JP2680004B2 - Irradiation beam diameter evaluation element and evaluation method - Google Patents

Irradiation beam diameter evaluation element and evaluation method

Info

Publication number
JP2680004B2
JP2680004B2 JP62297596A JP29759687A JP2680004B2 JP 2680004 B2 JP2680004 B2 JP 2680004B2 JP 62297596 A JP62297596 A JP 62297596A JP 29759687 A JP29759687 A JP 29759687A JP 2680004 B2 JP2680004 B2 JP 2680004B2
Authority
JP
Japan
Prior art keywords
substance
region
surrounding
substances
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62297596A
Other languages
Japanese (ja)
Other versions
JPH01140546A (en
Inventor
直樹 山本
幸男 高野
好則 細川
健二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Hitachi Ltd
Original Assignee
Horiba Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Hitachi Ltd filed Critical Horiba Ltd
Priority to JP62297596A priority Critical patent/JP2680004B2/en
Publication of JPH01140546A publication Critical patent/JPH01140546A/en
Application granted granted Critical
Publication of JP2680004B2 publication Critical patent/JP2680004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野 本発明はX線,イオン,電子および光などのビームを
利用した分析における入射ビーム径測定に係り、特に微
細ビーム利用分析に好適なビーム径評価用素子及びビー
ム径評価方法に関する。 [従来の技術] 従来、上記ビーム利用分析において試料上への入射ビ
ーム径測定は、蛍光物質を塗布した基板にビームを照射
したとき蛍光を発する領域、あるいは写真フィルムに直
接ビームを照射したとき、フィルム上で黒化した領域を
光学顕微鏡あるいは目視により測定していた。 また、基板に荷電ビームの後方散乱係数が基板材料と
は異なるマーカー材料を埋め込んで形成され、基板材料
とマーカー材料とで構成された平坦面を有する荷電ビー
ム径測定用マーカーが特開昭59−200984号公報に記載さ
れている。 [発明が解決しようとする問題点] 微細ビーム利用分析では、入射ビーム系,試料系およ
び検出系を総合した状態での試料上実効分析領域の測定
が重要である。しかし従来技術では、入射ビーム自体の
径(面積)を測定することは可能であったが、実効分析
領域の評価は困難であった。また蛍光板による測定法で
はビーム照射時に光学顕微鏡で測定する必要があり、電
子あるいはイオンビーム利用装置では試料系が真空槽内
にあること、またX線利用装置では危険であることなど
のため、長焦点顕微鏡を用いる必要がある。その結果、
蛍光板上での照射ビーム径が5〜10μm以下になると照
射径測定が難しいという問題があった。また写真フィル
ム法では上記のようにビーム照射中に顕微鏡で観察する
必要が無いが、フィルムに塗布されている銀粒子の大き
さなどのため、数μm以下の微細ビーム測定が困難であ
った。本発明の目的は分析装置に系全体を包含した実効
分析領域測定を可能にするとともに、数μm以下の微細
分析領域を精度良く測定できるようにすることである。 [問題点を解決するための手段] 上記目的は、元素又は状態の異なる2種類以上の物質
からなる面を有し、該面内では該物質の中の少なくとも
1種類の物質が他の種類の物質又は物質群により包囲さ
れ、該包囲された物質(被包囲物質)からなる想定され
る入射ビーム径前後の寸法で面積の異なる複数の領域が
形成されていることを特徴とする照射ビーム面積評価用
素子を作製し、該素子を用いて照射ビーム面積を評価す
ることにより達成される。該複数の被包囲物質の領域
は、同構造で面積の異なる(即ち、相似形である)こと
が望ましい。該素子は所定基板上に上記包囲物質となる
べき膜を形成し、次にリソグラフィの技術とプラズマ等
を用いた食刻技術により膜の所定部分を除去した後、穴
の開いた部分にのみ包囲されるべき物質を膜形成技術と
上記パターン形成技術をもって埋め込む。 [作用] 上記方法により形成された素子を実効分析領域を測定
すべき分析装置の試料設定位置に設定し、まず、素子上
で想定される入射ビーム径より小さい該被包囲物質領域
にビームを照射し、検出器により包囲および包囲される
両物質からなる信号が検出されることを確認する。次に
包囲される物質の面積が大きい領域にビームを照射し、
両物質からなる信号を同様に検出する。次第に包囲され
るべき物質面積を拡大し、包囲物質の信号が消滅し、包
囲された物質のみの信号が検出される領域の面積を測定
する。この値が分析装置全系を総合した実効分析領域に
なる。上記素子を作製するにあたり、電子ビームあるい
はX線露光技術を適用することにより、包囲されるべき
物質領域径を0.1〜0.2μmまで微細に形成できる。 以上、本発明の実施例を第1図により説明する。 Si基板、1上にAl、2を500nm堆積し、電子ビーム露
光装置を用いたリソグラフィ技術および、反応性イオン
・エッチング技術により、Alの所定の位置に0.1から10
μmまで0.1μmずつ径の異なる穴を開口させた。次に
W、3を500nm堆積し、上記と同様のパターニング技術
により、Alを除去し、穴の開いた部分にのみWを残存せ
しめ、本発明の分析領域評価用素子を構成した。本素子
を細束X線ビーム、4を用いたX線回折および蛍光X線
分析装置に適用し、従来測定が不可能であった5μm径
程度の実効分析領域を0.1μmの精度で測定することが
できた。また同素子を微細1次イオンを用いた2次イオ
ン質量分析装置に適用し、同装置が0.3μm径の微細領
域を分析できることを確認した。なお、上記素子は目的
とする分析装置における最も感度の良い組み合わせとす
ることが望ましい。 [発明の効果] 本発明によれば、従来のように蛍光板や、写真フィル
ムのように代替物でビーム径を評価することなく、実際
の測定条件で、かつ従来の方法より約1桁以上微細分析
領域の面積を高精度で測定できるため、極微細X線、イ
オン、電子及び光ビーム利用分析装置開発に当たり、ビ
ーム照射、試料保持および検出系の設計に有効である。
TECHNICAL FIELD The present invention relates to measurement of an incident beam diameter in an analysis using a beam of X-rays, ions, electrons and light, and particularly, a beam diameter evaluation suitable for an analysis using a fine beam. Element and beam diameter evaluation method. [Prior Art] Conventionally, in the above-mentioned beam utilization analysis, the incident beam diameter on a sample is measured by directly irradiating a beam on a substrate coated with a fluorescent material, or a region which emits fluorescence when the beam is directly irradiated on the photographic film. The blackened area on the film was measured by an optical microscope or visually. Further, there is disclosed a charged beam diameter measurement marker having a flat surface formed by embedding a marker material having a backscattering coefficient of a charged beam different from that of a substrate material in a substrate and having a flat surface composed of the substrate material and the marker material. It is described in Japanese Patent Publication No. 200984. [Problems to be Solved by the Invention] In fine beam utilization analysis, it is important to measure the effective analysis area on the sample in a state in which the incident beam system, the sample system, and the detection system are integrated. However, in the conventional technique, it was possible to measure the diameter (area) of the incident beam itself, but it was difficult to evaluate the effective analysis region. Further, in the measurement method using a fluorescent plate, it is necessary to measure with an optical microscope at the time of beam irradiation. Since the sample system is in a vacuum chamber in an electron or ion beam utilization device, and it is dangerous in an X-ray utilization device, it is long. It is necessary to use a focusing microscope. as a result,
