JP2677587B2 - Organic thin film manufacturing equipment - Google Patents

Organic thin film manufacturing equipment

Info

Publication number
JP2677587B2
JP2677587B2 JP63040638A JP4063888A JP2677587B2 JP 2677587 B2 JP2677587 B2 JP 2677587B2 JP 63040638 A JP63040638 A JP 63040638A JP 4063888 A JP4063888 A JP 4063888A JP 2677587 B2 JP2677587 B2 JP 2677587B2
Authority
JP
Japan
Prior art keywords
thin film
organic thin
film
wall
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63040638A
Other languages
Japanese (ja)
Other versions
JPH01215373A (en
Inventor
ゆみ子 四家
俊夫 中山
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63040638A priority Critical patent/JP2677587B2/en
Publication of JPH01215373A publication Critical patent/JPH01215373A/en
Application granted granted Critical
Publication of JP2677587B2 publication Critical patent/JP2677587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は有機薄膜の製造装置に関し、更に詳しくはラ
ングミュアー・プロジェット法による有機薄膜の製造装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to an apparatus for producing an organic thin film, and more particularly to an apparatus for producing an organic thin film by the Langmuir-Projet method.

(従来の技術) 近年、ラングミュアー.プロジェット法(LB法)によ
り作られる有機薄膜を利用した電気的素子の開発研究が
活発化している。LB法により作られた有機薄膜を素子に
応用するためには構造が均一で欠陥のない累積膜を製造
できることが必要である。
(Prior Art) Recently, Langmuir. Research and development of electrical devices using organic thin films made by the projet method (LB method) is becoming active. In order to apply the organic thin film prepared by the LB method to the device, it is necessary to manufacture a cumulative film having a uniform structure and no defects.

LB法では、まず水面上に展開された分子は凝縮膜にな
るまで圧縮によって圧縮される。単分子膜の表面分子密
度は表面圧πとして表面圧計によってモニターされ所定
の値になるまで圧縮される。次に基板が通常は水面に対
して垂直に上昇,下降して水面上単分子膜が基板上に累
積される。
In the LB method, first, the molecules spread on the water surface are compressed by compression until they become a condensed film. The surface molecular density of the monomolecular film is monitored as a surface pressure π by a surface pressure gauge and compressed to a predetermined value. Next, the substrate usually rises and falls vertically to the water surface, and the monolayer on the water surface is accumulated on the substrate.

(発明が解決しようとする課題) LB法では基板の累積操作を行うことにより基板近傍の
水面上単分子膜が減少し表面圧が低下するが、この低下
は直ちに単分子膜全体に広がり平均化し表面圧計で検出
され、装置は表面圧が所定の値に戻るまでバーを圧縮方
向に動かす。このようにして常時所定の表面圧で累積操
作を行うことができ、基板上には一定の表面分子密度の
累積膜が得られることになるが、上記性質を示す分子は
脂肪族系の分子等極少数に限られる。これに対し色素含
有分子や、高分子等の分子は単分子膜の粘弾性的性質が
大きく基板近傍の表面圧の低下が表面圧計まで伝わらな
い。水面上単分子膜の粘弾性的性質とは単分子膜にある
面積歪みを与えたときに発生する応力(表面圧)の伝
播、緩和特性の事である。単分子膜の持つ粘性は表面圧
の変化が表面圧計まで伝播する時間に遅延を生じさせ
る。累積操作はそのまま続行されるので基板近傍の凝縮
膜の表面密度が一方的に低下し、粘弾性の高い分子では
構造が均一で欠陥のない累積膜を得ることができない。
粘弾性が高い分子にも対応できるように改良された有機
薄膜の製造装置として、ムービングウォール方式があ
る。このムービングウォール方式では水面上に展開した
有機薄膜の側壁全体が均一に圧縮バーと同じ速さで移動
するようにしたものである。しかし、本発明者らが鋭意
研究を重ねたところ粘弾性の高い分子ではバーに近い部
分の水面上単分子膜はバーとほぼ同じ速さで移動する
が、バーから遠い部分にある水面上単分子膜はほとんど
動かないため、ムービングウォール方式により単分子膜
を圧縮すると、バーから隔った個所では側壁の移動方向
に単分子膜が引っぱられ側壁部で過剰な圧縮が行なわれ
ることになってしまう。このため水面上単分子膜の圧縮
が不均一となり所定圧まで圧縮すると単分子層の崩壊も
おこる場合もあり欠陥のないきれいなLB膜を成膜するこ
とができない。
(Problems to be solved by the invention) In the LB method, by performing cumulative operation of the substrate, the monolayer on the water surface near the substrate decreases and the surface pressure decreases, but this decrease immediately spreads over the entire monolayer and is averaged. As detected by the surface pressure gauge, the device moves the bar in the direction of compression until the surface pressure returns to a predetermined value. In this way, it is possible to always carry out the accumulating operation at a predetermined surface pressure, and a cumulative film having a constant surface molecular density can be obtained on the substrate. However, the molecule exhibiting the above properties is an aliphatic molecule or the like. Limited to a very small number. On the other hand, dye-containing molecules and molecules such as macromolecules have large viscoelastic properties of a monomolecular film, and a decrease in surface pressure near the substrate does not reach the surface pressure gauge. The viscoelastic property of a monolayer on the surface of water is the propagation and relaxation characteristics of stress (surface pressure) generated when an area strain is applied to the monolayer. The viscosity of the monolayer causes a delay in the time it takes for changes in surface pressure to propagate to the surface pressure gauge. Since the accumulating operation is continued as it is, the surface density of the condensed film in the vicinity of the substrate is unilaterally decreased, and it is not possible to obtain a defect-free accumulative film having a highly viscoelastic molecule.
There is a moving wall system as an apparatus for manufacturing an organic thin film that has been improved so as to be compatible with molecules having high viscoelasticity. In this moving wall system, the entire side wall of the organic thin film developed on the water surface is uniformly moved at the same speed as the compression bar. However, the inventors of the present invention have conducted intensive studies and found that for molecules with high viscoelasticity, the monolayer on the surface of the water near the bar moves at almost the same speed as the bar, but the monolayer on the surface of the water located far from the bar. Since the molecular film hardly moves, if the monolayer is compressed by the moving wall method, the monolayer will be pulled in the direction of movement of the side wall at a location separated from the bar, and excessive compression will be performed on the side wall. I will end up. For this reason, the compression of the monomolecular film on the water surface becomes non-uniform, and if it is compressed to a predetermined pressure, the monomolecular layer may also collapse, and it is not possible to form a clean LB film without defects.

