JP2682618B2 - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber

Info

Publication number
JP2682618B2
JP2682618B2 JP61242711A JP24271186A JP2682618B2 JP 2682618 B2 JP2682618 B2 JP 2682618B2 JP 61242711 A JP61242711 A JP 61242711A JP 24271186 A JP24271186 A JP 24271186A JP 2682618 B2 JP2682618 B2 JP 2682618B2
Authority
JP
Japan
Prior art keywords
oil
piston rod
chamber
seat pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61242711A
Other languages
Japanese (ja)
Other versions
JPS6396331A (en
Inventor
哲也 横山
清典 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP61242711A priority Critical patent/JP2682618B2/en
Publication of JPS6396331A publication Critical patent/JPS6396331A/en
Application granted granted Critical
Publication of JP2682618B2 publication Critical patent/JP2682618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/185Bitubular units

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、二輪車のフロントフォーク等に使用される
油圧緩衝器の改良に関する。 (従来の技術) 二輪車のフロントフォークとして、例えば第2図に示
すような油圧緩衝器が知られている(実開昭53−88692
号)。 これは、アウタチューブ1の中心にシートパイプ3を
縦設し、アウタチューブ1の内側に摺動自由に挿入され
たインナチューブ2の中心に縦設したピストンロッド4
をこのシートパイプ3に挿入し、ピストンロッド4の先
端に形成したピストン5がシートパイプ3の内側を摺動
するように構成された緩衝器である。シートパイプ3の
内側のピストン5の上下には油室AとBが、アウタチュ
ーブ1とシートパイプ3の間には油室Cが形成され、そ
れぞれ内部には作動油が充填されている。また、インナ
チューブ2の内側には油室Cに連通する油溜室Dが設け
られ、その油面の上方には空気が封入されている。油室
AとBはピストン5を縦貫する図示されない油孔により
連通し、油室BとCはシートパイプ3に形成したオリフ
ィス20により連通する。また、アウタチューブ1とイン
ナチューブ2とは、油溜室Dの内部を通ってインナチュ
ーブ2の上端部とシートパイプ3の上端部に両端2を当
接した懸架スプリング13により離間方向に付勢される。 緩衝器の圧側作動時にはインナチューブ2とピストン
5がアウタチューブ1及びシートパイプ3の中にそれぞ
れ侵入するのに伴い、縮小する油室Bの作動油がピスト
ン5の油孔を通って拡大する油室Aに流入するととも
に、ピストンロッド4の侵入体積分の作動油がオリフィ
ス20から油室Cに流出する。そして、この流出作動油と
アウタチューブ1に侵入するインナチューブ2の体積分
の作動油が油室Cから油溜室Dに流入し、上昇する油面
により封入空気を圧縮する。この時、オリフィス20は流
出する作動油の流量に応じた減衰力を発生させ、また圧
縮された油溜室Dの空気が懸架スプリング13とともに緩
衝器の圧側作動に反発する。一方、緩衝器が伸側作動に
転じると油室Aの作動油が油室Bへ流入するとともに、
油溜室Dに流入していた作動油が油室CとBに還流し、
油溜室Dの油面が下降する。 (発明が解決しようとする問題点) ところで、緩衝器が大きく伸縮したり高速で作動する
と油溜室Dの油量が激しく変動し、急激に増加した作動
油が封入空気の中に吹き上げたり、急激に減少する作動
油の中に空気が巻き込まれたりすることがあり、また懸
架プリング13の伸縮が油面を乱すこともあって、油溜室
Dは作動油に空気が混入するいわゆるエアレーションを
起こしやすい条件となっていた。このようにして作動油
中に混入した気泡が油室AやBに至ると、油室AやBが
縮小した時にこれらの気泡が圧縮されて圧力上昇を鈍ら
せ、オリフィス20の流量が減少するために発生減衰力も
小さくなる。したがって、この緩衝器は激しい作動に対
して十分に対応できない恐れがあった。 本発明は、油量変動を吸収する空気をインナチューブ
に封入した油圧緩衝器における以上のような問題点を解
決すべく、封入空気が作動油に混入しにくい構造の油圧
緩衝器を提供することを目的とする。 (課題を達成するための手段) 本発明は、アウタチューブの内側にインナチューブを
摺動自由に挿入するとともに、これらチューブの一方の
中心部に縦設したシートパイプの内側に他方チューブに
縦設したピストンロッドを摺動自由に挿入し、このピス
トンロッドの先端に形成したピストンによりシートパイ
プ内をピストンロッド側のピストンロッド側油室Aとシ
ートパイプ側のシートパイプ側油室Bとに画成し、この
ピストンロッド側油室Aとシートパイプ側油室B並びに
シートパイプの外側のシートパイプ外側油室Cに作動油
を充填し、これらの油室間で作動油を流通させるととも
に、これらの油室の容量変化に伴う余剰作動油を流入さ
せる空気を封入したチューブ内油溜室Dをピストンロッ
ドを結合するチューブの内側に設け、アウタチューブと
インナチューブを離間方向に付勢する懸架スプリングを
このチューブ内油溜室D内に配設した油圧緩衝器におい
て、ピストンロッドを中空に形成し、その最圧縮時にシ
ートパイプ外方に突出する部分をシートパイプ内に位置
する部分よりも大径に形成してここに空気を封入したピ
ストンロッド内油溜室Eを設け、前記ピストンロッド側
油室Aとシートパイプ側油室Bとこのピストンロッド内
油溜室Eとで前記シートパイプ外側油室C及びチューブ
内油溜室Dから画成された作動油流通系統を構成し、こ
の流通系統の途中に減衰力調整手段を備え、ピストンロ
ッド内油溜室E内の空気と作動油との間に増減する油量
に応じて動く隔壁部材を備えるとともに、前記ピストン
ロッドの内部にこのピストンロッドを結合するチューブ
端部からガイドを垂設し、このガイドに減衰力発生手段
を備え、この減衰力発生手段を前記チューブ端部におい
て調整可能とした。 (作用) 圧側作動時のピストンロッドのシートパイプへの侵入
体積分の作動油は油溜室Eに収容され、インナチューブ
のアウタチューブへの侵入体積分の作動油は油溜室Dに
収容される。さらに、このときシートパイプへ侵入する
ピストンロッド下部は上部に比べて小径に形成されてい
るので油溜室Eは油量変化は少なくてすむ一方、油溜室
Eが設けられるピストンロッドの上部は大径に形成され
ているので油溜室E内の油面の変動は小さくてすみ、ま
た伸縮動作により油面を乱す懸架スプリングも油溜室E
内には存在しないことから、油溜室Eの油面は安定的に
変化し、エアレーションを起こしにくい。また、ピスト
ンロッドの内部の油溜室Eに連なる作動油流通系統に介
装される減衰力発生手段は、油圧緩衝器外部から適切な
値に調整される。したがって、この減衰力発生手段によ
り適切な減衰力が安定して得られる。 (実施例) 第1図に本発明の実施例を示す。 1はアウタチューブ、2はその内側に上方から摺動自
由に挿入されたインナチューブであり、アウタチューブ
1の底部から立設したシートパイプ3にインナチューブ
2に縦設した中空のピストンロッド4が摺動自由に挿入
され、その先端部周囲に形成したピストン5がシートパ
イプ3の内側に摺接する。シートパイプ3の内部はピス
トン5により上方の油室Aと下方の油室Bに画成され、
ピストン5には伸側の減衰力発生手段として油室Aから
Bへ作動油を所定の抵抗のもとに流入させ、逆方向の油
通は抵抗なく許容する弁装置5Aが介装される。ピストン
ロッド4の内側にはピストン5を縦貫して油室Bの中に
開口する油通路6が形成される。また、ピストンロッド
4の径を拡大した基端部4Aの内側には圧側の減衰力発生
手段である弁装置7及び8を介して下方の油通路6に連
通する油溜室Eが設けられる。弁装置7は一定以上の圧
力下において油通路6を介した油室Bの作動油を油溜室
Eへ流入させる一方、逆方向へは抵抗なく開動して油溜
室Eの作動油を油室Bに還流させるように構成される。
また、弁装置8は外部操作で軸方向に変位するニードル
弁8Aとこれに相対して設けたバルブシート8Bからなり、
ニードル弁8Aは油溜室Eを縦貫するガイド10の内部に収
装され、インナチューブ2の上端部に取り付けたダイア
ル11により操作される。この弁装置8は弁装置7に並列
して設けられ、油溜室Eと油通路6との油通に対してニ
ードル弁8Aの変位位置に応じた抵抗を発生させる。な
お、油溜室Eの油面上方には空気を封入し、油面と空気
との間にはフロート12を備える。 アウタチューブ1とシートパイプ3との間には油室C
が形成される。この油室Cはインナチューブ2の下端の
開口部を通じてインナチューブ2とピストンロッド4と
の間に形成した油溜室Dに連通する。油溜室Dの油面上
方には空気が封入され、また内部にはインナチューブ2
の基端部とシートパイプ3の上端部に両端をそれぞれ当
接し、アウタチューブ1とインナチューブ2とを伸び方
向に付勢する懸架スプリング13が配設される。なお、油
室C並びに油溜室Dはシートパイプ3及びピストンロッ
ド4により油室AとB及び油溜室Eから隔絶し、相互の
作動油の流通は遮断される。 次に作用を説明する。 緩衝器の圧側作動においてはインナチューブ2がアウ
タチューブ1に、ピストンロッド4がシートパイプ3に
それぞれ侵入し、ピストン5がシートパイプ3の内側を
下方へ摺動する。これにより、縮小する油室Bの作動油
が弁装置5Aを通って拡大する油室Aに抵抗なく流入する
一方、ピストンロッド4の侵入体積分の作動油は油通路
6から弁装置8を通って油溜室Eに流入し、フロート12
を介して内部の封入空気を圧縮する。そして、この流入
作動油が弁装置8を通過する際の抵抗により圧側減衰力
を発生させる。なお、油通路6と油溜室Eの圧力差が一
定以上に大きくなると弁装置7が開き、作動油の流入を
助けて減衰力が過大になるのを阻止する。一方、ピスト
ンロッド4の外側では懸架スプリング13が撓むととも
に、油室Cの作動油がインナチューブ2の下端の開口部
から油溜室Dに流入し、油面を上昇させて内部の封入空
気を圧縮する。このようにして、懸架スプリング13並び
に油溜室DとEの圧縮空気の反発力が緩衝器の圧側作動
に反発するとともに、油室Bから油溜室Eへの油通抵抗
が圧側作動を減衰する。 また、緩衝器が伸側作動に転じると、拡大する油室B
に油溜室Eの作動油が弁装置7を介して油通路6から抵
抗なく流入し、油溜室Eの油面が低下すると同時に、縮
小する油室Aの作動油が弁装置5Aを介して伸側減衰力を
発生させつつ油室Bに流入する。また、油溜室Dの作動
油が拡大する油室Cに流入して油溜室Dの油面も低下す
る。 以上の伸縮動作において、油溜室Eの油量変動はシー
トパイプ3へ侵入するピストンロッド4の体積相当分の
みであり、アウタチューブ1に侵入するインナチューブ
2の体積分の油量変動は油溜室Dにおいて吸収される。
そのため、油溜室Eの油量変動は少なく、また油溜室E
内の油面はフロート12により空気と分離されているた
め、緩衝器の摺動速度やストロークの大きさにかかわら
ず油溜室E内の油面は安定を保ったまま上下に変位す
る。また、緩衝器の作動とともに伸縮する懸架スプリン
グ13は油溜室Dに配設されているため、油溜室Eの油面
がこの伸縮動作に乱されることもない。したがって、油
溜室Eに封入した空気が作動油に混入する恐れはなく、
緩油室AとB及び油溜室Eの間を流通する作動油は気泡
を含まないため、圧側、伸側ともに安定した減衰力が得
られる。なお、懸架スプリング13の伸縮動作に伴い油溜
室Dの作動油に封入空気が混入しても、この作動油はシ
ートパイプ3やピストンロッド4の内部に流入すること
がないため、発生減衰力には何等影響しない。 (発明の効果) 以上のように、本発明は、ピストンロッドを中空に形
成し、その上部を大径に形成してここに空気を封入した
別の油溜室Eを設け、前記油室AとBとこの油溜室Eと
で前記油室C及び油溜室Dから画成された作動油流通系
統を構成し、この流通系統の途中に減衰力調整手段を備
え、油溜室E内の空気と作動油との間に増減する油量に
応じて動く隔壁部材を備えるとともに、前記ピストンロ
ッドの内部にこのピストンロッドを結合するチューブ端
部からガイドを垂設し、このガイドに減衰力発生手段を
備え、この減衰力発生手段を前記チューブ端部において
調整可能としたので、緩衝器作動時のピストンロッド内
の油溜室Eの油量変化はシートパイプへ侵入する小径の
ピストンロッド下部の体積分のみとなるうえ、ピストン
ロッド上部に設けられている油溜室Eは大径であり油面
の変動は小さく押さえることができ、また、懸架スプリ
ングはピストンロッドの外に配設されることから、ピス
トンロッド内の油溜室の油面が懸架スプリングの伸縮に
より乱されることもなく、さらに、ピストンロッド内の
作動油の流通系統の減衰力発生手段は外部から調整可能
であるので適切な減衰力を選択することができる。した
がって、このピストンロッド内の油溜室Eでは、作動油
に空気が混入しにくく、この作動油の流通系統に介装し
た減衰力発生手段は衝撃に対して適切な減衰力を常に安
定的に発生する。そのため、激しい作動においても衝撃
吸収機能が損なわれず、緩衝器の信頼性が向上する。
TECHNICAL FIELD The present invention relates to an improvement of a hydraulic shock absorber used for a front fork or the like of a motorcycle. (Prior Art) As a front fork of a two-wheeled vehicle, for example, a hydraulic shock absorber as shown in FIG. 2 is known (actual exploitation 53-88692).
issue). A seat pipe 3 is vertically installed at the center of the outer tube 1, and a piston rod 4 is vertically installed at the center of an inner tube 2 slidably inserted inside the outer tube 1.
Is a shock absorber configured so that the piston 5 formed at the tip of the piston rod 4 slides inside the seat pipe 3 by inserting the sheet pipe 3 into the seat pipe 3. Oil chambers A and B are formed above and below the piston 5 inside the seat pipe 3, and an oil chamber C is formed between the outer tube 1 and the seat pipe 3, and the inside thereof is filled with hydraulic oil. An oil reservoir chamber D communicating with the oil chamber C is provided inside the inner tube 2, and air is enclosed above the oil surface. The oil chambers A and B communicate with each other through an oil hole (not shown) that extends vertically through the piston 5, and the oil chambers B and C communicate with each other through an orifice 20 formed in the seat pipe 3. Further, the outer tube 1 and the inner tube 2 are biased in the separating direction by a suspension spring 13 which passes through the inside of the oil reservoir D and abuts both ends 2 of the upper end of the inner tube 2 and the upper end of the seat pipe 3. To be done. During operation of the pressure side of the shock absorber, as the inner tube 2 and the piston 5 enter the outer tube 1 and the seat pipe 3, respectively, the working oil in the oil chamber B that shrinks expands through the oil hole of the piston 5. While flowing into the chamber A, the working oil corresponding to the intrusion volume of the piston rod 4 flows out from the orifice 20 into the oil chamber C. Then, the outflowing hydraulic oil and the hydraulic oil equivalent to the volume of the inner tube 2 entering the outer tube 1 flow into the oil reservoir chamber D from the oil chamber C, and the enclosed air is compressed by the rising oil surface. At this time, the orifice 20 generates a damping force corresponding to the flow rate of the operating oil flowing out, and the compressed air in the oil reservoir chamber D repels the suspension spring 13 against the pressure side operation of the shock absorber. On the other hand, when the shock absorber shifts to the expansion side operation, the hydraulic oil in the oil chamber A flows into the oil chamber B, and
The hydraulic oil that has flowed into the oil reservoir chamber D flows back to the oil chambers C and B,
The oil level in the oil sump D falls. (Problems to be Solved by the Invention) By the way, when the shock absorber expands or contracts greatly or operates at high speed, the amount of oil in the oil reservoir chamber D fluctuates drastically, and the rapidly increased hydraulic oil blows up into the enclosed air, The air may be entrapped in the hydraulic oil that sharply decreases, and the expansion and contraction of the suspension pulling 13 may disturb the oil surface. Therefore, the oil reservoir chamber D causes so-called aeration in which air is mixed with the hydraulic oil. It was a condition that was easy to cause. When the bubbles mixed in the hydraulic oil reach the oil chambers A and B in this manner, when the oil chambers A and B are contracted, the bubbles are compressed to slow down the pressure rise and the flow rate of the orifice 20 is reduced. Therefore, the generated damping force also becomes small. Therefore, this shock absorber may not be able to sufficiently cope with violent operation. The present invention provides a hydraulic shock absorber having a structure in which the sealed air is unlikely to be mixed into the hydraulic oil in order to solve the above problems in the hydraulic shock absorber in which air that absorbs oil amount fluctuations is sealed in the inner tube. With the goal. (Means for Achieving the Object) According to the present invention, an inner tube is slidably inserted inside an outer tube, and a seat pipe vertically installed at one central portion of these tubes is installed vertically on the other tube. The piston rod is slidably inserted, and the piston formed at the tip of the piston rod defines the interior of the seat pipe into a piston rod side oil chamber A on the piston rod side and a seat pipe side oil chamber B on the seat pipe side. Then, the piston rod side oil chamber A, the seat pipe side oil chamber B, and the seat pipe outer side oil chamber C outside the seat pipe are filled with the working oil, and the working oil is circulated between these oil chambers. An oil reservoir chamber D inside a tube, in which air for allowing excess hydraulic oil to flow in due to a change in the capacity of the oil chamber, is provided inside the tube that connects the piston rod, In a hydraulic shock absorber in which a suspension spring for urging a tube and an inner tube in a separating direction is arranged in the oil reservoir chamber D in the tube, a piston rod is formed in a hollow shape and protrudes to the outside of the seat pipe at the time of maximum compression. A portion having a larger diameter than a portion located in the seat pipe and having an air filled piston rod oil reservoir chamber E therein is provided, and the piston rod side oil chamber A, the seat pipe side oil chamber B and this piston are provided. The oil storage chamber in the rod E constitutes a hydraulic fluid distribution system defined by the oil chamber C in the outside of the seat pipe and the oil storage chamber D in the tube, and a damping force adjusting means is provided in the middle of the distribution system. A partition wall member is provided between the air in the internal oil reservoir chamber E and the working oil, the partition wall member moving in accordance with the increasing / decreasing amount of oil, and a tube end portion for connecting the piston rod to the inside of the piston rod. Was suspended from the guide, comprising a damping force generating means in this guide, the damping force generating means is adjustable in the tube ends. (Operation) The hydraulic oil equivalent to the volume of the piston rod penetrating into the seat pipe during pressure side operation is contained in the oil reservoir chamber E, and the hydraulic oil equivalent to the volume of the inner tube penetrating into the outer tube is contained in the oil reservoir chamber D. It Further, at this time, since the lower portion of the piston rod entering the seat pipe is formed to have a smaller diameter than the upper portion, the oil amount in the oil reservoir chamber E can be changed little, while the upper portion of the piston rod in which the oil reservoir chamber E is installed is Since it has a large diameter, the fluctuation of the oil level in the oil reservoir E is small, and the suspension spring that disturbs the oil level due to the expansion and contraction operation also has the oil reservoir E.
Since it does not exist inside, the oil surface of the oil reservoir E changes stably, and aeration is unlikely to occur. Further, the damping force generating means interposed in the hydraulic oil flow system connected to the oil reservoir chamber E inside the piston rod is adjusted to an appropriate value from outside the hydraulic shock absorber. Therefore, an appropriate damping force can be stably obtained by this damping force generating means. (Example) FIG. 1 shows an example of the present invention. Reference numeral 1 is an outer tube, 2 is an inner tube which is slidably inserted into the inner tube from above, and a hollow piston rod 4 vertically installed in the inner tube 2 is attached to a seat pipe 3 standing from the bottom of the outer tube 1. A piston 5 which is slidably inserted and formed around the tip of the piston 5 is slidably contacted with the inside of the seat pipe 3. The interior of the seat pipe 3 is defined by a piston 5 into an upper oil chamber A and a lower oil chamber B,
The piston 5 is provided with a valve device 5A as a damping force generating means on the extension side for allowing hydraulic oil to flow from the oil chambers A to B under a predetermined resistance and allowing oil passage in the opposite direction without resistance. An oil passage 6 that penetrates the piston 5 and opens into the oil chamber B is formed inside the piston rod 4. Further, inside the base end portion 4A where the diameter of the piston rod 4 is enlarged, an oil reservoir chamber E is provided which communicates with a lower oil passage 6 via valve devices 7 and 8 which are compression side damping force generating means. The valve device 7 allows the hydraulic oil in the oil chamber B to flow into the oil reservoir chamber E through the oil passage 6 under a certain pressure or more, and opens in the opposite direction without resistance to operate the hydraulic oil in the oil reservoir chamber E. It is configured to return to the chamber B.
Further, the valve device 8 includes a needle valve 8A that is axially displaced by an external operation and a valve seat 8B that is provided opposite to the needle valve 8A.
The needle valve 8A is housed inside a guide 10 that extends vertically through the oil reservoir E, and is operated by a dial 11 attached to the upper end of the inner tube 2. The valve device 8 is provided in parallel with the valve device 7, and generates resistance to the oil passage between the oil reservoir chamber E and the oil passage 6 according to the displacement position of the needle valve 8A. Air is enclosed above the oil surface of the oil reservoir E, and a float 12 is provided between the oil surface and the air. An oil chamber C is provided between the outer tube 1 and the seat pipe 3.
Is formed. The oil chamber C communicates with an oil reservoir chamber D formed between the inner tube 2 and the piston rod 4 through an opening at the lower end of the inner tube 2. Air is filled above the oil surface of the oil reservoir D, and the inner tube 2 is provided inside.
A suspension spring 13 is provided which abuts both ends of the base end portion and the upper end portion of the seat pipe 3 and biases the outer tube 1 and the inner tube 2 in the extending direction. The oil chamber C and the oil reservoir chamber D are isolated from the oil chambers A and B and the oil reservoir chamber E by the seat pipe 3 and the piston rod 4, and the flow of the working oil is cut off. Next, the operation will be described. In the pressure side operation of the shock absorber, the inner tube 2 enters the outer tube 1 and the piston rod 4 enters the seat pipe 3, and the piston 5 slides downward inside the seat pipe 3. As a result, the working oil in the contracting oil chamber B flows into the expanding oil chamber A through the valve device 5A without any resistance, while the working oil corresponding to the intrusion volume of the piston rod 4 passes through the valve device 8 from the oil passage 6. Flow into the oil sump chamber E and float 12
The enclosed air inside is compressed via. Then, the pressure side damping force is generated by the resistance when the inflowing hydraulic oil passes through the valve device 8. When the pressure difference between the oil passage 6 and the oil reservoir E becomes larger than a certain value, the valve device 7 is opened to prevent the excessive damping force by assisting the inflow of hydraulic oil. On the other hand, outside the piston rod 4, the suspension spring 13 bends, and the working oil in the oil chamber C flows into the oil reservoir chamber D from the opening at the lower end of the inner tube 2 to raise the oil level and remove the enclosed air inside. Compress. In this way, the suspension spring 13 and the repulsive force of the compressed air in the oil reservoirs D and E repel the pressure side operation of the shock absorber, and the oil flow resistance from the oil chamber B to the oil reservoir chamber E damps the pressure side operation. To do. Also, when the shock absorber turns to the extension side operation, the oil chamber B expands.
The hydraulic oil in the oil reservoir E flows into the oil reservoir 6 through the valve device 7 without resistance, and the oil level in the oil reservoir E lowers. At the same time, the hydraulic oil in the oil chamber A that contracts passes through the valve device 5A. And flows into the oil chamber B while generating the extension side damping force. Further, the hydraulic oil in the oil storage chamber D flows into the expanding oil chamber C, and the oil level in the oil storage chamber D also drops. In the above-described expansion and contraction operation, the oil amount fluctuation in the oil reservoir E is equivalent to only the volume of the piston rod 4 entering the seat pipe 3, and the oil amount fluctuation corresponding to the volume of the inner tube 2 entering the outer tube 1 is the oil amount. It is absorbed in the storage chamber D.
Therefore, the oil amount in the oil reservoir E does not fluctuate much, and the oil reservoir E
Since the oil surface inside is separated from the air by the float 12, the oil surface inside the oil reservoir E is vertically displaced while maintaining stability regardless of the sliding speed of the shock absorber and the stroke size. Further, since the suspension spring 13 that expands and contracts with the operation of the shock absorber is disposed in the oil sump chamber D, the oil surface of the oil sump chamber E is not disturbed by this expansion and contraction operation. Therefore, there is no possibility that the air filled in the oil reservoir E will be mixed with the hydraulic oil,
Since the working oil flowing between the loose oil chambers A and B and the oil reservoir chamber E does not contain bubbles, stable damping force can be obtained on both the compression side and the expansion side. Even if the enclosed air is mixed with the working oil in the oil reservoir D as the suspension spring 13 expands and contracts, this working oil does not flow into the seat pipe 3 and the piston rod 4, so that the generated damping force Has no effect on (Effects of the Invention) As described above, according to the present invention, the piston rod is formed to be hollow, the upper portion thereof is formed to have a large diameter, and another oil reservoir chamber E in which air is enclosed is provided in the piston rod. And B and the oil reservoir chamber E constitute a hydraulic oil distribution system defined by the oil chamber C and the oil reservoir chamber D, and a damping force adjusting means is provided in the middle of the distribution system so that the oil reservoir chamber E Is provided with a partition wall member that moves according to the amount of oil that increases or decreases between the air and the hydraulic oil, and a guide is vertically provided inside the piston rod from the end of the tube that connects the piston rod, and a damping force is applied to this guide. Since the damping force generating means can be adjusted at the tube end portion, a change in the amount of oil in the oil reservoir chamber E in the piston rod when the shock absorber is activated changes the amount of oil in the piston pipe. In addition to the volume of The oil reservoir chamber E provided at the upper part of the piston has a large diameter and can keep the fluctuation of the oil surface small, and since the suspension spring is arranged outside the piston rod, the oil reservoir inside the piston rod is The oil level in the chamber is not disturbed by the expansion and contraction of the suspension spring, and the damping force generating means of the hydraulic oil flow system in the piston rod can be adjusted from the outside, so an appropriate damping force can be selected. it can. Therefore, in the oil reservoir E in the piston rod, air is unlikely to be mixed into the working oil, and the damping force generating means interposed in the distribution system of the working oil always stabilizes an appropriate damping force against impact. Occur. Therefore, the shock absorbing function is not impaired even in a heavy operation, and the reliability of the shock absorber is improved.

【図面の簡単な説明】 第1図は本発明の実施例を示す油圧緩衝器の断面図、第
2図は従来例を示す油圧緩衝器の断面図である。 1…アウタチューブ、2…インナチューブ、3…シート
パイプ、4…ピストンロッド、5…ピストン、5A,7,8…
弁装置、A,B,C…油室、D,E…油溜室。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a hydraulic shock absorber showing an embodiment of the present invention, and FIG. 2 is a sectional view of a hydraulic shock absorber showing a conventional example. 1 ... Outer tube, 2 ... Inner tube, 3 ... Sheet pipe, 4 ... Piston rod, 5 ... Piston, 5A, 7, 8 ...
Valve device, A, B, C ... Oil chamber, D, E ... Oil reservoir chamber.

Claims (1)

(57)【特許請求の範囲】 1.アウタチューブの内側にインナチューブを摺動自由
に挿入するとともに、これらチューブの一方の中心部に
縦設したシートパイプの内側に他方チューブに縦設した
ピストンロッドを摺動自由に挿入し、このピストンロッ
ドの先端に形成したピストンによりシートパイプ内をピ
ストンロッド側のピストンロッド側油室Aとシートパイ
プ側のシートパイプ側油室Bとに画成し、このピストン
ロッド側油室Aとシートパイプ側油室B並びにシートパ
イプの外側のシートパイプ外側油室Cに作動油を充填
し、これらの油室間で作動油を流通させるとともに、こ
れらの油室の容量変化に伴う余剰作動油を流入させる空
気を封入したチューブ内油溜室Dをピストンロッドを結
合するチューブの内側に設け、アウタチューブとインナ
チューブを離間方向に付勢する懸架スプリングをこのチ
ューブ内油溜室D内に配設した油圧緩衝器において、ピ
ストンロッドを中空に形成し、その最圧縮時にシートパ
イプ外方に突出する部分をシートパイプ内に位置する部
分よりも大径に形成してここに空気を封入したピストン
ロッド内油溜室Eを設け、前記ピストンロッド側油室A
とシートパイプ側油室Bとこのピストンロッド内油溜室
Eとで前記シートパイプ外側油室C及びチューブ内油溜
室Dから画成された作動油流通系統を構成し、この流通
系統の途中に減衰力調整手段を備え、ピストンロッド内
油溜室E内の空気と作動油との間に増減する油量に応じ
て動く隔壁部材を備えるとともに、前記ピストンロッド
の内部にこのピストンロッドを結合するチューブ端部か
らガイドを垂設し、このガイドに減衰力発生手段を備
え、この減衰力発生手段を前記チューブ端部において調
整可能としたことを特徴とする油圧緩衝器。
(57) [Claims] The inner tube is slidably inserted inside the outer tube, and the piston rod vertically installed on the other tube is slidably inserted inside the seat pipe vertically installed at the center of one of these tubes. A piston formed at the tip of the rod defines the inside of the seat pipe into a piston rod side oil chamber A on the piston rod side and a seat pipe side oil chamber B on the seat pipe side. The piston rod side oil chamber A and the seat pipe side The oil chamber B and the seat pipe outer oil chamber C on the outer side of the seat pipe are filled with hydraulic oil, the hydraulic oil is circulated between these oil chambers, and the surplus hydraulic oil accompanying the capacity change of these oil chambers is caused to flow in. An oil reservoir chamber D containing air is provided inside the tube that connects the piston rod, and the outer tube and inner tube are attached in the separating direction. In the hydraulic shock absorber in which the suspension spring is disposed in the oil reservoir chamber D in the tube, the piston rod is formed to be hollow, and the portion projecting to the outside of the seat pipe at the time of the maximum compression is located more than the portion located in the seat pipe. Is also formed with a large diameter, and an oil reservoir chamber E in the piston rod in which air is enclosed is provided in the piston rod side oil chamber A.
The seat pipe side oil chamber B and the piston rod inner oil reservoir chamber E constitute a working oil distribution system defined by the seat pipe outer oil chamber C and the tube inner oil reservoir chamber D, and in the middle of this distribution system. Is provided with a damping force adjusting means, and is provided with a partition member that moves between the air in the piston rod oil reservoir chamber E and the working oil in accordance with the amount of increasing / decreasing oil, and the piston rod is connected to the inside of the piston rod. A hydraulic shock absorber characterized in that a guide is hung from the end of the tube, and the guide is provided with a damping force generating means, and the damping force generating means is adjustable at the tube end.
JP61242711A 1986-10-13 1986-10-13 Hydraulic shock absorber Expired - Lifetime JP2682618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242711A JP2682618B2 (en) 1986-10-13 1986-10-13 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242711A JP2682618B2 (en) 1986-10-13 1986-10-13 Hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JPS6396331A JPS6396331A (en) 1988-04-27
JP2682618B2 true JP2682618B2 (en) 1997-11-26

Family

ID=17093105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242711A Expired - Lifetime JP2682618B2 (en) 1986-10-13 1986-10-13 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2682618B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710940B2 (en) * 1988-02-04 1998-02-10 株式会社ショーワ Front forks for motorcycles, etc.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512578A (en) * 1974-06-28 1976-01-10 Takahashi Jugen Teikikenireno seizohoho
JPS57159047U (en) * 1981-03-31 1982-10-06

Also Published As

Publication number Publication date
JPS6396331A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US7025367B2 (en) Adjustable air cushion bicycle seat
US7926795B2 (en) Front fork
US5901820A (en) Hydraulic shock absorber
US4397452A (en) Hydro-mechanical stop for a shock absorber
US20030001359A1 (en) Front fork
JP2682618B2 (en) Hydraulic shock absorber
US4049251A (en) Shock absorbing strut assembly
JP2000320598A (en) Front fork
JP2682620B2 (en) Hydraulic shock absorber
EP2193986A1 (en) Shock absorber, front fork equipped with the shock absorber, and motorcycle equipped with the front fork
US5103754A (en) Shock absorber for water jet ski
JPH05162525A (en) Car height adjusting device
JP2909749B2 (en) Hydraulic shock absorber
JP2001330076A (en) Inverted hydraulic buffer
JPS6119219Y2 (en)
JP2526214B2 (en) Hydraulic shock absorber
JPH0262738B2 (en)
JP3446026B2 (en) Front fork
JP2542932Y2 (en) Variable damping force type hydraulic shock absorber
JPS6332988Y2 (en)
JP2001280399A (en) Hydraulic shock absorber
JPS609476Y2 (en) hydraulic shock absorber
JP4144944B2 (en) Hydraulic shock absorber
JP2763883B2 (en) Hydraulic shock absorber
JP2854874B2 (en) Inverted front fork