When the irradiation beam diameter on the fluorescent plate is 5 to 10 μm or less, there is a problem that it is difficult to measure the irradiation diameter. Further, in the photographic film method, it is not necessary to observe with a microscope during beam irradiation as described above, but it is difficult to measure a fine beam of several μm or less due to the size of silver particles coated on the film. An object of the present invention is to enable an effective analysis area measurement in which the entire system is included in an analyzer, and to measure a fine analysis area of several μm or less with high accuracy. [Means for Solving the Problems] The above object has a surface composed of two or more kinds of substances having different elements or states, and at least one kind of the substances in the surface is different from the other kind. Irradiation beam area evaluation, characterized in that a plurality of regions surrounded by a substance or substance group and having different areas are formed in the size before and after the assumed incident beam diameter made of the enclosed substance (enclosed substance) This is accomplished by making a device for use and evaluating the irradiation beam area using the device. The regions of the plurality of surrounding materials preferably have the same structure but different areas (that is, similar shapes). The element is formed by forming a film to be the surrounding material on a predetermined substrate, then removing a predetermined portion of the film by a lithography technique and an etching technique using plasma or the like, and then enclosing it only in a holed portion. The substance to be formed is embedded by the film forming technique and the pattern forming technique. [Operation] The element formed by the above method is set at the sample setting position of the analyzer for measuring the effective analysis area, and the beam is first irradiated to the surrounding substance area smaller than the incident beam diameter assumed on the element. Then, it is confirmed that the detector detects a signal composed of both the surrounding substance and the surrounding substance. Next, irradiate the beam to the area having a large area of the surrounding material,
Signals composed of both substances are detected in the same manner. The area of the substance to be enclosed is gradually increased, the signal of the enclosed substance disappears, and the area of the region where the signal of only the enclosed substance is detected is measured. This value becomes the effective analysis area that integrates the entire analyzer system. By applying an electron beam or X-ray exposure technique in producing the above device, the diameter of the material region to be enclosed can be finely formed to 0.1 to 0.2 μm. The embodiment of the present invention will be described above with reference to FIG. Al of 2 nm is deposited on Si substrate 1 by 500 nm, and 0.1 to 10 is deposited at a predetermined position of Al by the lithography technique using the electron beam exposure apparatus and the reactive ion etching technique.
Holes having different diameters of 0.1 μm were opened up to μm. Next, W and 3 were deposited to a thickness of 500 nm, Al was removed by the same patterning technique as described above, and W was left only in the portions where holes were formed, to form an analysis area evaluation element of the present invention. Applying this device to X-ray diffraction and fluorescent X-ray analysis equipment using fine-bundle X-ray beam, and measuring the effective analysis area of about 5 μm diameter with accuracy of 0.1 μm, which was previously impossible. I was able to. Also, the same device was applied to a secondary ion mass spectrometer using fine primary ions, and it was confirmed that this device can analyze a fine region with a diameter of 0.3 μm. In addition, it is desirable that the above-mentioned elements be a combination having the highest sensitivity in the target analyzer. [Advantages of the Invention] According to the present invention, the beam diameter is not evaluated by a substitute such as a fluorescent plate or a photographic film as in the conventional case, and the beam diameter is finer by about one digit or more than in the conventional method under the actual measurement conditions. Since the area of the analysis region can be measured with high accuracy, it is effective for beam irradiation, sample holding, and design of the detection system when developing an analysis device using ultrafine X-rays, ions, electrons, and a light beam.

【図面の簡単な説明】 第1図は本発明の一実施例の分析領域評価用素子の断面
と分析装置ビーム源、検出器ならびに入射、反射ビーム
の位置関係を示す。第2図は同位置関係の上面図であ
る。 1……基板、2……包囲物質、3……包囲される物質、
4……入射ビーム、5……反射ビーム、6……ビーム
源、7……検出器、8……ビーム照射領域。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a cross-section of an analysis region evaluation element according to an embodiment of the present invention and a positional relationship between a beam source, a detector, an incident beam and a reflected beam of an analyzer. FIG. 2 is a top view of the same positional relationship. 1 ... Substrate, 2 ... Enclosing material, 3 ... Enclosed material,
4 ... Incident beam, 5 ... Reflected beam, 6 ... Beam source, 7 ... Detector, 8 ... Beam irradiation area.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細川 好則 京都府京都市南区吉祥院宮ノ東町2番地 株式会社堀場製作所内 (72)発明者 吉野 健二 京都府京都市南区吉祥院宮ノ東町2番地 株式会社堀場製作所内 (56)参考文献 特開 昭59−200984(JP,A) 実開 昭62−109342(JP,U)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yoshinori Hosokawa               2 Miyanohigashicho, Kichijoin, Minami-ku, Kyoto, Kyoto                 HORIBA, Ltd. (72) Inventor Kenji Yoshino               2 Miyanohigashicho, Kichijoin, Minami-ku, Kyoto, Kyoto                 HORIBA, Ltd.                (56) References JP-A-59-200984 (JP, A)                 62-109342 (JP, U)

Claims (1)

(57)【特許請求の範囲】 1.元素又は状態の異なる複数の物質で構成され、前記
複数の物質の中の少なくとも1つの物質を被包囲物質と
し、その他の物質を包囲物質とし、前記被包囲物質より
なる領域を前記包囲物質よりなる領域によって囲んだ面
を有し、 前記面上の前記被包囲物質よりなる領域は、面積の段階
的に異なる複数の領域の組によって構成され、かつ、そ
れらの複数の領域の面積は、所望の測定精度の径の間隔
で、段階的にそれらの径を異ならしめていることを特徴
とする照射ビーム径評価用素子。 2.試料にX線、イオン、電子、又は光のビームを照射
する装置の試料設定位置に、元素又は状態の異なる複数
の物質で構成され、前記複数の物質の中の少なくとも1
つの物質を被包囲物質とし、その他の物質を包囲物質と
し、前記被包囲物質よりなる領域を前記包囲物質よりな
る領域によって囲んだ面を有し、前記面上の前記被包囲
物質よりなる領域は、面積の段階的に異なる複数の領域
の組によって構成され、かつ、それらの複数の領域の面
積は、所望の測定精度の径の間隔で、段階的にそれらの
径を異ならしめている照射ビーム径評価用素子を載置し
て、 前記ビームを、前記載置した素子上の前記被包囲物質よ
りなる領域に、想定される被測定照射ビーム面積より小
さい、又は大きい領域から段階的に大きい、又は小さい
面積の領域へ順次照射し、 前記ビームの照射により前記素子から発生する信号を検
出し、 前記検出した信号内に、前記包囲物質より発生する信号
成分が無くなった時点、又は前記包囲物質より発生する
信号成分が初めて入った時点の前記ビームを照射してい
る前記被包囲物質よりなる領域の面積に基づいて、前記
照射ビーム径を求めることを特徴とする照射ビーム径評
価方法。
(57) [Claims] It is composed of a plurality of substances having different elements or states, at least one of the plurality of substances is an enclosing substance, other substances are enclosing substances, and a region of the enclosing substance is formed of the enclosing substance. A region having a surface surrounded by a region, the region made of the enclosed substance on the surface is constituted by a set of a plurality of regions having different areas in area, and the area of the plurality of regions is desired. An irradiation beam diameter evaluation element characterized in that the diameters thereof are made to differ stepwise at intervals of the diameter of measurement accuracy. 2. At least one of the plurality of substances is composed of a plurality of substances having different elements or states at a sample setting position of an apparatus that irradiates the sample with a beam of X-rays, ions, electrons, or light.
One substance is the surrounding substance, the other substance is the surrounding substance, and has a surface surrounded by a region consisting of the surrounding substance, the region consisting of the surrounding substance, the region consisting of the surrounding substance on the surface is , An irradiation beam diameter that is configured by a set of a plurality of regions having stepwise different areas, and the areas of the plurality of regions have stepwise different diameters at intervals of diameters of a desired measurement accuracy. Place an evaluation element, the beam, in a region consisting of the surrounding material on the element placed previously, smaller than the expected irradiation beam area to be measured, or stepwise from a large region, or Sequential irradiation to a small area region, detecting the signal generated from the element by irradiation of the beam, in the detected signal, when the signal component generated from the surrounding substance disappears, or the The signal component generated from 囲物 matter is irradiated with the beam for the first time entering time point based on the area of the region consisting of the surrounding material, the irradiation beam diameter evaluation method and obtaining the illumination beam diameter.
JP62297596A 1987-11-27 1987-11-27 Irradiation beam diameter evaluation element and evaluation method Expired - Lifetime JP2680004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297596A JP2680004B2 (en) 1987-11-27 1987-11-27 Irradiation beam diameter evaluation element and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297596A JP2680004B2 (en) 1987-11-27 1987-11-27 Irradiation beam diameter evaluation element and evaluation method

Publications (2)

Publication Number Publication Date
JPH01140546A JPH01140546A (en) 1989-06-01
JP2680004B2 true JP2680004B2 (en) 1997-11-19

Family

ID=17848604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297596A Expired - Lifetime JP2680004B2 (en) 1987-11-27 1987-11-27 Irradiation beam diameter evaluation element and evaluation method

Country Status (1)

Country Link
JP (1) JP2680004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118717A (en) * 1997-10-16 1999-04-30 Agency Of Ind Science & Technol Jig for measuring effective analytical area of raman microspectroscope and its method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200984A (en) * 1983-04-28 1984-11-14 Toshiba Corp Marker for measuring beam diameter
JPH0514451Y2 (en) * 1985-12-27 1993-04-16

Also Published As

Publication number Publication date
JPH01140546A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
JP3135920B2 (en) Surface analysis method and device
JP3249374B2 (en) Device manufacturing process where the process is controlled by a near-field image latent image introduced into the energy sensitive photoresist material
US7179568B2 (en) Defect inspection of extreme ultraviolet lithography masks and the like
KR100399621B1 (en) Test method of mask for electron-beam exposure and method of electron-beam exposure
JP2680004B2 (en) Irradiation beam diameter evaluation element and evaluation method
JP3060889B2 (en) Thin film thickness measurement method
JP2000068177A (en) Formation of pattern
JPH0620939A (en) End-point judgment method of lithographic development
JP4257034B2 (en) X-ray analyzer for glazing emission conditions
Chen et al. Investigation of the proximity effect in amorphous AlF 3 electron-beam resists
JPH0692946B2 (en) Method and apparatus for inspecting the structure of a diaphragm surface
JPH07294460A (en) X-ray analytical method and device
JP6746436B2 (en) Analysis method
JPH02110308A (en) Measurement of deformation
JPH063295A (en) Surface analyzing device
JPH02107952A (en) X-ray diffraction measurement for powder
JP3591231B2 (en) Auger electron spectroscopy
Nunn Application of Monte Carlo modelling in the measurement of photomask linewidths at the National Physical Laboratory
JP2961384B2 (en) Film thickness measurement method using fluorescent X-ray
JP3105233B2 (en) X-ray mask inspection equipment
JPH02266208A (en) Film thickness measuring method
JP2590677B2 (en) Standard sample of particle inspection machine
JP3610370B2 (en) X-ray analysis method and apparatus
JPH08334480A (en) X-ray fluorescence analytical device
JPH08152418A (en) Photoelectric spectrometric measuring device