本発明はこのような問題点に鑑みなされたものであ
り、構造が均一で欠陥のないLB膜を形成することができ
る有機薄膜の製造装置を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an apparatus for manufacturing an organic thin film capable of forming an LB film having a uniform structure and no defects.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、成膜用分子を展開するための液体を収容す
る容器Aと、該容器A内で展開された分子の面積を圧縮
するために前記容器A内を摺動する圧縮手段とを備えた
有機薄膜の製造装置において容器Aの摺動面に設けら
れ、且つ該容器A摺動面及び圧縮手段に端部が固定され
た伸縮可能な動作壁を設けたことを特徴とする有機薄膜
の製造装置である。
(Means for Solving the Problem) The present invention relates to a container A containing a liquid for developing a film-forming molecule, and the inside of the container A for compressing the area of the molecule developed in the container A. In an apparatus for producing an organic thin film having a compressing means for sliding, an expandable and contractable operating wall provided on the sliding surface of the container A and having an end fixed to the sliding surface of the container A and the compressing means is provided. This is a device for manufacturing an organic thin film.

(作用) 本発明による有機薄膜の製造装置では、圧縮手段が水
面上単分子膜を圧縮する動きと共に動作壁が収縮する。
すなわち、圧縮手段の動きと共に圧縮手段近傍の動作壁
が圧縮方向に動くため、粘弾性が高い分子でも側壁近傍
にある分子が圧縮方向に移動するようになる。圧縮手段
から遠い位置では水面上単分子膜がほとんど動かない
が、動作壁もほとんど動かない。このように、水面上単
分子膜の動く距離とほぼ同程度側壁となる動作壁が動く
ため、容器A全体で均一に膜が圧縮されるようになる。
このため、水面上単分子膜の表面圧制御が容易になり、
欠陥のないきれいなLB膜を累積できるようになる。
(Operation) In the apparatus for producing an organic thin film according to the present invention, the operation wall contracts as the compression means compresses the monolayer on the water surface.
That is, since the operation wall near the compression means moves in the compression direction along with the movement of the compression means, even the molecules having high viscoelasticity move in the compression direction in the molecules near the side wall. At a position far from the compression means, the monomolecular film on the water surface hardly moves, but the moving wall hardly moves. In this way, the moving wall, which is a side wall, moves about the same distance as the moving distance of the monomolecular film on the water surface, so that the film is uniformly compressed in the entire container A.
Therefore, it becomes easy to control the surface pressure of the monolayer on the water surface,
It becomes possible to accumulate clean LB films without defects.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第
1図は本発明に係る有機薄膜の製造装置の概略図であ
る。第1図において、トラフ(1)内には水が満たさ
れ、この水面上に単分子膜が展開される。単分子膜は圧
縮用可動バリア(2)に圧縮される。圧縮用可動バリア
(2)は駆動手段3によって駆動されるが、この動きに
より動作壁(4)が収縮する。動作壁(4)は5,6で各
々圧縮用可動バリア(2)及びトラフ(1)に動作壁の
動きに影響がないように固定されている。表面圧は圧力
センサー(7)により計測される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of an organic thin film manufacturing apparatus according to the present invention. In FIG. 1, the trough (1) is filled with water, and a monomolecular film is developed on this water surface. The monolayer is compressed into the movable compression barrier (2). The moving movable barrier (2) is driven by the driving means 3, and this movement causes the working wall (4) to contract. The operation wall (4) is fixed at 5 and 6 to the movable compression barrier (2) and the trough (1) so as not to affect the movement of the operation wall. The surface pressure is measured by the pressure sensor (7).

トラフ(1)、圧縮用可動バリア(2)はテフロン加
工を施したものである。動作壁(4)はシリコンゴムで
できており、トラフ中央付近まで伸縮自在となるように
トラフ内側壁長の約1/2のものを用いた。この他、フッ
素ゴム,ニトリルゴム,ポリエチレン−ポリプロピレ
ン,ターポリマー等でもよい。
The trough (1) and the movable compression barrier (2) are Teflon processed. The operating wall (4) was made of silicone rubber, and the one with the length of the inner wall of the trough was about 1/2 so that it could be expanded and contracted to the vicinity of the center of the trough. Other than these, fluororubber, nitrile rubber, polyethylene-polypropylene, terpolymer, etc. may be used.

本実施例では、動作壁(4)をトラフ(1)の内壁に
そうように配置したが、トラフ内側壁から所定間隔離れ
た位置に動作壁を設けてもよい。また、動作壁(4)の
トラフ(1)への固定は、トラフ内側壁であればどのよ
うな位置であってもよく、圧縮面積すなわち圧縮用可動
バリアの移動距離により適宜設定されるものである。本
実施例では、動作壁を伸縮自在で疎水性の素材を用いて
構成したが、その他伸縮自在な機能を有するものであれ
ばどのようなものであってもよい。収縮のみが可能であ
ればよく、限らずしも復元あるいは伸張せずともよい
が、伸縮自在な構成であることが好ましい。
In this embodiment, the operation wall (4) is arranged so as to be the inner wall of the trough (1), but the operation wall may be provided at a position separated from the inner wall of the trough by a predetermined distance. Further, the operation wall (4) may be fixed to the trough (1) at any position as long as it is the inner wall of the trough, and it is appropriately set according to the compression area, that is, the moving distance of the compression movable barrier. is there. In this embodiment, the operation wall is made of a stretchable and hydrophobic material, but any other material having a stretchable function may be used. It is sufficient that only contraction is possible, and there is no limitation that it may be restored or expanded, but it is preferable that the structure is elastic.

第2図は本実施例の有機薄膜形成装置により、粘弾性
が大きいステアリン酸アルミニウムを水温19℃,pH4.70,
アルミ濃度1×10-5Mの水面上に展開圧縮した場合の圧
縮特性を観察したものであり、単分子膜上に硫黄微粒子
を等間隔の縞状に散布し、表面積を圧縮した後の縞模様
である。これに対し、第3図及び第4図は各々従来装置
(動作壁がないもの)、ムービング・ウォール方式の装
置で同様の観察をしたものである。
FIG. 2 shows that aluminum stearate, which has a large viscoelasticity, was treated with an organic thin film forming apparatus of this embodiment at a water temperature of 19 ° C., a pH of 4.70,
This is an observation of compression characteristics when expanded and compressed on a water surface with an aluminum concentration of 1 × 10 -5 M. Sulfur fine particles were sprayed on the monomolecular film in evenly spaced stripes, and the stripes were obtained after compressing the surface area. It is a pattern. On the other hand, FIG. 3 and FIG. 4 show the same observations with a conventional device (having no operation wall) and a moving wall type device, respectively.

第2図から明らかなように、本実施例の有機薄膜形成
装置ではほぼ一様に圧縮され、流動パターンに歪みがな
いのに対し、従来装置及びムービング・ウォール方式の
装置では流動パターンに歪みが見られ、圧縮がトラフ全
体で均一でないことがわかる。
As is apparent from FIG. 2, in the organic thin film forming apparatus of this example, the flow pattern is almost uniformly compressed and there is no distortion in the flow pattern, whereas in the conventional apparatus and the moving wall type apparatus, the flow pattern is distorted. As can be seen, the compression is not uniform across the trough.

次に以下のような累積実験を行なった。 Next, the following cumulative experiment was conducted.

25mm×40mm×0.5mmのシリコン基板をヘキサメチル
ジシラザン気相中に24時間放置し、完全疎水性基板を作
製した。この基板の純水に対する接触角を測定したとこ
ろ約90゜であった。次にトラフ(1)に純水(pH6.0±
0.1,温度19±0.1℃)を満たしておいた。
A 25 mm × 40 mm × 0.5 mm silicon substrate was left in a gas phase of hexamethyldisilazane for 24 hours to prepare a completely hydrophobic substrate. The contact angle of this substrate with pure water was measured to be about 90 °. Next, add water (pH 6.0 ±) to the trough (1).
0.1, temperature 19 ± 0.1 ° C).

N,N−ジオクタデシルP−フェニレンジアミン(以
下PD−2C18と略す)50.8mgをトルエン100mlに溶解した
溶液140μを本実施例の水面上に滴下して単分子膜を
展開した。
A solution of 50.8 mg of N, N-dioctadecyl P-phenylenediamine (hereinafter abbreviated as PD-2C 18 ) dissolved in 100 ml of toluene (140 μ) was dropped on the water surface of this example to develop a monomolecular film.

次に、表面圧が25dyn/cmとなるまで水面上の単分子
膜を圧縮した。のシリコン基板を水平に保ちながら水
面に近づけ、水面と接触させることにより水面上の単分
子膜をガラス基板に移し取り、そのままガラス基板を水
中に沈めた(水平付着法)。
Next, the monolayer on the water surface was compressed until the surface pressure became 25 dyn / cm. The silicon substrate of No. 1 was brought close to the water surface while keeping it horizontal, and the monomolecular film on the water surface was transferred to the glass substrate by contact with the water surface, and the glass substrate was submerged in the water (horizontal deposition method).

水面上に,と同様にして単分子膜を形成し、水
中で反転させたガラス基板を水平に引き上げ、第2層め
を累積した。
A monomolecular film was formed on the water surface in the same manner as above, and the glass substrate inverted in water was pulled up horizontally to accumulate the second layer.

〜の操作を繰り返し単分子膜を6層形成した。 The operations of to were repeated to form six monomolecular layers.

上記のようにして得られた有機薄膜について、微分干
渉顕微鏡により空気中、室温における膜構造のみだれを
観察したところ特別な構造は認められず、均一できれい
な膜構造をもつことがわかった。
The organic thin film obtained as described above was observed by a differential interference microscope for dripping of the film structure in air at room temperature, and it was found that no special structure was observed and the film had a uniform and clean film structure.

比較例 実施例と同様にして、シリコン基板上にPD−2C18薄膜
を従来装置を用いて10層累積した。
Comparative Example Similar to the example, 10 layers of PD-2C 18 thin film were accumulated on a silicon substrate using a conventional apparatus.

得られた有機薄膜について、微分干渉顕微鏡により、
空気中室温における膜の観察をしたところPD−2C18の微
粒子と考えられる直径数十μmの微粒子が膜全面に観察
され、膜構造が不均一であることがわかった。
About the obtained organic thin film, by a differential interference microscope,
When the film was observed at room temperature in air, particles having a diameter of several tens of μm, which are considered to be PD-2C 18 particles, were observed on the entire surface of the film, and it was found that the film structure was not uniform.

〔発明の効果〕〔The invention's effect〕

以上詳述したように本発明によれば、均一できれいな
膜構造が得られる有機薄膜を提供できるものである。
As described in detail above, according to the present invention, it is possible to provide an organic thin film that can obtain a uniform and clean film structure.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の概略図、第2図乃至第4図
は本発明の特性を説明するための図である。 1……トラフ(容器A) 2……圧縮用可動バリア(圧縮手段) 4……動作壁 5,6……固定部
FIG. 1 is a schematic view of an embodiment of the present invention, and FIGS. 2 to 4 are views for explaining the characteristics of the present invention. 1 ... Trough (container A) 2 ... Movable barrier for compression (compression means) 4 ... Wall 5,6 ... Fixed part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】成膜用分子を展開するための液体を収容す
る容器と、該容器内で展開された分子の面積を圧縮する
ために前記容器内を摺動する圧縮手段とを具えた有機薄
膜の製造装置において、容器の摺動面に設けられ、且つ
該容器の摺動面及び圧縮手段に端部が固定された伸縮可
能な動作壁を設けたことを特徴とする有機薄膜の製造装
置。
1. An organic apparatus comprising: a container for containing a liquid for developing a film-forming molecule; and a compression means for sliding in the container to compress the area of the molecule developed in the container. An apparatus for producing an organic thin film, comprising: a thin film producing apparatus, which is provided on a sliding surface of a container, and is provided with an extendable and retractable operation wall whose ends are fixed to the sliding surface of the container and the compression means. .
【請求項2】前記動作壁は圧縮手段と垂直に配置され、
その圧縮手段の動きと対応して動作するようにしたこと
を特徴とする請求項1記載の有機薄膜の製造装置。
2. The operating wall is arranged perpendicular to the compression means,
2. The apparatus for manufacturing an organic thin film according to claim 1, wherein the apparatus operates so as to correspond to the movement of the compression means.
JP63040638A 1988-02-25 1988-02-25 Organic thin film manufacturing equipment Expired - Fee Related JP2677587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63040638A JP2677587B2 (en) 1988-02-25 1988-02-25 Organic thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63040638A JP2677587B2 (en) 1988-02-25 1988-02-25 Organic thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH01215373A JPH01215373A (en) 1989-08-29
JP2677587B2 true JP2677587B2 (en) 1997-11-17

Family

ID=12586103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63040638A Expired - Fee Related JP2677587B2 (en) 1988-02-25 1988-02-25 Organic thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2677587B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180771A (en) * 1986-01-31 1987-08-08 Sanyo Chem Ind Ltd Continuous compositing device for ultrathin film
JPS63236563A (en) * 1987-03-24 1988-10-03 Matsushita Electric Ind Co Ltd Manufacturing of lb membranes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171781U (en) * 1983-04-26 1984-11-16 松下電工株式会社 water surface transfer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180771A (en) * 1986-01-31 1987-08-08 Sanyo Chem Ind Ltd Continuous compositing device for ultrathin film
JPS63236563A (en) * 1987-03-24 1988-10-03 Matsushita Electric Ind Co Ltd Manufacturing of lb membranes

Also Published As

Publication number Publication date
JPH01215373A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
Pellerite et al. Effects of fluorination on self-assembled monolayer formation from alkanephosphonic acids on aluminum: kinetics and structure
Ashurst et al. Wafer level anti-stiction coatings for MEMS
US5011518A (en) Permselective membrane and process for producing the same
Rykaczewski et al. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation
JPH01275613A (en) Production of extraordinarily long polyacetylene or polyacene conjugated polymer
Deng et al. Nanoscale view of dewetting and coating on partially wetted solids
JPH0227766A (en) Organic device and manufacture thereof
JP2677587B2 (en) Organic thin film manufacturing equipment
He et al. Surfactant‐driven spreading of a liquid on a vertical surface
Greenhall et al. Monolayer and multilayer films of cyclodextrins substituted with two and three alkyl chains
JP5322245B2 (en) Particulate film manufacturing apparatus and particle film manufacturing method
JPWO2005091070A1 (en) Lithographic substrate surface treatment agent
Otten et al. Lithographic tools for producing patterned films composed of gas phase generated nanocrystals
Gnanappa et al. Effect of annealing on improved hydrophobicity of vapor phase deposited self-assembled monolayers
Kuri et al. Area-Creep Measurements for Crystalline Monolayer of Stearic Acid on the Water Surface.
TWI542532B (en) Device for formation of nanostructured coatings on solid surfaces
Bhande et al. Study the Behavior of π-A Isotherm with Increasing Amount of Octadecanoic acid at Air–Water Interface
Jung et al. Helical chain configuration of isotactic PMMA LB films observed by atomic force microscopy
JPH01210071A (en) Device for producing organic thin film
JPS6359351A (en) Method and apparatus for adhering membrane in liquid
JP3267370B2 (en) Apparatus and method for producing monomolecular film or monomolecular cumulative film
Besleaga et al. Surface Forces Between Hydrophobic Surfaces Obtained by Self-assembled Monolayers Deposition of Octadecyltrichlorosilane
JP2023179000A (en) Method of manufacturing bolometer
Pan et al. Investigation of the anti-adhesion layers for nanoimprint molding
RU1808409C (en) Plant for production of films

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees