JP2679407B2 - Optical wavelength conversion element - Google Patents

Optical wavelength conversion element

Info

Publication number
JP2679407B2
JP2679407B2 JP33826290A JP33826290A JP2679407B2 JP 2679407 B2 JP2679407 B2 JP 2679407B2 JP 33826290 A JP33826290 A JP 33826290A JP 33826290 A JP33826290 A JP 33826290A JP 2679407 B2 JP2679407 B2 JP 2679407B2
Authority
JP
Japan
Prior art keywords
output
region
polarization
period
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33826290A
Other languages
Japanese (ja)
Other versions
JPH04204835A (en
Inventor
邦彦 竹重
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33826290A priority Critical patent/JP2679407B2/en
Publication of JPH04204835A publication Critical patent/JPH04204835A/en
Application granted granted Critical
Publication of JP2679407B2 publication Critical patent/JP2679407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコヒーレント光を利用する光情報処理分野あ
るいは光応用計測制御分野,印刷・製版分野,医用分野
に使用する光波長変換素子に関するものである。
TECHNICAL FIELD The present invention relates to an optical wavelength conversion element used in the fields of optical information processing utilizing coherent light, optical measurement / control fields, printing / platemaking fields, and medical fields.

従来の技術 光の波長を第2高調波へ効率よく変換してやるために
は、波長変換素子内で位相整合条件が満足される必要が
ある。この方法としては従来より角度位相整合法、温度
位相整合法、導波路を用いる方法等が提案され用いられ
てきた。最近、位相整合方法として注目されているもの
に周期構造を用いた擬似位相整合とよばれる方法があ
り、例えばフィジカル レビュー(Phys.Rev.)127巻
1918頁 1962年 J.A.Armstrongらによって示されてい
る。これは周期的に結晶内の分極方向を反転して基本波
1と高調波P2の位相不正合量を補償しようとするもので
ある。
2. Description of the Related Art In order to efficiently convert the wavelength of light into the second harmonic, the phase matching condition must be satisfied in the wavelength conversion element. As this method, an angle phase matching method, a temperature phase matching method, a method using a waveguide, etc. have been proposed and used conventionally. Recently, a method called quasi-phase matching using a periodic structure has been attracting attention as a phase matching method. For example, Physical Review (Phys. Rev.) Volume 127
1918 1962 JA Armstrong et al. This is because the polarization direction in the crystal is periodically reversed and the fundamental wave
It is intended to compensate for the amount of phase mismatch between 1 and the harmonic P 2 .

ここで分極反転とは結晶軸の向き(モーメント)を反
転させることをいう。この手法をSHG素子に応用したも
のが分極反転型SHG素子である。
Here, polarization reversal means reversing the direction (moment) of the crystal axis. A polarization inversion SHG element is an application of this technique to an SHG element.

分極反転型SHG素子は三次元光導波路に垂直にそして
周期的に分極反転領域が形成された構造で、基本波とな
る光を光導波路に結合すると、素子内で波長が半分の第
二高調波が発生し、光導波路から出射されるというもの
である。
The polarization-inverted SHG element has a structure in which the domain-inverted regions are formed perpendicularly to the three-dimensional optical waveguide and periodically, and when the light that becomes the fundamental wave is coupled to the optical waveguide, the second harmonic wave with half the wavelength inside the element Is generated and emitted from the optical waveguide.

この分極反転型SHG素子は二乗の特性に比例するた
め、高出力化を図ることも可能である。分極反転型の出
力の二乗の特性を説明する。分極の反転していない通常
の光導波路では、基本波と高調波の伝搬定数差によって
出力は、素子長に対して正弦曲線を描くことになるが、
分極反転によって反転した境界を正弦曲線の山、谷に合
わせてやると出力が低下していた領域で逆に増加するよ
うになるため、出力は増大する。二乗の特性を示すの
は、光出力は導波路中の光電界の二乗に比例するためで
ある。
Since this polarization inversion type SHG element is proportional to the square characteristic, it is possible to increase the output. The characteristics of the squared output of the polarization inversion type will be described. In an ordinary optical waveguide in which the polarization is not inverted, the output draws a sine curve with respect to the element length due to the difference in the propagation constants of the fundamental wave and the harmonics.
If the boundary inverted by polarization inversion is aligned with the peaks and valleys of the sine curve, the output will increase in the region where the output had decreased, and the output will increase. The squared characteristic is shown because the optical output is proportional to the square of the optical electric field in the waveguide.

分極反転領域の周期は基本波と高調波の伝搬定数の差
により決定される。この伝搬定数差をΔK、素子長をl
とすると である。ただしP2は高調波の出力である。このP2の出力
で表される周期Λで振動する。
The period of the domain inversion region is determined by the difference between the propagation constants of the fundamental wave and the harmonic wave. This propagation constant difference is ΔK, and the element length is l
Then It is. However, P 2 is the harmonic output. The output of this P 2 is It vibrates with a period Λ represented by.

この方法による構造の概略を第3図に示す。 An outline of the structure obtained by this method is shown in FIG.

この時の分極反転領域の光の進行方向に沿った周期Λ
は基本波と高調波の伝搬定数差をΔkとするとΛ=n
(2π/Δk)(ただしnは奇数)であり、その幅Wは
=Λ/2である。
At this time, the period Λ along the light traveling direction in the domain-inverted region
Is Λ = n, where Δk is the propagation constant difference between the fundamental wave and the harmonic wave.
(2π / Δk) (where n is an odd number), and its width W is = Λ / 2.

この時の高調波出力の様子は第4図に示すように分岐
反転していない領域を導波する高調波出力6は、素子長
lに対して正弦曲線を描くだけであるのに対し、高調波
出力6の正弦曲線の傾きが負となる領域(l1≦l≦l2
l3≦l≦l4)を分極反転した場合の高調波の出力7はグ
ラフに示した通り急激に増加する。これは分極反転のな
い結晶の中を導波する光は、l=l2,l=l4で光電極が零
になるのに対し、上記のとおり分極反転領域3を作るこ
とによりl=l2での光電界はl=l1の時の2倍にできる
ため、l=l2での高調波出力7はl=l1の時の4倍とな
る。
As shown in FIG. 4, the harmonic output at this time is such that the harmonic output 6 guided in the region where branching and inversion is not performed only draws a sine curve with respect to the element length l. The area where the slope of the sine curve of the wave output 6 is negative (l 1 ≤l≤l 2 ,
The output 7 of the higher harmonic wave when the polarization of (l 3 ≦ l ≦ l 4 ) is inverted remarkably increases as shown in the graph. This is because the light guided in the crystal without polarization reversal becomes 0 at the photoelectrode at l = l 2 and l = l 4 , but by making the polarization reversal region 3 as described above, l = l Since the optical electric field at 2 can be doubled when l = l 1 , the harmonic output 7 at l = l 2 is 4 times that when l = l 1 .

同様にl=l3での光電界はl=l1のときの3倍、l=
l4での光電界はl=l4のときの4倍となるため、出力7
はそれぞれl=l1のときの9倍,16倍となるのである。
つまり高調波出力を増加させるためには、正弦曲線6が
負の傾きをもつ部分を分極反転させてやればよいことが
わかる。
3 times the optical field when the l = l 1 in the same manner as l = l 3, l =
The optical field at l 4 is 4 times that at l = l 4 , so output 7
Are 9 times and 16 times, respectively, when l = l 1 .
That is, in order to increase the harmonic output, it can be understood that the portion of the sine curve 6 having a negative slope may be polarization-inverted.

発明が解決しようとする課題 導波路型で分極反転型の素子を作ろうとすると第5図
(a)に示すように周期的に分極が反転した領域3を形
成してやる必要がある。現在のところ、熱処理によって
この領域を形成する方法が主流であるが、この方法によ
ると領域の深さyが幅xに依存するという問題があり領
域の幅xの狭いところでは第5図(b)に示すように素
子として必要とされる反転深さが得られないという問題
がある。また十分な深さを得るため周期の次数を高次に
すると第6図のように高調波出力が減少してしまうこと
になる。第6図において、6aは非分極反転型光波長変換
素子、7aは1次周期をもつ分極反転型光波長変換素子、
8aは3次周期をもつ分極反転型光波長変換素子であり、
6,7,8はそれぞれ6a,7a,8aの高調波出力を示している。
この図からわかるように1次周期の変換素子7aが最も高
い高調波出力を得ることができ、周期の次数が上がるに
したがって出力が下がってしまう。周期の次数がn次の
場合、出力は長さが周期のkn/2倍(ただしkは整数)の
サンプルに対して1/n2に減少してしまう。これを補償す
るためには例えば長さをn倍にするといった手法をとる
必要があるが、このとき基本波波長の許容度が1/nとな
るという問題点を抱えることとなる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In order to manufacture a waveguide type and polarization inversion element, it is necessary to form a region 3 in which the polarization is periodically inverted as shown in FIG. At present, the method of forming this region by heat treatment is the mainstream, but according to this method, there is a problem that the depth y of the region depends on the width x, and there is a problem that the region width x is narrow as shown in FIG. There is a problem that the inversion depth required as an element cannot be obtained as shown in FIG. Further, if the order of the cycle is made higher in order to obtain a sufficient depth, the harmonic output will decrease as shown in FIG. In FIG. 6, 6a is a non-polarization inversion type optical wavelength conversion element, 7a is a polarization inversion type optical wavelength conversion element having a primary period,
8a is a polarization inversion type optical wavelength conversion element having a third period,
Reference numerals 6, 7 and 8 indicate harmonic outputs of 6a, 7a and 8a, respectively.
As can be seen from this figure, the conversion element 7a of the first cycle can obtain the highest harmonic output, and the output decreases as the cycle order increases. If the period is of degree n, the output will be reduced to 1 / n 2 for samples whose length is kn / 2 times the period (where k is an integer). In order to compensate for this, for example, it is necessary to take a method of making the length n times, but at this time, there is a problem that the tolerance of the fundamental wavelength becomes 1 / n.

本発明はかかる点に鑑み、分極反転が十分に得られる
だけの深さを持つ分極反転領域をもち、しかも大きな高
調波出力を得られるような光波長変換素子を提供するこ
とを目的とする。
In view of the above point, the present invention has an object to provide an optical wavelength conversion element having a domain-inverted region having a depth sufficient to obtain domain inversion and capable of obtaining a large harmonic output.

課題を解決するための手段 高調波出力を得るためには、偶数次の周期では第4図
で示した分極反転していない場合の高調波出力6と同じ
出力しか得られないので、奇数次の周期を用いなければ
ならない。反転領域の幅xを1次のときよりも広くする
ためには最低3次の周期を用いることになる。この場合
出力は1/9となり約1けた低下する。そこで、これを解
決するために3次の周期より高い出力が得られ、1次周
期より深い分極反転領域が得られる2次の周期を用い
て、その周期内の非分極反転領域と分極反転領域の幅の
比を1:3にするものである。
Means for Solving the Problem In order to obtain a higher harmonic output, the same output as the higher harmonic output 6 shown in FIG. You must use the cycle. In order to make the width x of the inversion region wider than that of the first order, at least the third order cycle is used. In this case, the output is 1/9, which is about one digit lower. Therefore, in order to solve this, a non-polarization reversal region and a polarization reversal region within the period are used by using a second-order period in which an output higher than the third-order period is obtained and a domain-inversion region deeper than the first-order period is obtained. The ratio of the width of is set to 1: 3.

作用 前記の方法を用いると反転領域の幅は1次の時の3倍
と広げられており、また出力については3次の場合は1
次のときよりも1たけ低下するのに対して1/4の低下に
抑えられる。
Action Using the above method, the width of the inversion region is widened to three times that of the first order, and the output is 1 for the third order.
Compared to the next time, it will be reduced by 1 time, but it will be suppressed to 1/4.

したがって、反転領域として十分な深さが得られると
ともに、出力は3次の周期のときの約2.3倍となり、高
効率な波長変換素子を作製することが可能となる。
Therefore, a sufficient depth can be obtained as the inversion region, and the output is about 2.3 times as large as that in the third-order period, and it is possible to manufacture a highly efficient wavelength conversion element.

実施例 本発明による光波長変換素子の斜視図を第1図に、そ
の断面図を第2図に示す。この実施例では基板1として
LiNbO3を用いている。この基板1上にSiO2をデポする。
パターンは2次の周期で幅がこの周期の3/4のストライ
プを形成する。この基板をキューリ温度近傍で熱処理す
るとSiO2直下に分極の反転した領域が形成される。この
後SiO2を除去しこのストライプのパターンに直交する方
向に3次元光導波路を作製することで光波長変換素子が
完成する。
EXAMPLE FIG. 1 is a perspective view of a light wavelength conversion element according to the present invention, and FIG. 2 is a sectional view thereof. In this embodiment, as the substrate 1
LiNbO 3 is used. SiO 2 is deposited on this substrate 1.
The pattern forms a quadratic stripe whose width is 3/4 of this cycle. When this substrate is heat-treated near the Curie temperature, a region where the polarization is inverted is formed immediately below SiO 2 . After that, SiO 2 is removed and a three-dimensional optical waveguide is produced in a direction orthogonal to the stripe pattern to complete the optical wavelength conversion element.

分極反転領域の深さはこの領域の幅xに依存する。こ
れは第7図に示されている通りで、2次の場合はこのよ
うな構造の素子に対して反転領域の周期が約6μmであ
るから、反転領域の幅は約4.5μm、したがって反転深
さは約0.85μmである。導波路の深さは、損失と非線形
性を考慮して0.7μmで設計してある。よって光導波路
よりも深い分極反転を形成することが可能である。ちな
みに1次の周期を用いた場合には、領域幅xは1.5μm
であるから反転深さはわずか0.02μmである。
The depth of the domain-inverted region depends on the width x of this region. This is as shown in FIG. 7, and in the case of the second order, since the period of the inversion region is about 6 μm for the device having such a structure, the width of the inversion region is about 4.5 μm, and therefore the inversion depth is The height is about 0.85 μm. The waveguide depth is designed to be 0.7 μm in consideration of loss and nonlinearity. Therefore, it is possible to form a polarization inversion deeper than that of the optical waveguide. By the way, when the first-order period is used, the area width x is 1.5 μm
Therefore, the inversion depth is only 0.02 μm.

この素子の理論的な出力を3次周期のものと比較した
のが第8図である。
FIG. 8 compares the theoretical output of this element with that of the third-order period.

第8図において、8aは3次周期を持つ分極反転型光波
長変換素子、9aは本発明の2次周期で非反転領域4と反
転領域の幅の比が1:3である分極反転型光波長変換素子
である。8,9はそれぞれ8a,9aの高調波出力を示してい
る。この図から明らかなように周期を3次から2次にす
ることにより高調波の出力を格段に高くなるのと同時に
分極反転領域の深さも1次周期では分極反転領域の幅x
が小さくて導波路2より深くできなかったが本発明の如
く周期内の分極反転領域の幅を大きくすることで分極反
転するのに十分な深さをも得ることができる。
In FIG. 8, 8a is a polarization reversal type optical wavelength conversion element having a third period, and 9a is a polarization reversal type light in which the ratio of the width of the non-inversion region 4 to the inversion region is 1: 3 in the second period of the present invention. It is a wavelength conversion element. Reference numerals 8 and 9 indicate harmonic outputs of 8a and 9a, respectively. As is clear from this figure, by increasing the period from the third order to the second order, the output of the harmonics is significantly increased, and at the same time, the depth of the domain inversion region is the width x of the domain inversion region in the first period.
Although it was not possible to make it deeper than the waveguide 2 because it was small, it is possible to obtain a sufficient depth for polarization inversion by increasing the width of the domain inversion region in the period as in the present invention.

この素子に半導体レーザ(波長0.83μm)を用いて青
色光の出力を観測したところ導波路内の基本波パワー50
mWに対して1mWの出力が得られた。参照として作製した
1次の周期の素子からの出力は40μWであり、25倍の改
善がなされていた。
When the output of blue light was observed using a semiconductor laser (wavelength 0.83 μm) for this device, the fundamental wave power in the waveguide was 50.
An output of 1 mW was obtained for mW. The output from the element of the first cycle manufactured as a reference was 40 μW, which was an improvement of 25 times.

なお、ここでは基板としてLiNbO3を用いたが、LiNbO3
を用いると、光損傷に対して2ケタ強い素子が作製で
き、さらに入力を高められることから、出力もその2乗
に比例して増大させることができる。またここでは光導
波路型の素子の例について述べたが、光導波路を用いず
結晶そのものが分極反転領域と非分極反転領域であるバ
ルク形状のものでも位相整合は同様に生じるため、その
効果を同様に得ることができる。
Although using LiNbO 3 as the substrate here, LiNbO 3
By using, it is possible to manufacture a device that is double-digit strong against optical damage and further increase the input, so that the output can also be increased in proportion to the square thereof. Although an example of an optical waveguide type element has been described here, phase matching occurs similarly even if the crystal itself is a bulk shape in which the polarization inversion region and the non-polarization inversion region are used without using the optical waveguide. Can be obtained.

発明の効果 以上説明したように本発明によれば光導波路を有する
基板の表面の分極方向を2次の周期で反転させ、その反
転領域の幅を周期の3/4にすることで、導波路の深さに
対して十分な深さの分極反転領域を作製できる。また理
論的な効率は1次周期の場合の1/4に低下するが実質的
な出力は、25倍向上し、しかも出力の理論的な低下分を
素子長によって補なうことも可能であり、その実質的効
果は大きい。
EFFECTS OF THE INVENTION As described above, according to the present invention, the polarization direction of the surface of the substrate having the optical waveguide is inverted in a quadratic period, and the width of the inversion region is set to 3/4 of the period. A domain-inverted region having a sufficient depth with respect to the depth can be produced. Moreover, the theoretical efficiency is reduced to 1/4 of the case of the first cycle, but the actual output is improved 25 times, and it is also possible to make up for the theoretical reduction in output by the element length. , Its substantial effect is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の光波長変換素子の斜視
図、第2図はその断面図、第3図は従来の分極反転型波
長変換素子の概略図、第4図は擬似位相整合による高調
波出力の特性図、第5図は素子内の分極反転深さと導波
路厚みの関係を示した断面図、第6図は分極反転型波長
変換素子の周期の違いによる高調波出力の特性図、第7
図は分極反転領域の幅と、その時形成される深さの関係
を示した特性図、第8図は本発明の素子の出力の特性図
である。 1……LiNbO3基板、2……光導波路、3……分極反転領
域、4……非分極反転領域、6……分極反転していない
場合の高調波出力、7……分極反転している場合の高調
波出力(1次周期)、8……分極反転している場合の高
調波出力(3次周期)、9……分極反転している場合の
高調波出力(2次周期、領域比1:3)、10……分極方
向、P1……基本波、P2……高調波。
FIG. 1 is a perspective view of an optical wavelength conversion device according to an embodiment of the present invention, FIG. 2 is a sectional view thereof, FIG. 3 is a schematic view of a conventional polarization inversion wavelength conversion device, and FIG. 4 is quasi phase matching. Fig. 5 is a characteristic diagram of the harmonic output by Fig. 5, Fig. 5 is a sectional view showing the relationship between the polarization inversion depth and the waveguide thickness in the element, and Fig. 6 is the characteristic of the harmonic output by the difference in the period of the polarization inversion type wavelength conversion element. Figure, 7th
FIG. 8 is a characteristic diagram showing the relationship between the width of the domain inversion region and the depth formed at that time, and FIG. 8 is a characteristic diagram of the output of the device of the present invention. 1 ... LiNbO 3 substrate, 2 ... Optical waveguide, 3 ... Polarization inversion region, 4 ... Non-polarization inversion region, 6 ... Harmonic output when not polarization inversion, 7 ... Polarization inversion In the case of (1st period), 8 ... Harmonic output in the case of polarization inversion (3rd period), 9 ... Harmonic output in the case of polarization inversion (Secondary period, area ratio) 1: 3), 10 ... polarization direction, P 1 ... fundamental wave, P 2 ... harmonic wave.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−63026(JP,A) 特開 平2−93624(JP,A) Electronics Lette rs,Vol.25 No.3(1989) P.174〜P.175 Appl.Phys.Lett.,V ol.56 No.18(1990)P.1725〜 P.1727 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-2-63026 (JP, A) JP-A-2-93624 (JP, A) Electronics Letters, Vol. 25 No. 3 (1989) P. 174-P. 175 Appl. Phys. Lett. , Vol. 56 No. 18 (1990) P. 1725-P. 1727

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LiNbO3結晶の表面に光導波路と、前記光導
波路の光の進行方向に対して分極反転領域と非分極反転
領域の幅が3:1である領域を周期的に有し、前記周期が
基本波P1と高調波P2の伝搬定数差をΔKとすると2π/
ΔKであることを特徴とする光波長変換素子。
1. An optical waveguide on a surface of a LiNbO 3 crystal, and periodically has a region in which a width of a polarization inversion region and a non-polarization inversion region is 3: 1 with respect to a traveling direction of light of the optical waveguide. Letting ΔK be the propagation constant difference between the fundamental wave P 1 and the harmonic wave P 2 , the period is 2π /
An optical wavelength conversion element characterized by ΔK.
【請求項2】LiNbO3結晶にかえてLiTaO3結晶を用いるこ
とを特徴とする請求項1に記載の光波長変換素子。
2. The optical wavelength conversion device according to claim 1, wherein a LiTaO 3 crystal is used instead of the LiNbO 3 crystal.
JP33826290A 1990-11-30 1990-11-30 Optical wavelength conversion element Expired - Lifetime JP2679407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33826290A JP2679407B2 (en) 1990-11-30 1990-11-30 Optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33826290A JP2679407B2 (en) 1990-11-30 1990-11-30 Optical wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH04204835A JPH04204835A (en) 1992-07-27
JP2679407B2 true JP2679407B2 (en) 1997-11-19

Family

ID=18316468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33826290A Expired - Lifetime JP2679407B2 (en) 1990-11-30 1990-11-30 Optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2679407B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,Vol.56 No.18(1990)P.1725〜P.1727
Electronics Letters,Vol.25 No.3(1989)P.174〜P.175

Also Published As

Publication number Publication date
JPH04204835A (en) 1992-07-27

Similar Documents

Publication Publication Date Title
US5838702A (en) Method of electrically controlling regions of ferroelectric polarization domains in solid state bodies
US6806986B2 (en) Wavelength converter and wavelength converting apparatus
EP0439350B1 (en) Second-harmonic wave generating element
US5249191A (en) Waveguide type second-harmonic generation element and method of producing the same
JP2685969B2 (en) Second harmonic generator
US20080044147A1 (en) Nonlinear optical device and method of forming
US6952307B2 (en) Electric field poling of ferroelectric materials
JPH02242236A (en) Optical apparatus for light wave processing,manufacture thereof and frequency doubling apparatus
US6710912B1 (en) Technique for quasi-phase matching
JP2679407B2 (en) Optical wavelength conversion element
Delacourt et al. Second-harmonic generation efficiency in periodically poled LiNbO/sub 3/waveguides
JPH06110095A (en) Method and device for generating millimeter wave and submillimeter wave
Kakio et al. Improvement of diffraction properties in waveguide-type acoustooptic modulator driven by surface acoustic wave
JP2643735B2 (en) Wavelength conversion element
JP2002250948A (en) Polarization reversal structure element
JP3884197B2 (en) Fabrication method of domain-inverted structure
JP3447078B2 (en) Optical wavelength conversion element
JPH04340525A (en) Wavelength conversion element
JP3004850B2 (en) Optical second harmonic generator
JPH0593931A (en) Wavelength conversion element and short wavelength laser beam source
JP2018040980A (en) Wavelength conversion element and wavelength conversion optical pulse waveform shaping device
Jankowski Pulse Formation and Frequency Conversion in Dispersion-Engineered Nonlinear Waveguides and Resonators
Petit et al. Angular Quasi-Phase-Matching in Periodically Poled Uniaxial and Biaxial Crystals. Crystals 2022, 12, 979
JPH05346602A (en) Wavelength conversion element
JP3033855B2 (en) Wavelength conversion element