JP2681010B2 - Valve for vacuum device - Google Patents

Valve for vacuum device

Info

Publication number
JP2681010B2
JP2681010B2 JP7292695A JP7292695A JP2681010B2 JP 2681010 B2 JP2681010 B2 JP 2681010B2 JP 7292695 A JP7292695 A JP 7292695A JP 7292695 A JP7292695 A JP 7292695A JP 2681010 B2 JP2681010 B2 JP 2681010B2
Authority
JP
Japan
Prior art keywords
valve
valve body
opening
vacuum device
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7292695A
Other languages
Japanese (ja)
Other versions
JPH0868475A (en
Inventor
敦 伊藤
Original Assignee
山形日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山形日本電気株式会社 filed Critical 山形日本電気株式会社
Priority to JP7292695A priority Critical patent/JP2681010B2/en
Publication of JPH0868475A publication Critical patent/JPH0868475A/en
Application granted granted Critical
Publication of JP2681010B2 publication Critical patent/JP2681010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Details Of Valves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空容器内に導入され
たガスの圧力を大気圧に近い圧力に調節する真空装置用
弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve for a vacuum device for adjusting the pressure of gas introduced into a vacuum container to a pressure close to atmospheric pressure.

【0002】[0002]

【従来の技術】従来、半導体装置の製作工程には、真空
容器に半導体基板(以下ウェーハと記す)を収納しイオ
ン注入や真空蒸着など処理する種々の工程がある。この
ような工程でウェーハの処理を完了すると、真空容器を
大気に戻す前に、ウェーハの酸化防止するために真空容
器に窒素ガスなど導入して大気圧に戻してからウェーハ
を取出していた。さらに、真空容器の扉を開けるときに
大気のパーティクルが真空容器内へ浸入しないように、
真空容器内を大気圧よりわずか高くして扉を開けてい
た。
2. Description of the Related Art Conventionally, in the process of manufacturing a semiconductor device, there are various processes in which a semiconductor substrate (hereinafter referred to as a wafer) is housed in a vacuum container and processed such as ion implantation and vacuum deposition. When the processing of the wafer is completed in such a process, before returning the vacuum container to the atmosphere, nitrogen gas or the like is introduced into the vacuum container to return it to the atmospheric pressure and then the wafer is taken out in order to prevent the wafer from being oxidized. Furthermore, to prevent atmospheric particles from entering the vacuum container when opening the door of the vacuum container,
The door was opened by making the inside of the vacuum container slightly higher than atmospheric pressure.

【0003】しかしながら、この窒素ガスを導入し真空
容器の圧力を高めてから大気に戻すものの、窒素ガス供
給装置の送圧力により窒素ガスが急激に導入され真空容
器内の器具やガラスなどで作られたものを破壊すること
がある。従って、圧力があまり上らないように、ガス供
給装置と真空容器との間に通常リリーフ弁の一種である
真空装置用弁を設けている。この種の真空装置用弁の一
例として特開平1一150079号公報に開示されてい
る。
However, although this nitrogen gas is introduced to increase the pressure in the vacuum container and then return it to the atmosphere, the nitrogen gas is rapidly introduced by the sending pressure of the nitrogen gas supply device and is made of equipment such as glass or glass in the vacuum container. It may destroy things. Therefore, in order to prevent the pressure from rising too much, a vacuum device valve, which is a kind of relief valve, is usually provided between the gas supply device and the vacuum container. An example of this type of valve for a vacuum device is disclosed in Japanese Patent Application Laid-Open No. 11007979.

【0004】図4(a)および(b)は従来の真空装置
用弁の一例を説明するための真空装置とA部を拡大して
示す図である。上述した真空装置用弁は、図4(a)に
示すように、真空容器19に取付けられたリークバルブ
24と窒素ガスボンベ21との間にパイプ20と接続す
る接続パイプ23に取付けられている。
FIGS. 4 (a) and 4 (b) are enlarged views of a vacuum device and a portion A for explaining an example of a conventional vacuum device valve. As shown in FIG. 4A, the above-described vacuum device valve is attached to a connection pipe 23 that is connected to the pipe 20 between the leak valve 24 attached to the vacuum container 19 and the nitrogen gas cylinder 21.

【0005】また、この真空装置用弁は、図4(b)に
示すように、接続パイプ23の穴34の周囲を囲むよう
に包むとともに接続パイプ23に固定される筐体31
と、この筐体31の内部にあって穴34の周囲のOリン
グ33を介して載置される球体32と、球体32に押圧
力を与えるスプリング29と、このスプリング29を圧
縮させる押し付け板28と、筐体31のねじ部27と軸
部が噛み合い押し付け板28を移動させる軸部回転用の
ハンドル26とを備えている。
As shown in FIG. 4 (b), the vacuum device valve encloses the hole 34 of the connection pipe 23 so as to surround the hole 34 and is fixed to the connection pipe 23.
A sphere 32 placed inside the housing 31 via an O-ring 33 around the hole 34, a spring 29 that applies a pressing force to the sphere 32, and a pressing plate 28 that compresses the spring 29. And a handle 26 for rotating the shaft portion that moves the pressing plate 28 by meshing the screw portion 27 of the housing 31 with the shaft portion.

【0006】この真空装置用弁の動作は、まず、真空ポ
ンプ25で真空排気された真空容器19でウェーハを処
理する。そして、窒素ガスボンベ21から窒素ガスを送
りリークバルブ24、パイプ20および接続パイプ23
に充満させる。このとき窒素ガスボンベ21は窒素ガス
が2気圧程度の圧力で充填されているので、リークバル
ブ24、パイプ20および接続パイプ23内は約2気圧
程度に一時的に上昇する。
In operation of the vacuum apparatus valve, first, the wafer is processed in the vacuum container 19 which is evacuated by the vacuum pump 25. Then, nitrogen gas is sent from the nitrogen gas cylinder 21, the leak valve 24, the pipe 20, and the connection pipe 23.
Fill up with. At this time, since the nitrogen gas cylinder 21 is filled with nitrogen gas at a pressure of about 2 atm, the leak valve 24, the pipe 20, and the connection pipe 23 temporarily rise to about 2 atm.

【0007】しかし、接続パイプ23の穴34における
高いガス圧がスプリング29の反発力に抗して球体32
を押し上げる。このことによりOリング33と球体32
との隙間が生じ、この隙間から窒素ガスが漏れて空気穴
30を通して筐体31外に排出される。しかし、リーク
バルブ24、接続パイプ23およびパイプ20は窒素ガ
スが充満した状態を保つ。
However, the high gas pressure in the hole 34 of the connecting pipe 23 resists the repulsive force of the spring 29 and causes the sphere 32 to move.
Push up. As a result, the O-ring 33 and the sphere 32
And a nitrogen gas leaks from this gap and is discharged to the outside of the housing 31 through the air hole 30. However, the leak valve 24, the connection pipe 23, and the pipe 20 are kept filled with nitrogen gas.

【0008】次に、リークバルブ24を開け窒素ガスを
真空容器19に導入する。真空容器19に導入された窒
素ガスの圧力が上昇し球体32の押付け力に達するまで
窒素ガスは導入され続ける。そして窒素ガスが排出され
ガス圧がスプリング29の押圧力を下回ると、球体32
はOリング33を押し付け穴34を気密に閉じる。
Next, the leak valve 24 is opened and nitrogen gas is introduced into the vacuum container 19. The nitrogen gas is continuously introduced until the pressure of the nitrogen gas introduced into the vacuum container 19 rises and reaches the pressing force of the sphere 32. When the nitrogen gas is discharged and the gas pressure falls below the pressing force of the spring 29, the sphere 32
Presses the O-ring 33 and hermetically closes the hole 34.

【0009】このように、真空容器19内に導入される
ガスの圧力を低くくして導入するので、真空容器19内
の器具あるいはガラス製器物を破壊することがなく真空
容器19を略大気圧に等しい圧力に戻すことができるこ
とを特徴としていた。
As described above, since the gas introduced into the vacuum container 19 is introduced at a low pressure, the gas inside the vacuum container 19 or the glassware is not destroyed and the vacuum container 19 is kept at about atmospheric pressure. It was characterized by the ability to return to equal pressure.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述し
た従来の真空装置用弁は、真空容器内の器物を破損せず
真空容器内を大気に戻すことができるものの、真空容器
の圧力が大気圧より僅か上まる程度に設定しても、真空
容器の扉を開けるときに圧力差によって生ずる真空容器
内の空気の流れによるパーティクルの舞上り現象が発生
する。このため、処理されたウェーハにパーティクルが
付着し品質に重大な欠陥をもたらすという問題がある。
However, although the above-mentioned conventional valve for a vacuum device can return the inside of the vacuum container to the atmosphere without damaging the equipment inside the vacuum container, the pressure of the vacuum container is higher than the atmospheric pressure. Even if it is set slightly higher, a particle rising phenomenon occurs due to a flow of air in the vacuum container caused by a pressure difference when the door of the vacuum container is opened. Therefore, there is a problem that particles adhere to the processed wafer and cause serious defects in quality.

【0011】そもそも、このパーティクル舞い上り現象
を無くすには、理想的には真空容器の内圧が大気との差
圧が0kg/cm2 とする必要があるが、この差圧が無
くなると、扉を開けたとき、前述したようにパーティク
ルが外部から真空容器内に入りウェーハを汚染させるこ
とになる。すなわち、扉を開けたときに起きる真空容器
へのパーティクルの侵入することと真空容器内でパーテ
ィクルが舞い上ることは真空容器内外の僅かな差圧の違
いによって生ずる。
In the first place, in order to eliminate this particle rising phenomenon, ideally, the pressure difference between the internal pressure of the vacuum container and the atmosphere should be 0 kg / cm 2 , but when this pressure difference disappears, the door is opened. When opened, particles enter the vacuum container from the outside and contaminate the wafer as described above. That is, the intrusion of particles into the vacuum container and the rising of the particles in the vacuum container, which occur when the door is opened, are caused by a slight difference in pressure difference between the inside and outside of the vacuum container.

【0012】試みに、この種の真空装置用弁を使用して
真空容器内に5インチ直径のシリコンウェーハを収納
し、その差圧を0.03kg/cm2 を設定し行なった
ところ、舞上り現象が生じ0.3μm以上のパーティク
ルが500以上も付着した。さらに、この種の真空装置
用弁で調整し得る最も低い差圧力に設定し数回行なった
ところ、パーティクルが舞い上る場合と舞い上らない場
合とが起きた。この原因を調べるために、その都度差圧
を精密マノメータで測定したところ、同し差圧で設定し
たにもかかわらず差圧がばらつくことが判明した。そし
て、0.023kg/cm2 以下の低圧のときパーティ
クルが舞い上らないとの知見を得た。
In a trial, a valve for a vacuum device of this type was used to store a silicon wafer having a diameter of 5 inches in a vacuum container and the differential pressure thereof was set to 0.03 kg / cm 2. A phenomenon occurred and particles of 0.3 μm or more adhered for 500 or more. Furthermore, when the pressure was set to the lowest differential pressure that could be adjusted with this type of vacuum device valve, and the operation was performed several times, there were cases where particles soared and cases where particles did not soar. In order to investigate this cause, the differential pressure was measured each time with a precision manometer, and it was found that the differential pressure varied even though the differential pressure was set. Then, it was found that particles did not soar at a low pressure of 0.023 kg / cm 2 or less.

【0013】このことは、上述した真空装置用弁の弁開
閉機構のように機械的にスプリングを圧縮させ差圧を設
定する機構では、ねじ送りのがたの発生や圧縮力の設定
分解能の粗さなどにより、0.023kg/cm2 とい
った微小な圧力を設定することが困難である。そのた
め、真空容器内の器物を破損せず真空容器着を大気に戻
すことができるものの、パーティクル舞上り現象を抑制
することができない。
This is because, in the mechanism for mechanically compressing the spring and setting the differential pressure like the valve opening / closing mechanism of the valve for the vacuum device described above, there is rattling of screw feed and coarse resolution of the compression force setting resolution. Therefore, it is difficult to set a minute pressure such as 0.023 kg / cm 2 . Therefore, although the container inside the vacuum container can be returned to the atmosphere without damaging the container, the particle rising phenomenon cannot be suppressed.

【0014】従って、本発明の目的は、真空容器に導入
するガス圧を大気圧に対して微小な圧力差をもたせるよ
うに精密に圧力設定できる真空装置用弁を提供すること
である。
Therefore, an object of the present invention is to provide a valve for a vacuum device which can precisely set the gas pressure introduced into a vacuum container so as to have a minute pressure difference with respect to the atmospheric pressure.

【0015】[0015]

【課題を解決するための手段】本発明の第1の特徴は、
ガスの流入口と該ガスの流出口とをもつとともに該流入
口と該流出口とが通ずる流路途中に開口を有するハウジ
ングと、前記開口を覆うとともに前記開口の周囲部の弁
座をパッキングを介し自重で押える弁体部材と、前記弁
体部材を該開口側に押付けたりあるいは前記弁体部材か
ら離間したりするプランジャとを備える真空装置用弁で
ある。また、必要に応じて前記弁体部材上に載置する重
量調整部材を備えることである。さらに、前記プランジ
ャの前記押付け動作および前記離間動作を電磁力で行な
う第1のソレノイドコイルを設けることが望ましい。
A first feature of the present invention is as follows.
A housing having a gas inflow port and a gas outflow port and having an opening in the middle of a flow path communicating with the inflow port and the outflow port; and a valve seat covering the opening and surrounding the opening are packed. A valve for a vacuum device, comprising: a valve body member that is pressed by its own weight through a valve body; and a plunger that presses the valve body member toward the opening side or separates from the valve body member. In addition, a weight adjusting member to be placed on the valve body member is provided if necessary. Further, it is desirable to provide a first solenoid coil that performs the pressing operation and the separating operation of the plunger by an electromagnetic force.

【0016】本発明の第2の特徴は、前記開口を覆い該
パッキング介して前記弁座に載置される前記弁体部材と
一端を接触する第2のプランジャと、この第2のプラン
ジャに前記弁体部材を押し付ける力を電磁力として与え
る第2のソレノイドコイルと、この第2のソレノイドコ
イルに流す電流を可変する可変直流電源を備える真空装
置用弁である。
A second feature of the present invention is a second plunger which covers the opening and has one end in contact with the valve body member mounted on the valve seat through the packing, and the second plunger having the above-mentioned structure. It is a valve for a vacuum device provided with a second solenoid coil that applies a force for pressing a valve body member as an electromagnetic force, and a variable DC power supply that changes a current flowing through the second solenoid coil.

【0017】本発明の第3の特徴は、前記第1の真空装
置用弁または前記第2の真空装置用弁に前記弁体部材で
塞がれる前記開口から流出する前記ガスを検知するガス
検知センサを備えていることである。
A third feature of the present invention is gas detection for detecting the gas flowing out from the opening blocked by the valve body member in the first vacuum device valve or the second vacuum device valve. It is equipped with a sensor.

【0018】[0018]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0019】図1(a)〜(c)は本発明の第1の実施
例の真空装置用弁を動作順に示す断面図である。この真
空装置用弁は、図1に示すように、ガス流入口5とガス
流出口6とをもつとともにガス流入口5とガス流出口6
とが通ずる流路途中に開口10を有するハウジング4
と、開口10を覆うとともに開口の周囲部の弁座11を
パッキング9を介し自重で押える弁体1と、開口10側
に先端で弁体を押付け開口10を気密に閉じたりあるい
は弁体1から先端を離間したりするプランジャ3とを備
えている。
FIGS. 1A to 1C are sectional views showing the valve for a vacuum device according to the first embodiment of the present invention in the order of operation. As shown in FIG. 1, this vacuum device valve has a gas inflow port 5 and a gas outflow port 6, and also has a gas inflow port 5 and a gas outflow port 6.
Housing 4 having an opening 10 in the middle of a flow path communicating with
A valve body 1 that covers the opening 10 and presses the valve seat 11 around the opening with its own weight through the packing 9, and a valve body is pressed to the opening 10 side by the tip end to close the opening 10 airtightly or And a plunger 3 for separating the tips.

【0020】また、プランジャ4の弁体1への押付け動
作および離間動作をさせる機構には、電磁力で行なうソ
レノイドコイル8とスプリング7とを組み合せた機構が
小型化を図れるので適している。もし、この弁が大口径
のものであれば作動圧を高くとれる空気圧作動式のもの
にすると良い。
Further, as a mechanism for pressing and separating the plunger 4 against the valve body 1, a mechanism in which a solenoid coil 8 and a spring 7 combined by electromagnetic force are combined is suitable because it can be downsized. If this valve has a large diameter, it is preferable to use an air pressure type that can take a high operating pressure.

【0021】なお、この真空装置用弁における真空容器
内外の圧力差の設定は、その作用は後述するが弁体1の
重量で決められる。従って、弁体1に重量調整部材2を
乗せるようにすれば、この重量調整用部材2を種々の重
量のものを準備し、設定毎に圧力差に応じて選び弁体1
に乗せれば、微小な差圧である0.001kg/cm2
から大きな差圧0.03kg/cm2 程度の差圧まで広
い範囲で設定できる。
The setting of the pressure difference between the inside and the outside of the vacuum container in the valve for the vacuum device is determined by the weight of the valve body 1 although its operation will be described later. Therefore, if the weight adjusting member 2 is mounted on the valve body 1, various weight adjusting members 2 are prepared, and the valve body 1 is selected according to the pressure difference for each setting.
If you put it on the surface, a minute pressure difference of 0.001kg / cm 2
To a large differential pressure of about 0.03 kg / cm 2 can be set in a wide range.

【0022】この弁体1で押え弁座11と気密封止する
パッキング9は、通常のOリングと異なり柔かい材料で
製作する必要がある。むしろ、中空のOリングかUシー
ルが適切である。何故ならば、差圧が広範囲に設定でき
ることは、小さい押付け力でパッキング9を押しつぶし
開口10を気密に閉じる必要があるからである。
The packing 9 for hermetically sealing the pressing valve seat 11 with the valve body 1 must be made of a soft material unlike an ordinary O-ring. Rather, hollow O-rings or U-seals are suitable. This is because the differential pressure can be set in a wide range because it is necessary to crush the packing 9 with a small pressing force and airtightly close the opening 10.

【0023】また、弁体1の上側のプランジャ3の下端
の上昇位置は、弁体1が圧力で浮き上ったときに弁座1
1の位置から外れないように、プランジャ3の下端と弁
体1との隙間は、例えば、1mm以下に小さくしてい
る。さらに、プランジャ3の直径は弁体1の直径と略同
じ大きさにしてある。
Further, the rising position of the lower end of the plunger 3 on the upper side of the valve body 1 is such that when the valve body 1 floats up due to pressure, the valve seat 1
The gap between the lower end of the plunger 3 and the valve body 1 is set to, for example, 1 mm or less so as not to deviate from the position 1. Further, the diameter of the plunger 3 is substantially the same as the diameter of the valve body 1.

【0024】次に、この真空装置用弁の動作と作用を説
明する。まず、図1(c)に示すように、プランジャ3
で弁体1を弁座11に押付け開口10を気密封止し図示
していない真空容器を真空排気する。そして、真空排気
後ウェーハを処理してから、図1(a)に示すように、
プランジャ3を上昇させ弁体1より下端を離間させる。
ここで、仮に真空容器と連結されるガス流入口5が絶対
圧0.001[kg/cm2 ]の真空状態になっていた
とる。このときの弁体1の弁座11への押圧力は、開口
10の面積をDとすると、大気圧1[kg/cm2 ]×
D〔cm2 〕の力F1 と弁体4の自重F2 とを加えたF
1 +F2 =F3 〔kg〕となる。
Next, the operation and action of this vacuum device valve will be described. First, as shown in FIG. 1 (c), the plunger 3
The valve body 1 is pressed against the valve seat 11 to hermetically seal the opening 10, and the vacuum container (not shown) is evacuated. Then, after evacuating and processing the wafer, as shown in FIG.
The plunger 3 is raised to separate the lower end from the valve body 1.
Here, it is assumed that the gas inlet 5 connected to the vacuum container is in a vacuum state with an absolute pressure of 0.001 [kg / cm 2 ]. The pressing force of the valve body 1 against the valve seat 11 at this time is 1 [kg / cm 2 ] × atmospheric pressure, where D is the area of the opening 10.
F that is obtained by adding the force F 1 of D [cm 2 ] and the own weight F 2 of the valve body 4
1 + F 2 = F 3 [kg].

【0025】そして、図示していない真空容器に取付け
られたリークバルブを開け、窒素ガスを真空容器に導入
し真空容器およびガス流入口5の圧力が大気圧になる
と、この時点での力のつりあいは、F3 〉F1 (大気圧
×D=F1 )となるので弁体4はその自重F2 のみの力
で押えつけられている状態である。
Then, a leak valve attached to a vacuum container (not shown) is opened, nitrogen gas is introduced into the vacuum container, and when the pressures of the vacuum container and the gas inlet 5 become atmospheric pressure, the balance of the force at this point is reached. Since F 3 > F 1 (atmospheric pressure × D = F 1 ), the valve body 4 is pressed by the force of its own weight F 2 .

【0026】さらに、窒素ガスの導入が進み真空容器内
およびガス流入口5の圧力が一気圧よりF2 /D超える
と、弁体1は弁座11より浮き上り、図1(b)に示す
ように、ガス流入口5からの窒素ガスは弁体1と弁座1
1の間を通り抜けガス流出口6から大気に放出される。
この状態で圧入される窒素ガスの導入量が極端に多くな
い限り大気に放出されることによって、真空容器および
ガス流入口5内の圧力はF3 /D〔kg/cm2 〕を保
持した状態になる。すなわち、リークバルブを閉じガス
導入を止めても、図1aのように弁体1は下降し弁座1
1に接し開口10を気密封止している。そして、真空容
器およびガス流入口5の内圧力は一気圧とF2 (弁体1
自身の重量)/D〔kg/cm2 〕を加えた圧力の同等
かそれ以下の圧力を保持している。
Further, when the introduction of nitrogen gas progresses and the pressure in the vacuum container and the gas inlet 5 exceeds F 2 / D over 1 atm, the valve body 1 floats above the valve seat 11 and is shown in FIG. 1 (b). As described above, the nitrogen gas from the gas inlet 5 receives the valve body 1 and the valve seat 1
1 is discharged to the atmosphere from the gas outlet 6.
In this state, the pressure in the vacuum container and the gas inlet 5 is maintained at F 3 / D [kg / cm 2 ] by releasing the nitrogen gas into the atmosphere unless the amount of nitrogen gas introduced is extremely large. become. That is, even if the leak valve is closed and gas introduction is stopped, the valve body 1 descends and the valve seat 1
1 and the opening 10 is hermetically sealed. The internal pressure of the vacuum container and the gas inlet 5 is 1 atm and F 2 (valve 1
The pressure is equal to or less than the pressure applied by (weight of own) / D [kg / cm 2 ].

【0027】すなわち、この真空装置用弁により真空容
器と外気の圧力差の設定は、弁体1の自重によって設定
することができることである。例えば、パ一ティクルが
舞い上らない圧力差を0.023kg/cm2 であると
して、この圧力差設定する場合の弁体1の重量および厚
みを求めてみる。なお、開口の直径が20mm、ステン
レス製の弁体1の直径を30mmを予じめ決めておくこ
とにする。
That is, the pressure difference between the vacuum container and the outside air can be set by the valve for the vacuum device by the weight of the valve body 1. For example, assuming that the pressure difference at which the particles do not rise is 0.023 kg / cm 2 , the weight and thickness of the valve body 1 when the pressure difference is set will be calculated. The diameter of the opening is 20 mm and the diameter of the stainless steel valve body 1 is 30 mm.

【0028】その結果、開口10の面積は1×1×3.
14=3.14cm2 となり、開口10における力は、
23g/cm2 ×3.14cm2 =72.22gとな
る。すなわち、弁体1の重量は72.22gにすること
である。また、弁体の厚さは、ステンレス鋼の比重を
7.8とすると、72.22g/7.8(g/cm2
×1.5cm2 ×3.14=1.31cmとなり、約1
3mmとなる。また、厚さを8mm程度にし、残りの5
mm板厚部分の重量を重量調整用部材2として3.5m
m板厚の鉛板にしても良い。
As a result, the area of the opening 10 is 1 × 1 × 3.
14 = 3.14 cm 2 , and the force at the opening 10 is
A 23g / cm 2 × 3.14cm 2 = 72.22g. That is, the weight of the valve body 1 is 72.22 g. The thickness of the valve body is 72.22 g / 7.8 (g / cm 2 ) when the specific gravity of stainless steel is 7.8.
× 1.5 cm 2 × 3.14 = 1.31 cm, about 1
3 mm. In addition, the thickness is set to about 8 mm and the remaining 5
mm The thickness of the plate thickness is 3.5 m as the weight adjusting member 2.
A lead plate having a thickness of m may be used.

【0029】この真空装置用弁を用いた真空装置で試み
たところ、φ5″シリコンウェーハ上の0.3mm以上
のパーティクル付着数は、従来技術の500ケ以上に対
し50ケ以下という結果が得られた。また、弁体1のシ
ール性に関しては、従来技術の場合、100回大気・真
空を繰り返し15回のシール不良が発生したのに対し0
回という結果が得られた。
When a vacuum device using this valve for a vacuum device was tried, the number of adhered particles of 0.3 mm or more on a φ5 ″ silicon wafer was 50 or less as compared with 500 or more in the prior art. Regarding the sealing property of the valve body 1, in the case of the conventional technique, the air / vacuum was repeated 100 times, and the sealing failure occurred 15 times, whereas it was 0.
The result was obtained.

【0030】図2は本発明の第2の実施例を示す真空装
置用弁の断面図である。この真空装置用弁は、図2に示
すように、ソレノイドコイル8aに流す電流を可変する
可変直流電源部12を設け、可変直流電源部12から電
流を変えることによりフランジャ3aの弁体1aへの押
し付け力を変えている。それ以外のガス流入口5および
ガス流出口6並びに開口10をもつハウジング4は、前
述の実施例と同じである。また、弁体1aと弁座11を
気密に封止するパッキング9も前述の実施例と同じであ
る。
FIG. 2 is a sectional view of a vacuum apparatus valve showing a second embodiment of the present invention. As shown in FIG. 2, this vacuum device valve is provided with a variable DC power supply unit 12 that varies the current flowing through the solenoid coil 8a, and by changing the current from the variable DC power supply unit 12, the valve body 1a of the flanger 3a is supplied. The pressing force is changing. Other than that, the housing 4 having the gas inlet 5 and the gas outlet 6 and the opening 10 is the same as that of the above-mentioned embodiment. Further, the packing 9 that hermetically seals the valve body 1a and the valve seat 11 is also the same as that in the above-mentioned embodiment.

【0031】この真空装置用弁の差圧設定動作は、弁体
の重量を変えて圧力差を設定する前述の実施例に対し、
弁体1aの押し付け力を電磁力を変えることによって設
定することである。すなわち、ソレノイドコイル8aへ
流す電流が零のとき、プランジャ3aの下端は弁体1a
と離間させ、ソレノイドコイル8aへの電流を増加させ
るに従って、スプリング7aの反発力に抗してプランジ
ャ3aを下降させプランジャ3aが弁体1aと接触する
ときを最低電流とし、それ以降は電流の増加に伴なって
押圧力を増加させたものである。
The differential pressure setting operation of the vacuum device valve is different from the above-described embodiment in which the pressure difference is set by changing the weight of the valve element.
The pressing force of the valve body 1a is set by changing the electromagnetic force. That is, when the current flowing to the solenoid coil 8a is zero, the lower end of the plunger 3a is at the valve body 1a.
As the current to the solenoid coil 8a is increased, the plunger 3a is lowered against the repulsive force of the spring 7a to set the minimum current when the plunger 3a comes into contact with the valve body 1a, and thereafter the current increases. This is due to the increase in pressing force.

【0032】例えば、スプリング7aの反発力を考慮し
て、ソレノイドコイル8aに流す最低電流で弁体1aの
重量のみによる押圧力を0.01kg/cm2 にし、最
大定格電流で押圧力を0.03kg/cm2 にすれば、
前述の実施例と同じように差圧を広い範囲で設定でき
る。また、この実施例では、重量のようにその都度弁体
の重量を変える必要なく、連続的に変えることができ、
しかもより微調整ができるという特徴をもっている。
For example, considering the repulsive force of the spring 7a, the pressing force due to only the weight of the valve body 1a is set to 0.01 kg / cm 2 at the minimum current flowing through the solenoid coil 8a, and the pressing force is set to 0. If you set it to 03 kg / cm 2 ,
The differential pressure can be set in a wide range as in the above-described embodiment. Further, in this embodiment, it is possible to continuously change the weight of the valve body without changing the weight each time like the weight,
Moreover, it has the feature that it can be finely adjusted.

【0033】図3(a)および(b)は本発明の第3の
実施例の真空装置用弁を示す断面図およびこの真空装置
用弁を使用した真空装置を示す図である。この真空装置
用弁は、図3(a)に示すように、図2に示した真空装
置用弁の弁体1で塞がれる開口10から流出するガスの
流れを検知するフローサンサ13を設けたことである。
このフローセンサ13は、ガス流出口6に連結される筒
状部材13cと、筒状部材13c内に挿入されるフロー
ト13aと、フロート13aの動きでガスの流れの有無
を検知するセンサ13bとで構成されている。
3 (a) and 3 (b) are a sectional view showing a vacuum apparatus valve of a third embodiment of the present invention and a view showing a vacuum apparatus using this vacuum apparatus valve. As shown in FIG. 3A, this vacuum device valve is provided with a flow sensor 13 for detecting the flow of gas flowing out from the opening 10 blocked by the valve body 1 of the vacuum device valve shown in FIG. That is.
The flow sensor 13 includes a tubular member 13c connected to the gas outlet 6, a float 13a inserted into the tubular member 13c, and a sensor 13b for detecting the presence or absence of gas flow by the movement of the float 13a. It is configured.

【0034】次に、この真空装置用弁を使用した図3
(b)の真空装置の動作を説明する。まず、図3(b)
の真空容器19aが真空ポンプ25aにより充分排気さ
れた後、開閉弁16を閉じ、開閉弁15を開き真空容器
19aに窒素ガスを導入する。真空容器19aの圧力が
上昇し大気圧と同圧になりさらに上昇し図3(a)の真
空装置用弁17の弁体1を押し上げるまでに圧力に到達
すると、窒素ガスは弁体1で塞がれれいる開口10から
流れるガスにより上昇するフロート13aをセンサ13
bで検知する。
Next, FIG. 3 using this valve for a vacuum device
The operation of the vacuum device of (b) will be described. First, FIG. 3 (b)
After the vacuum container 19a is sufficiently evacuated by the vacuum pump 25a, the opening / closing valve 16 is closed and the opening / closing valve 15 is opened to introduce the nitrogen gas into the vacuum container 19a. When the pressure of the vacuum container 19a rises to the same pressure as the atmospheric pressure and further rises to reach the pressure before pushing up the valve body 1 of the vacuum device valve 17 of FIG. 3 (a), the nitrogen gas is blocked by the valve body 1. The float 13a, which rises due to the gas flowing from the opening 10 that is separated, is attached to the sensor 13
Detect with b.

【0035】そして、センサ13bはこの検知により真
空容器19aが大気圧に到達したことを確認する信号と
して窒素ガス弁制御ユニット14に転送し、窒素ガス弁
制御ユニット14は開閉弁15を閉じるための信号を送
り開閉弁15を閉じ窒素ガスの供給を停止する。真空容
器19aは完全に大気に戻されパーティクルの舞い上り
などなく扉を開くことができる。
The sensor 13b transfers to the nitrogen gas valve control unit 14 as a signal for confirming that the vacuum container 19a has reached the atmospheric pressure by this detection, and the nitrogen gas valve control unit 14 closes the opening / closing valve 15. A signal is sent and the on-off valve 15 is closed to stop the supply of nitrogen gas. The vacuum container 19a is completely returned to the atmosphere, and the door can be opened without particles rising.

【0036】この実施例では、フローセンサは図2の真
空装置用弁に適用した場合で説明したが、図1の真空装
置用弁にも適用できる。また、このフローセンサはフロ
ートの上昇で検知するセンサであるが、マスフローメー
タのようにさらに精密な流量センサを用いればより小さ
な圧力差を検知できる。
In this embodiment, the flow sensor has been described as applied to the valve for the vacuum device of FIG. 2, but it can also be applied to the valve for the vacuum device of FIG. Further, this flow sensor is a sensor that detects when the float rises, but a smaller pressure difference can be detected by using a more precise flow sensor such as a mass flow meter.

【0037】[0037]

【発明の効果】以上説明したように本発明は、真空容器
の内外圧の差を設定する機構を、ガスが通る開口を塞ぐ
弁体をプランジャと切離して設け、この弁体の弁座に押
し付ける力を弁体の重量あるいは弁体に加える電磁力を
変える機構にしたので、従来のねじ送り機構でスプリン
グで圧縮して押圧力を設定する機構のようにねじ送りの
がたや圧縮力の設定分解能の粗さなどが解消され、真空
容器内外の圧力差を微小にしかも再現性良く精密に設定
できるという効果がある。さらに、圧力差によって押し
上げられる弁体から漏れるガスを検知するガス検知セン
サを設けることによって、圧力差を微小に設定できる。
As described above, according to the present invention, the mechanism for setting the difference between the internal pressure and the external pressure of the vacuum container is provided by separating the valve body closing the opening through which the gas passes from the plunger and pressing it against the valve seat of this valve body. Since a mechanism that changes the weight of the valve disc or the electromagnetic force applied to the valve disc is used, the screw feed rattle and compression force can be set like the conventional screw feed mechanism that compresses with a spring to set the pressing force. The roughness of resolution is eliminated, and the pressure difference between the inside and the outside of the vacuum container can be set minutely and reproducibly and precisely. Further, by providing a gas detection sensor that detects gas leaking from the valve body pushed up by the pressure difference, the pressure difference can be set minutely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の真空装置用弁を動作順
に示す断面図である。
FIG. 1 is a cross-sectional view showing a valve for a vacuum device according to a first embodiment of the present invention in operation order.

【図2】本発明の第2の実施例を示す真空装置用弁の断
面図である。
FIG. 2 is a cross-sectional view of a vacuum device valve showing a second embodiment of the present invention.

【図3】本発明の第3の実施例の真空装置用弁を示す断
面図およびこの真空装置用弁を使用した真空装置を示す
図である。
FIG. 3 is a cross-sectional view showing a vacuum device valve of a third embodiment of the present invention and a diagram showing a vacuum device using the vacuum device valve.

【図4】従来の真空装置用弁の一例を説明するための真
空装置とA部を拡大して示す図である。
FIG. 4 is an enlarged view showing a vacuum device and an A part for explaining an example of a conventional valve for a vacuum device.

【符号の説明】[Explanation of symbols]

1,1a 弁体 2 重量調整部材 3,3a プランジャ 4 ハウジング 5 ガス流入口 6 ガス流出口 7,7a,29 スプリング 8,8a ソレノイドコイル 9 パッキング 10 開口 11 弁座 12 可変直流電源部 13 フローセンサ 13a フロート 13b センサ 13c 筒状部材 14 窒素ガス弁制御ユニット 15,16 開閉弁 17 真空装置用弁 19,19a 真空容器 20 パイプ 21 窒素ガスボンベ 23 接続パイプ 24 リ一クバルブ 25,25a 真空ポンプ 26 ハンドル 27 ねじ部 28 押し付け板 29 開閉機構 23 接続パイプ 24 開閉ハンドル 25 真空ポンプ 26 調節用ハンドル 27 ネジ部 28 押し付け板 30 空気穴 31 筐体 32 球体 33 Oリング 34 穴 34 開口部 1, 1a Valve body 2 Weight adjusting member 3, 3a Plunger 4 Housing 5 Gas inlet 6 Gas outlet 7 7a, 29 Spring 8, 8a Solenoid coil 9 Packing 10 Opening 11 Valve seat 12 Variable DC power supply 13 Flow sensor 13a Float 13b Sensor 13c Cylindrical member 14 Nitrogen gas valve control unit 15, 16 Open / close valve 17 Vacuum device valve 19, 19a Vacuum container 20 Pipe 21 Nitrogen gas cylinder 23 Connection pipe 24 Releasing valve 25, 25a Vacuum pump 26 Handle 27 Screw part 28 Pressing Plate 29 Opening / Closing Mechanism 23 Connection Pipe 24 Opening / Closing Handle 25 Vacuum Pump 26 Adjusting Handle 27 Screw Part 28 Pressing Plate 30 Air Hole 31 Housing 32 Sphere 33 O Ring 34 Hole 34 Opening

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスの流入口と該ガスの流出口とをもつ
とともに該流入口と該流出口とが通ずる流路途中に開口
を有するハウジングと、前記開口を覆うとともに前記開
口の周囲部の弁座をパッキングを介し自重で押える弁体
部材と、前記弁体部材を該開口側に押付けたりあるいは
前記弁体部材から離間したりするプランジャとを備える
ことを特徴とする真空装置用弁。
1. A housing having a gas inflow port and a gas outflow port and having an opening in the middle of a flow path communicating with the inflow port and the outflow port; and a housing covering the opening and surrounding the opening. A valve for a vacuum device, comprising: a valve body member that presses a valve seat with its own weight through packing; and a plunger that presses the valve body member toward the opening side or separates from the valve body member.
【請求項2】 前記弁体部材上に載置する重量調整部材
を備えることを特徴とする請求項1記載の真空装置用
弁。
2. The valve for a vacuum device according to claim 1, further comprising a weight adjusting member mounted on the valve body member.
【請求項3】 前記プランジャの前記押付け動作および
前記離間動作を電磁力で行なう第1のソレノイドコイル
を備えることを特徴とする請求項1記載の真空装置用
弁。
3. The valve for a vacuum device according to claim 1, further comprising a first solenoid coil that performs the pressing operation and the separating operation of the plunger by an electromagnetic force.
【請求項4】 前記開口を覆い該パッキングを介して前
記弁座に載置される請求項1記載の前記弁体部材と一端
を接触する第2のプランジャと、この第2のプランジャ
に前記弁体部材を押し付ける力を電磁力として与える第
2のソレノイドコイルと、この第2のソレノイドコイル
に流す電流を可変する可変直流電源を備えることを特徴
とする真空装置用弁。
4. A second plunger, one end of which contacts the valve body member according to claim 1, which covers the opening and is mounted on the valve seat through the packing, and the second plunger is provided with the valve. A valve for a vacuum device, comprising: a second solenoid coil that applies a force for pressing a body member as an electromagnetic force; and a variable DC power supply that changes a current flowing through the second solenoid coil.
【請求項5】 前記弁体部材で塞がれる前記開口から流
出する前記ガスを検知するガス検知センサを備えること
を特徴とする請求項1または請求項4記載の真空装置用
弁。
5. The valve for a vacuum device according to claim 1, further comprising a gas detection sensor that detects the gas flowing out from the opening closed by the valve body member.
JP7292695A 1994-06-23 1995-03-30 Valve for vacuum device Expired - Fee Related JP2681010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7292695A JP2681010B2 (en) 1994-06-23 1995-03-30 Valve for vacuum device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-141420 1994-06-23
JP14142094 1994-06-23
JP7292695A JP2681010B2 (en) 1994-06-23 1995-03-30 Valve for vacuum device

Publications (2)

Publication Number Publication Date
JPH0868475A JPH0868475A (en) 1996-03-12
JP2681010B2 true JP2681010B2 (en) 1997-11-19

Family

ID=26414064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7292695A Expired - Fee Related JP2681010B2 (en) 1994-06-23 1995-03-30 Valve for vacuum device

Country Status (1)

Country Link
JP (1) JP2681010B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034146A (en) * 2018-09-21 2020-03-31 주식회사 케이브이티에스 Vacuum valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146923A (en) * 2005-11-25 2007-06-14 Ckd Corp Flow passage structure of valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034146A (en) * 2018-09-21 2020-03-31 주식회사 케이브이티에스 Vacuum valve
KR102140960B1 (en) * 2018-09-21 2020-08-05 주식회사 케이브이티에스 Vacuum valve

Also Published As

Publication number Publication date
JPH0868475A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
US5363872A (en) Low particulate slit valve system and method for controlling same
USRE38300E1 (en) Non-fluid conducting pressure module having non-contaminating body and isolation member
US4581624A (en) Microminiature semiconductor valve
US7779528B2 (en) Test gas leak detection using a composite membrane
WO2008106170A1 (en) Methods and apparatus for test gas leak detection
WO1991008412A1 (en) Vacuum valve and vacuum treatment device using said vacuum valve
JP2007227800A (en) Substrate storage and transport container, and purge system of substrate storage and transport container
US5150734A (en) Processing apparatus at reduced pressure and valve used therefor
JP2681010B2 (en) Valve for vacuum device
US6425569B1 (en) Gate valve
US5174335A (en) Bidirectional vacuum valve
JPH11304633A (en) Air-leak detecting apparatus
US6138990A (en) Flow control valve assembly for mass flow controller
US6105435A (en) Circuit and apparatus for verifying a chamber seal, and method of depositing a material onto a substrate using the same
JP3153323B2 (en) Apparatus and method for restoring normal pressure in an airtight chamber
Moraja et al. New getter configuration at wafer level for assuring long-term stability of MEMS
CN102246266A (en) Normal-temperature bondong device
JP3498034B2 (en) Load lock room
JPH09166514A (en) Operation inspection device for opening/closing means
JP2914296B2 (en) Seal structure
JP2004225878A (en) Board processing unit
JP2004214640A (en) Sealed vessel with internal atmosphere switching mechanism
EP0006817A1 (en) Numerically operating pressure sensor
Ogashiwa et al. Wafer-to-wafer transportable gold particle plug for spot vacuum sealing of MEMS
WO2022137812A1 (en) Pressure sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970701

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees