltd. (72) Inventor Mikiyuki Asano 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (56) References Japanese Patent Laid-Open No. 1-28000 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 素材として気孔率が5〜50%である
ラミックスを使用し、該セラミックスの気孔中に熱伝導
が約400W/m・Kの銅又は銀を含浸したことを特
徴とする光学素子基板。
1. A ceramic material having a porosity of 5 to 50% is used as a material, and pores of the ceramic are impregnated with copper or silver having a thermal conductivity of about 400 W / m · K. An optical element substrate characterized by the above.
【請求項2】 セラミックスがSiCである請求項1記
載の光学素子基板。
2. The optical element substrate according to claim 1, wherein the ceramic is SiC.
JP4180557A 1992-06-16 1992-06-16 Optical element substrate Expired - Fee Related JP2684927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180557A JP2684927B2 (en) 1992-06-16 1992-06-16 Optical element substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180557A JP2684927B2 (en) 1992-06-16 1992-06-16 Optical element substrate

Publications (2)

Publication Number Publication Date
JPH05346497A JPH05346497A (en) 1993-12-27
JP2684927B2 true JP2684927B2 (en) 1997-12-03

Family

ID=16085365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180557A Expired - Fee Related JP2684927B2 (en) 1992-06-16 1992-06-16 Optical element substrate

Country Status (1)

Country Link
JP (1) JP2684927B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002953A1 (en) * 2011-01-21 2012-07-26 Carl Zeiss Smt Gmbh Substrate for mirror for extreme ultraviolet lithography, comprises base body which is alloy system that is made of intermetallic phase having crystalline component, where intermetallic phase has bravais lattice

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778559B2 (en) * 1988-03-08 1995-08-23 東芝セラミックス株式会社 Synchrotron radiation. SiC mirror for X-ray reflection

Also Published As

Publication number Publication date
JPH05346497A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
US4090103A (en) X-ray target
KR20040086198A (en) Laminated component for fusion reactors
JPH09509221A (en) Oxidation resistant coating for titanium alloys
JP7074715B2 (en) Heat dissipation device
JP2684927B2 (en) Optical element substrate
US3708325A (en) Process for metal coating boron nitride objects
McCormack et al. Low temperature thinning of thick chemically vapor-deposited diamond films with a molten Ce Ni alloy
Kuwahara et al. Internal stress in aluminium oxide, titanium carbide and copper films obtained by planar magnetron sputtering
US3853582A (en) Metallized isotropic boron nitride body and method for making same
US5080981A (en) Nickel-containing alloys as an adhesive layer bonding metal substrates to ceramics
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
Hoffman et al. On the spontaneous growth of soft metallic whiskers
JPS63193447A (en) Sample holding device
JP3491288B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JPH06152012A (en) Electrode material for excimer laser
JPH10321776A (en) Radiator member for semiconductor element
KR20230089447A (en) Composite and heat dissipation parts
JP3538664B2 (en) Coating method of Ti-based material
RU2172040C1 (en) X-ray tube anode manufacturing process
US3297417A (en) Beryllide coating for beryllium
JPH05339080A (en) Composite material
JPS617554A (en) Rotary target for x-ray tube
JPH03261646A (en) Corrosion-resistant material
JPH021329B2 (en)
Katayama et al. Laser Physical Vapor Deposition of Si~ 3N~ 4 and SiC, and Film Formation Mechanism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees