JP2682620B2 - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber

Info

Publication number
JP2682620B2
JP2682620B2 JP61246891A JP24689186A JP2682620B2 JP 2682620 B2 JP2682620 B2 JP 2682620B2 JP 61246891 A JP61246891 A JP 61246891A JP 24689186 A JP24689186 A JP 24689186A JP 2682620 B2 JP2682620 B2 JP 2682620B2
Authority
JP
Japan
Prior art keywords
oil
seat pipe
chamber
piston rod
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61246891A
Other languages
Japanese (ja)
Other versions
JPS63101535A (en
Inventor
壮美 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP61246891A priority Critical patent/JP2682620B2/en
Publication of JPS63101535A publication Critical patent/JPS63101535A/en
Application granted granted Critical
Publication of JP2682620B2 publication Critical patent/JP2682620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、二輪車のフロントフォーク等に使用される
油圧緩衝器の改良に関する。 (従来の技術) 二輪車のフロントフォークとして、例えば第3図に示
すような油圧緩衝器が知られている(実開昭53−88692
号)。 これは、アウタチューブ1の中心にシートパイプ3を
縦設し、アウタチューブ1の内側に摺動自由に挿入され
たインナチューブ2の中心に縦設したピストンロッド4
をこのシートパイプ3に挿入し、ピストンロッド4の先
端に形成したピストン5がシートパイプ3の内側を摺動
するように構成された緩衝器である。シートパイプ3の
内側のピストン5の上下には油室AとBが、アウタチュ
ーブ1とシートパイプ3の間には油室Cが形成され、そ
れぞれ内部には作動油が充填されている。また、インナ
チューブ2の内側には油室Cに連通する油溜室Dが設け
られ、その油面の上方には空気が封入されている。油室
AとBはピストン5を縦貫する図示されない油孔により
連通し、油室BとCはシートパイプ3に形成したオリフ
ィス20により連通する。また、アウタチューブ1とイン
ナチューブ2とは、油溜室Dの内部を通ってインナチュ
ーブ2の上端部とシートパイプ3の上端部に両端を当接
した懸架スプリング8により離間方向に付勢される。 緩衝器の圧側作動時にはインナチューブ2とピストン
5がアウタチューブ1及びシートパイプ3の中にそれぞ
れ侵入するのに伴い、縮小する油室Bの作動油がピスト
ン5の油孔を通って拡大する油室Aに流入するととも
に、ピストンロッド4の侵入体積分の作動油がオリフィ
ス20から油室Cに流出する。そして、この流出作動油と
アウタチューブ1に侵入するインナチューブ2の体積分
の作動油が油室Cから油溜室Dに流入し、上昇する油面
により封入空気を圧縮する。この時、オリフィス20は流
出する作動油の流量に応じた減衰力を発生させ、また圧
縮された油溜室Dの空気が懸架スプリング8とともに緩
衝器の圧側作動に反発する。一方、緩衝器が伸側作動に
転じると油室Aの作動油が油室Bへ流入するとともに、
油溜室Dに流入していた作動油が油室CとBに還流し、
油溜室Dの油面が下降する。 (発明が解決しようとする問題点) ところで、緩衝器が大きく伸縮したり高速で作動する
と油溜室Dの油量が激しく変動し、急激に増加した作動
油が封入空気の中に吹き上げたり、急激に減少する作動
油の中に空気が巻き込まれたりすることがあり、また懸
架プリング8の伸縮が油面を乱すこともあって、油溜室
Dは作動油に空気が混入するいわゆるエアレーションを
起こしやすい条件となっていた。このようにして作動油
中に混入した気泡が油室AやBに至ると、油室AやBが
縮小した時にこれらの気泡が圧縮されて圧力上昇を鈍ら
せ、オリフィス20の流量が減少するために発生減衰力も
小さくなる。したがって、この緩衝器は激しい作動に対
して十分に対応できない恐れがあった。 本発明は、油量変動を吸収する空気をインナチューブ
に封入した油圧緩衝器における以上のような問題点を解
決すべく、封入空気が作動油に混入しない構造の油圧緩
衝器を提供することを目的とする。 (課題を達成するための手段) 本発明は、アウタチューブの内側にインナチューブを
摺動自由に挿入するとともに、これらチューブの一方の
中心部に縦設したシートパイプの内側に他方チューブに
縦設したピストンロッドを摺動自由に挿入し、このピス
トンロッドの先端に形成したピストンに画成されるシー
トパイプ内の上下にピストンロッド側のピストンロッド
側油室Aとシートパイプ側のシートパイプ側油室Bを形
成し、シートパイプの外側にシートパイプ外側油室Cを
形成するとともに、ピストンロッドを結合するチューブ
の内側にシートパイプ外側油室Cへ連通するチューブ内
油溜室Dを設け、アウタチューブとインナチューブを離
間方向に付勢する懸架スプリングをこのチューブ内油溜
室D内に配設した油圧緩衝器において、ピストンロッド
を中空に形成し、その最圧縮時にシートパイプ外方に突
出する部分をシートパイプ内に位置する部分よりも大径
に形成しここに空気を封入したピストンロッド内油溜室
Eを設け、前記ピストンロッド側油室Aとシートパイプ
側油室Bとこのピストンロッド内油溜室Eとで前記シー
トパイプ外側油室C及びチューブ内油溜室Dから画成さ
れた作動油流通系統を構成するとともに、この流通系統
の途中に減衰力発生手段を備えている。 (作用) 圧側作動時のピストンロッドのシートパイプへの侵入
体積分の作動油は油溜室Eに収容され、インナチューブ
のアウタチューブへの侵入体積分の作動油は油溜室Dに
収容される。さらに、このときシートパイプへ侵入する
ピストンロッド下部は上部に比べて小径に形成されてい
るので油溜室Eは油量変化は少なくてすむ一方、油溜室
Eが設けられるピストンロッドの上部は大径に形成され
ているので油溜室E内の油面の変動は小さくてすみ、ま
た伸縮動作により油面を乱す懸架スプリングも油溜室E
内には存在しないことから、油溜室Eの油面は安定的に
変化する。したがって、緩衝器の伸縮に伴い油溜室E内
の油量が激しく変化しても空気は作動油に混入せず、気
泡を含まない作動油の流通により、減衰力発生手段は安
定した減衰力を発生させる。 (実施例) 第1図及び第2図に本発明の実施例を示す。 1はアウタチューブ、2はその内側に上方から摺動自
由に挿入されたインナチューブであり、アウタチューブ
1の底部から立設したシートパイプ3にインナチューブ
2に縦設した中空のピストンロッド4が摺動自由に挿入
され、その先端部周囲に形成したピストン5がシートパ
イプ3の内側に摺接する。シートパイプ3の内部はピス
トン5により上方の油室Aと下方の油室Bに画成され、
ピストン5には減衰力発生手段として油室AからBへの
油通に所定の抵抗を与える弁装置5Aと、油室BからAへ
の油通に所定の抵抗を与える弁装置5Bとが介装される。
ピストンロッド4の内側にはピストン5を縦貫して油室
Bの中に開口する油通路6が形成される。また、ピスト
ンロッド4の径を拡大した基端部4Aの内側には油通路6
を介して油室Bに連通する油溜室Eが設けられる。この
油溜室Eの上部には隔壁部材として内側に空気を封入し
た袋状のベロー7が設けられる。ベロー7は伸縮自由な
弾性材で構成され、外側に貯留される油量の増減に応じ
て伸縮して内部の空気体積を変化させる。 アウタチューブ1とシートパイプ3との間には油室C
が形成される。この油室Cはインナチューブ2の下端の
開口部を通じてインナチューブ2とピストンロッド4と
の間に形成した油溜室Dに連通する。油溜室Dの油面上
方には空気が封入され、また内部にはインナチューブ2
の基端部とシートパイプ3の上端部に両端をそれぞれ当
接し、アウタチューブ1とインナチューブ2とを伸び方
向に付勢する懸架スプリング8が配設される。なお、油
室C並びに油溜室Dはシートパイプ3及びピストンロッ
ド4により油室AとB及び油溜室Eから隔絶し、相互の
作動油の流通は遮断される。 次に作用を説明する。 緩衝器の圧側作動においてはインナチューブ2がアウ
タチューブ1に、ピストンロッド4がシートパイプ3に
それぞれ侵入し、ピストン5がシートパイプ3の内側を
下方へ摺動する。これにより、縮小する油室Bの作動油
が弁装置5Bを通って拡大する油室Aに圧側減衰力を発生
させつつ流入する一方、ピストンロッド4の侵入体積分
の作動油は油通路6から油溜室Eに流入し、ベロー7を
介して内側の封入空気を圧縮する。一方、ピストンロッ
ド4の外側では懸架スプリング8が撓むとともに、油室
Cの作動油がインナチューブ2の下端の開口部から油溜
室Dに流入し、油面を上昇させて内部の封入空気を圧縮
する。このようにして、懸架スプリング8並びに油溜室
DとEの圧縮空気の反発力が緩衝器の圧側作動に反発す
るとともに、油室Bから油溜室Aへの油通抵抗が圧側作
動を減衰する。 また、緩衝器が伸側作動に転じると、拡大する油室B
に油溜室Eの作動油が油通路6から抵抗なく流入し、油
溜室Eのベロー7が膨らむと同時に、縮小する油室Aの
作動油が弁装置5Aを介して伸側減衰力を発生させつつ油
室Bに流入する。また、油溜室Dの作動油が拡大する油
室Cに流入して油溜室Dの油面も低下する。 以上の伸縮動作において、油溜室Eの作動油は油量に
応じて伸縮するベロー7により常に空気と分離されてい
るため、緩衝器の摺動速度やストロークの大きさにかか
わらず油溜室E内の作動油に空気が混入する恐れはな
い。したがって、緩油室AとB及び油溜室Eの間を流通
する作動油は気泡を含まず、弁装置5Aと5Bともに安定し
た減衰力を発生させる。なお、懸架スプリング8の伸縮
動作に伴い油溜室Dの作動油に封入空気が混入しても、
この作動油はシートパイプ3やピストンロッド4の内部
に流入することがないため、発生減衰力には何等影響し
ない。 第2図は作動油と空気とを分離する隔壁部材として油
溜室Eにフリーピストン9を備えたもので、この場合に
は油溜室Eの油量の増減に伴ってフリーピストンが上下
に摺動することで上記と同様の作用をもたらす。なお、
ここでは圧側の減衰力発生手段として弁装置10が油通路
6と油溜室Eの間に介装されている。 (発明の効果) 以上のように、本発明は、ピストンロッドを中空に形
成し、その上部を大径に形成してここに空気を封入した
別の油溜室Eを設け、前記油室AとBとこの油溜室Eと
で前記油室C及び油溜室Dから画成された作動油流通系
統を構成するとともに、この流通系統の途中に減衰力発
生手段を備えたため、緩衝器作動時のピストンロッド内
の油溜室Eの油量変化はシートパイプへ侵入する小径の
ピストンロッド下部の体積分のみとなるうえ、大径のピ
ストンロッドの上部に設けられた油溜室Eでは油面の変
動を小さく押さえることができ、また、懸架スプリング
はピストンロッドの外に配設されることから、ピストン
ロッド内の油溜室Eの油面が懸架スプリングの伸縮によ
り乱されることもないので、このピストンロッド内の油
溜室Eでは、緩衝器が激しく伸縮しても作動油に空気が
混入しにくく、この作動油の流通系統に介装した減衰力
発生手段は、気泡を含まない作動油の流通により常に安
定的な減衰力が発生する。そのため、激しい作動におい
ても衝撃吸収機能が損なわれず、緩衝器の信頼性が向上
する。
TECHNICAL FIELD The present invention relates to an improvement of a hydraulic shock absorber used for a front fork or the like of a motorcycle. (Prior Art) As a front fork of a two-wheeled vehicle, for example, a hydraulic shock absorber as shown in FIG. 3 is known (Kaikai Sho 53-88692).
issue). A seat pipe 3 is vertically installed at the center of the outer tube 1, and a piston rod 4 is vertically installed at the center of an inner tube 2 slidably inserted inside the outer tube 1.
Is a shock absorber configured so that the piston 5 formed at the tip of the piston rod 4 slides inside the seat pipe 3 by inserting the sheet pipe 3 into the seat pipe 3. Oil chambers A and B are formed above and below the piston 5 inside the seat pipe 3, and an oil chamber C is formed between the outer tube 1 and the seat pipe 3, and the inside thereof is filled with hydraulic oil. An oil reservoir chamber D communicating with the oil chamber C is provided inside the inner tube 2, and air is enclosed above the oil surface. The oil chambers A and B communicate with each other through an oil hole (not shown) that extends vertically through the piston 5, and the oil chambers B and C communicate with each other through an orifice 20 formed in the seat pipe 3. Further, the outer tube 1 and the inner tube 2 are urged in the separating direction by a suspension spring 8 which passes through the inside of the oil reservoir D and abuts both ends of the upper end of the inner tube 2 and the upper end of the seat pipe 3. It During operation of the pressure side of the shock absorber, as the inner tube 2 and the piston 5 enter the outer tube 1 and the seat pipe 3, respectively, the working oil in the oil chamber B that shrinks expands through the oil hole of the piston 5. While flowing into the chamber A, the working oil corresponding to the intrusion volume of the piston rod 4 flows out from the orifice 20 into the oil chamber C. Then, the outflowing hydraulic oil and the hydraulic oil equivalent to the volume of the inner tube 2 entering the outer tube 1 flow into the oil reservoir chamber D from the oil chamber C, and the enclosed air is compressed by the rising oil surface. At this time, the orifice 20 generates a damping force according to the flow rate of the hydraulic oil flowing out, and the compressed air in the oil reservoir chamber D repels the pressure side operation of the shock absorber together with the suspension spring 8. On the other hand, when the shock absorber shifts to the expansion side operation, the hydraulic oil in the oil chamber A flows into the oil chamber B, and
The hydraulic oil that has flowed into the oil reservoir chamber D flows back to the oil chambers C and B,
The oil level in the oil sump D falls. (Problems to be Solved by the Invention) By the way, when the shock absorber expands or contracts greatly or operates at high speed, the amount of oil in the oil reservoir chamber D fluctuates drastically, and the rapidly increased hydraulic oil blows up into the enclosed air, Air may be entrained in the hydraulic oil that sharply decreases, and the expansion and contraction of the suspension pulling 8 may disturb the oil surface, so that the oil reservoir chamber D causes so-called aeration in which air is mixed with the hydraulic oil. It was a condition that was easy to cause. When the bubbles mixed in the hydraulic oil reach the oil chambers A and B in this manner, when the oil chambers A and B are contracted, the bubbles are compressed to slow down the pressure rise and the flow rate of the orifice 20 is reduced. Therefore, the generated damping force also becomes small. Therefore, this shock absorber may not be able to sufficiently cope with violent operation. SUMMARY OF THE INVENTION The present invention provides a hydraulic shock absorber having a structure in which the sealed air is not mixed with the hydraulic oil in order to solve the above problems in the hydraulic shock absorber in which air that absorbs oil amount fluctuations is enclosed in an inner tube. To aim. (Means for Achieving the Object) According to the present invention, an inner tube is slidably inserted inside an outer tube, and a seat pipe vertically installed at one central portion of these tubes is installed vertically on the other tube. The piston rod is inserted slidably, and the piston rod side oil chamber A on the piston rod side and the seat pipe side oil on the seat pipe side are vertically arranged in the seat pipe defined by the piston formed at the tip of the piston rod. A chamber B is formed, a seat pipe outer oil chamber C is formed outside the seat pipe, and a tube oil reservoir chamber D communicating with the seat pipe outer oil chamber C is provided inside the tube connecting the piston rod. In a hydraulic shock absorber in which a suspension spring for urging the tube and the inner tube in the separating direction is arranged in the oil reservoir chamber D in the tube, The ton rod is formed in a hollow shape, and a portion projecting to the outside of the seat pipe at the time of maximum compression is formed to have a larger diameter than a portion located in the seat pipe, and an oil reservoir chamber E in a piston rod in which air is sealed is provided therein. The piston rod side oil chamber A, the seat pipe side oil chamber B, and the piston rod inside oil reservoir chamber E constitute a working oil distribution system defined by the seat pipe outside oil chamber C and the tube inside oil reservoir chamber D. In addition, a damping force generating means is provided in the middle of this distribution system. (Operation) The hydraulic oil equivalent to the volume of the piston rod penetrating into the seat pipe during pressure side operation is contained in the oil reservoir chamber E, and the hydraulic oil equivalent to the volume of the inner tube penetrating into the outer tube is contained in the oil reservoir chamber D. It Further, at this time, since the lower portion of the piston rod entering the seat pipe is formed to have a smaller diameter than the upper portion, the oil amount in the oil reservoir chamber E can be changed little, while the upper portion of the piston rod in which the oil reservoir chamber E is installed is Since it has a large diameter, the fluctuation of the oil level in the oil reservoir E is small, and the suspension spring that disturbs the oil level due to the expansion and contraction operation also has the oil reservoir E.
Since it does not exist inside, the oil level in the oil reservoir E changes stably. Therefore, even if the amount of oil in the oil reservoir chamber E changes drastically as the shock absorber expands and contracts, air does not mix with the hydraulic fluid, and the hydraulic fluid that does not contain air bubbles allows the damping force generating means to generate a stable damping force. Generate. (Embodiment) FIGS. 1 and 2 show an embodiment of the present invention. Reference numeral 1 is an outer tube, 2 is an inner tube which is slidably inserted into the inner tube from above, and a hollow piston rod 4 vertically installed in the inner tube 2 is attached to a seat pipe 3 standing from the bottom of the outer tube 1. A piston 5 which is slidably inserted and formed around the tip of the piston 5 is slidably contacted with the inside of the seat pipe 3. The interior of the seat pipe 3 is defined by a piston 5 into an upper oil chamber A and a lower oil chamber B,
The piston 5 is provided with a valve device 5A as a damping force generating means for giving a predetermined resistance to the oil passage from the oil chambers A to B, and a valve device 5B giving a predetermined resistance to the oil passage from the oil chambers B to A. To be dressed.
An oil passage 6 that penetrates the piston 5 and opens into the oil chamber B is formed inside the piston rod 4. Further, an oil passage 6 is provided inside the base end 4A in which the diameter of the piston rod 4 is enlarged.
An oil reservoir chamber E is provided which communicates with the oil chamber B via. A bag-shaped bellows 7 having air sealed inside is provided as a partition member on the upper part of the oil reservoir E. The bellows 7 is made of an elastic material that can freely expand and contract, and expands and contracts according to increase and decrease in the amount of oil stored outside to change the internal air volume. An oil chamber C is provided between the outer tube 1 and the seat pipe 3.
Is formed. The oil chamber C communicates with an oil reservoir chamber D formed between the inner tube 2 and the piston rod 4 through an opening at the lower end of the inner tube 2. Air is filled above the oil surface of the oil reservoir D, and the inner tube 2 is provided inside.
A suspension spring 8 is provided which abuts both ends of the base end portion and the upper end portion of the seat pipe 3 and biases the outer tube 1 and the inner tube 2 in the extending direction. The oil chamber C and the oil reservoir chamber D are isolated from the oil chambers A and B and the oil reservoir chamber E by the seat pipe 3 and the piston rod 4, and the flow of the working oil is cut off. Next, the operation will be described. In the pressure side operation of the shock absorber, the inner tube 2 enters the outer tube 1 and the piston rod 4 enters the seat pipe 3, and the piston 5 slides downward inside the seat pipe 3. As a result, the working oil in the contracting oil chamber B flows into the expanding oil chamber A through the valve device 5B while generating a compression-side damping force, while the working oil corresponding to the intrusion volume of the piston rod 4 is discharged from the oil passage 6. It flows into the oil reservoir chamber E and compresses the enclosed air inside through the bellows 7. On the other hand, outside the piston rod 4, the suspension spring 8 bends, and the working oil in the oil chamber C flows into the oil reservoir chamber D from the opening at the lower end of the inner tube 2 to raise the oil level and remove the enclosed air inside. Compress. In this way, the suspension spring 8 and the repulsive force of the compressed air in the oil reservoirs D and E repel the pressure side operation of the shock absorber, and the oil flow resistance from the oil chamber B to the oil reservoir chamber A damps the pressure side operation. To do. Also, when the shock absorber turns to the extension side operation, the oil chamber B expands.
The hydraulic oil in the oil chamber E flows into the oil passage 6 without resistance from the oil passage 6, and the bellows 7 in the oil chamber E swells. It flows into the oil chamber B while being generated. Further, the hydraulic oil in the oil storage chamber D flows into the expanding oil chamber C, and the oil level in the oil storage chamber D also drops. In the above-described expansion and contraction operation, the hydraulic oil in the oil reservoir chamber E is always separated from the air by the bellows 7 which expands and contracts according to the amount of oil, so that the oil reservoir chamber is irrespective of the sliding speed and stroke size of the shock absorber. There is no risk of air entering the hydraulic oil inside E. Therefore, the working oil flowing between the loose oil chambers A and B and the oil reservoir chamber E does not contain bubbles, and both valve devices 5A and 5B generate a stable damping force. In addition, even if enclosed air is mixed with the working oil in the oil reservoir D as the suspension spring 8 expands and contracts,
Since this hydraulic oil does not flow into the seat pipe 3 and the piston rod 4, it does not affect the generated damping force. FIG. 2 shows a free piston 9 provided in the oil reservoir E as a partition member for separating hydraulic oil and air. In this case, the free piston moves up and down as the amount of oil in the oil reservoir E increases and decreases. Sliding causes the same effect as above. In addition,
Here, a valve device 10 is interposed between the oil passage 6 and the oil reservoir E as a compression side damping force generating means. (Effects of the Invention) As described above, according to the present invention, the piston rod is formed hollow and the upper portion thereof is formed to have a large diameter. And B and the oil sump chamber E constitute a hydraulic oil distribution system defined by the oil chamber C and the oil sump chamber D, and a damping force generating means is provided in the middle of the distribution system. The change in the amount of oil in the oil reservoir E inside the piston rod at this time is only the volume of the lower part of the small-diameter piston rod that enters the seat pipe, and the oil amount in the oil reservoir E provided above the large-diameter piston rod is small. Since the fluctuation of the surface can be suppressed to a small level and the suspension spring is arranged outside the piston rod, the oil surface of the oil reservoir chamber E inside the piston rod is not disturbed by the expansion and contraction of the suspension spring. So the oil reservoir inside this piston rod In E, even if the shock absorber expands and contracts violently, air is unlikely to be mixed into the hydraulic fluid, and the damping force generating means interposed in the hydraulic fluid distribution system always provides stable damping due to the circulation of the hydraulic fluid containing no bubbles. Power is generated. Therefore, the shock absorbing function is not impaired even in a heavy operation, and the reliability of the shock absorber is improved.

【図面の簡単な説明】 第1図は本発明の実施例を示す油圧緩衝器の断面図、第
2図は他の実施例を示す油圧緩衝器の断面図、第3図は
従来例を示す油圧緩衝器の断面図である。 1…アウタチューブ、2…インナチューブ、3…シート
パイプ、4…ピストンロッド、5…ピストン、5A,5B…
弁装置、7…ベロー、A,B,C…油室、D,E…油溜室。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a hydraulic shock absorber showing an embodiment of the present invention, FIG. 2 is a sectional view of a hydraulic shock absorber showing another embodiment, and FIG. 3 is a conventional example. It is sectional drawing of a hydraulic shock absorber. 1 ... Outer tube, 2 ... Inner tube, 3 ... Seat pipe, 4 ... Piston rod, 5 ... Piston, 5A, 5B ...
Valve device, 7 ... Bellows, A, B, C ... Oil chamber, D, E ... Oil reservoir chamber.

Claims (1)

(57)【特許請求の範囲】 1.アウタチューブの内側にインナチューブを摺動自由
に挿入するとともに、これらチューブの一方の中心部に
縦設したシートパイプの内側に他方チューブに縦設した
ピストンロッドを摺動自由に挿入し、このピストンロッ
ドの先端に形成したピストンに画成されるシートパイプ
内の上下にピストンロッド側のピストンロッド側油室A
とシートパイプ側のシートパイプ側油室Bを形成し、シ
ートパイプの外側にシートパイプ外側油室Cを形成する
とともに、ピストンロッドを結合するチューブの内側に
シートパイプ外側油室Cへ連通するチューブ内油溜室D
を設け、アウタチューブとインナチューブを離間方向に
付勢する懸架スプリングをこのチューブ内油溜室D内に
配設した油圧緩衝器において、ピストンロッドを中空に
形成し、その最圧縮時にシートパイプ外方に突出する部
分をシートパイプ内に位置する部分よりも大径に形成し
ここに空気を封入したピストンロッド内油溜室Eを設
け、前記ピストンロッド側油室Aとシートパイプ側油室
Bとこのピストンロッド内油溜室Eとで前記シートパイ
プ外側油室C及びチューブ内油溜室Dから画成された作
動油流通系統を構成するとともに、この流通系統の途中
に減衰力発生手段を備えたことを特徴とする油圧緩衝
器。
(57) [Claims] The inner tube is slidably inserted into the inner side of the outer tube, and the piston rod vertically inserted into the other tube is slidably inserted into the inner side of the seat pipe vertically installed at the center of one of these tubes. The piston rod side oil chamber A on the piston rod side is vertically arranged in the seat pipe defined by the piston formed at the tip of the rod.
And a seat pipe side oil chamber B on the seat pipe side, a seat pipe outer side oil chamber C is formed outside the seat pipe, and a tube communicating with the seat pipe outer side oil chamber C inside the tube connecting the piston rod. Inner oil reservoir D
In the hydraulic shock absorber in which a suspension spring that urges the outer tube and the inner tube in the separating direction is provided in the oil reservoir chamber D in the tube, the piston rod is formed hollow, and the seat pipe outside The piston rod-side oil chamber A and the seat pipe-side oil chamber B are provided with a piston rod-side oil reservoir chamber E in which a portion protruding inward is formed to have a larger diameter than a portion located in the seat pipe and air is enclosed therein. And the piston rod oil reservoir chamber E constitute a working oil distribution system defined by the seat pipe outer oil chamber C and the tube oil reservoir chamber D, and a damping force generating means is provided in the middle of the distribution system. A hydraulic shock absorber characterized by being provided.
JP61246891A 1986-10-17 1986-10-17 Hydraulic shock absorber Expired - Lifetime JP2682620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246891A JP2682620B2 (en) 1986-10-17 1986-10-17 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246891A JP2682620B2 (en) 1986-10-17 1986-10-17 Hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JPS63101535A JPS63101535A (en) 1988-05-06
JP2682620B2 true JP2682620B2 (en) 1997-11-26

Family

ID=17155281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246891A Expired - Lifetime JP2682620B2 (en) 1986-10-17 1986-10-17 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2682620B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128542U (en) * 1991-05-17 1992-11-24 本田技研工業株式会社 suspension shock absorber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512578A (en) * 1974-06-28 1976-01-10 Takahashi Jugen Teikikenireno seizohoho
JPS57159047U (en) * 1981-03-31 1982-10-06

Also Published As

Publication number Publication date
JPS63101535A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
US7926795B2 (en) Front fork
US4795009A (en) Twin-tube type shock absorber
US4271869A (en) Hydropneumatic pressure reservoir assembly
US6739609B2 (en) Front fork
JP2682620B2 (en) Hydraulic shock absorber
US2934332A (en) Shock absorber
JP2000320598A (en) Front fork
JP2682618B2 (en) Hydraulic shock absorber
US4050684A (en) Velocity sensitive dual rate shock strut
JP4869718B2 (en) Damping force generator for hydraulic shock absorber
JP2001330076A (en) Inverted hydraulic buffer
WO2010125856A1 (en) Multi-cylinder shock absorber
JP3463151B2 (en) Front fork for motorcycle
KR100505126B1 (en) Body valve use in a shock absorber
JPH0262738B2 (en)
CN112292543B (en) Front fork
JP3727089B2 (en) Inverted front fork
JPS609476Y2 (en) hydraulic shock absorber
JP2001280399A (en) Hydraulic shock absorber
JPS6119219Y2 (en)
JPH0424190Y2 (en)
JP2526214B2 (en) Hydraulic shock absorber
JPS6332988Y2 (en)
KR100248110B1 (en) A shock absorber having the oil flow preventive ring
JPH11278351A (en) Front fork