JP2677320B2 - Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst - Google Patents

Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst

Info

Publication number
JP2677320B2
JP2677320B2 JP6315754A JP31575494A JP2677320B2 JP 2677320 B2 JP2677320 B2 JP 2677320B2 JP 6315754 A JP6315754 A JP 6315754A JP 31575494 A JP31575494 A JP 31575494A JP 2677320 B2 JP2677320 B2 JP 2677320B2
Authority
JP
Japan
Prior art keywords
catalyst
methanol
reaction
dehydrogenation reaction
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6315754A
Other languages
Japanese (ja)
Other versions
JPH08141397A (en
Inventor
安行 松村
哲夫 矢澤
正毅 春田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6315754A priority Critical patent/JP2677320B2/en
Publication of JPH08141397A publication Critical patent/JPH08141397A/en
Application granted granted Critical
Publication of JP2677320B2 publication Critical patent/JP2677320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、脱水素触媒反応および
その製造方法ならびに該触媒によるメタノールの脱水素
分解法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehydrogenation catalytic reaction, a method for producing the same, and a method for dehydrogenating methanol by the catalyst.

【0002】[0002]

【従来の技術およびその問題点】従来から、種々の脱水
素反応触媒を用いて、メタノールを脱水素分解し、一酸
化炭素を得る方法が提案されている。例えば、メタノー
ルを自動車の燃料として使用する場合には、直接燃焼さ
せるよりも、このメタノールの脱水素反応により排気ガ
スの熱エネルギーを吸収して生成した水素と一酸化炭素
とを燃焼させた方がエネルギー効率的に有利であり、し
かも排気ガス中に有害なホルムアルデヒドが含まれない
ので、環境面からも望ましい。また、工場などから出る
200℃程度の低温廃熱をメタノールの脱水素分解によ
って吸収し、その熱エネルギーを有効利用することも、
省エネルギーの観点から重要であるが、現状では200
℃程度の低温で実用となる程度に高い活性を示す触媒系
は、見出されていない。
2. Description of the Related Art Conventionally, there have been proposed methods of dehydrogenating methanol to obtain carbon monoxide by using various dehydrogenation catalysts. For example, when using methanol as a fuel for automobiles, it is better to burn hydrogen and carbon monoxide generated by absorbing the thermal energy of exhaust gas by the dehydrogenation reaction of this methanol, rather than burning it directly. It is advantageous in terms of energy efficiency, and since exhaust gas does not contain harmful formaldehyde, it is also desirable from the environmental aspect. In addition, the low temperature waste heat of about 200 ℃ generated from factories is absorbed by the dehydrogenation decomposition of methanol, and its thermal energy can be effectively used.
It is important from the viewpoint of energy saving, but currently 200
No catalyst system has been found that exhibits high activity at a temperature as low as about 0 ° C for practical use.

【0003】例えば、ニッケル、銅、亜鉛およびアルミ
ニウム酸化物からなる触媒では、300℃の反応温度に
おけるメタノールの分解活性は、触媒1gあたり約20
mmol/h(メタノール分圧、1atm)であり(特
開平05−261288号公報)、実用的には少なくと
も300℃を上回る反応温度を必要とする。
For example, with a catalyst composed of nickel, copper, zinc and aluminum oxide, the decomposition activity of methanol at a reaction temperature of 300 ° C. is about 20 per 1 g of the catalyst.
It is mmol / h (methanol partial pressure, 1 atm) (Japanese Patent Laid-Open No. 05-261288), and practically requires a reaction temperature of at least 300 ° C.

【0004】ラネーニッケルは、代表的な水素化・脱水
素化触媒であるが、そのメタノール分解活性は、283
℃において触媒1gあたり1.4mmol/h(メタノ
ール分圧、0.25atm)に過ぎない{化学工学論文
集第15巻第284頁 1989年}。
Raney nickel is a typical hydrogenation / dehydrogenation catalyst, and its methanol decomposition activity is 283.
It is only 1.4 mmol / h (methanol partial pressure, 0.25 atm) per 1 g of the catalyst at 0 ° C. {Chemical Engineering Proceedings Vol. 15, p. 284, 1989}.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、公
知の触媒よりも低い反応温度で優れた触媒活性を発揮
し、実用的な反応速度でメタノールを脱水素分解しうる
触媒を提供することを主な目的とする。
Therefore, the present invention provides a catalyst that exhibits excellent catalytic activity at a lower reaction temperature than known catalysts and can dehydrogenate and decompose methanol at a practical reaction rate. Is the main purpose.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の様な
従来技術の問題点に鑑みて研究を重ねた結果、新たな組
成乃至構造の触媒が、従来の触媒よりも低い温度範囲で
優れた触媒活性を発揮し、良好な反応速度でメタノール
を脱水素分解できる実用的な脱水素反応触媒であること
を見出し、本発明を完成するに至った。
As a result of repeated studies in view of the above-mentioned problems of the prior art, the inventors of the present invention have found that a catalyst having a new composition or structure has a temperature range lower than that of the conventional catalyst. The inventors have found that the catalyst is a practical dehydrogenation reaction catalyst that exhibits excellent catalytic activity and can dehydrogenate and decompose methanol at a good reaction rate, and has completed the present invention.

【0007】即ち、本発明は、下記の脱水素反応触媒お
よびその製造方法ならびにメタノールの脱水素分解方法
を提供するものである; 1.ニッケル、コバルトおよびクロムの化合物の少なく
とも1種と有機珪酸化合物とを反応させてゲル化せしめ
た後に焼成し、さらに還元することを特徴とする金属と
珪素酸化物との複合体からなるメタノール脱水素反応用
触媒の製造方法。
That is, the present invention provides the following dehydrogenation reaction catalyst, a method for producing the same, and a method for dehydrogenating methanol. Methanol dehydrogenation comprising a complex of a metal and a silicon oxide, characterized by reacting at least one compound of nickel, cobalt and chromium with an organic silicic acid compound to cause gelation, firing, and further reduction. Method for producing reaction catalyst.

【0008】2.ゾル−ゲル法により得られた、ニッケ
ル、コバルトおよびクロムの少なくとも1種の粒子径6
〜22nmの還元された金属粒子が珪素酸化物中に分散
した状態の複合体からなるメタノール脱水素反応用触
媒。
[0008] 2. Particle size 6 of at least one of nickel, cobalt and chromium obtained by the sol-gel method
A catalyst for methanol dehydrogenation reaction, which comprises a complex in which reduced metal particles having a size of 22 nm are dispersed in silicon oxide.

【0009】3.上記項2に記載のメタノール脱水素反
応用触媒の存在下に気相でメタノールの脱水素反応を行
うことを特徴とするメタノールの分解方法。
3. Item 3. A method for decomposing methanol, which comprises performing the dehydrogenation reaction of methanol in a gas phase in the presence of the catalyst for methanol dehydrogenation reaction according to Item 2.

【0010】本発明によるメタノールの脱水素反応用触
媒は、担体としての酸化珪素(シリカ)中に触媒活性成
分としてのニッケル、コバルトおよびクロムの少なくと
も1種を分散させた複合体構造を有している。
The catalyst for the dehydrogenation reaction of methanol according to the present invention has a composite structure in which at least one of nickel, cobalt and chromium as a catalytically active component is dispersed in silicon oxide (silica) as a carrier. There is.

【0011】本発明による触媒においては、触媒活性成
分としてのニッケル、コバルトおよびクロムの少なくと
も1種は、粒子径6〜22nm程度である。一般に、金
属含有量が高くなるほど粒子径が増大する傾向がある。
触媒活性成分の粒子径が30nmを上回る場合には、金
属成分の外表面積が減少し、触媒活性が低下するので、
好ましくない。
In the catalyst according to the present invention, at least one of nickel, cobalt and chromium as a catalytically active component has a particle size of about 6 to 22 nm. Generally, the higher the metal content, the larger the particle size tends to be.
If the particle diameter of the catalytically active component exceeds 30 nm, the outer surface area of the metal component decreases and the catalytic activity decreases,
Not preferred.

【0012】この様な複合体構造を有する触媒は、いわ
ゆるゾル−ゲル法によって調製できる。ゾル−ゲル法に
より本発明の触媒を調製する場合には、大量の活性金属
を高分散状態で担体中に存在させることができる。この
様な触媒は、低温領域(通常150〜300℃程度)で
優れた触媒活性を発揮するので、工業的に極めて有用で
ある。
The catalyst having such a composite structure can be prepared by the so-called sol-gel method. When the catalyst of the present invention is prepared by the sol-gel method, a large amount of active metal can be present in the carrier in a highly dispersed state. Such a catalyst exhibits excellent catalytic activity in a low temperature range (usually about 150 to 300 ° C.) and is industrially extremely useful.

【0013】この様な触媒の調製は、液相において、有
機珪素源と金属源とを5時間〜5日間程度かけて均一に
混合し、ゲル化せしめ、これを乾燥および焼成して有機
物を除去した後、還元剤を用いてこの化合物に含有され
る金属成分を還元して行う。
The preparation of such a catalyst is carried out by uniformly mixing the organosilicon source and the metal source in the liquid phase for about 5 hours to 5 days to cause gelation, and drying and calcination to remove organic substances. After that, the metal component contained in this compound is reduced with a reducing agent.

【0014】本発明による触媒の製造方法は、液相中に
金属源を存在させる以外の点では、通常のゾル−ゲル法
と異なるところはない。従って、反応条件なども特に限
定されるものではないが、一般的にいうならば、有機珪
酸化合物とニッケル、コバルトおよびクロムの化合物の
少なくとも1種を含む液相(液媒は、水+アルコールな
ど)に酸(硝酸など)を加え、撹拌下に加水分解反応を
行った後、生成するゲル化物を乾燥し、加熱することに
より、固形生成物を得る。次いで、この固形生成物を必
要に応じて粉砕した後、還元剤と接触させて還元するこ
とにより、本発明の触媒が得られる。
The method for producing the catalyst according to the present invention is the same as the usual sol-gel method except that the metal source is present in the liquid phase. Therefore, the reaction conditions are not particularly limited, but generally speaking, a liquid phase containing an organic silicic acid compound and at least one of nickel, cobalt and chromium compounds (the liquid medium is water + alcohol, etc. An acid (nitric acid or the like) is added to (1), the hydrolysis reaction is performed with stirring, and the resulting gelled product is dried and heated to obtain a solid product. Next, the solid product is pulverized if necessary, and then contacted with a reducing agent for reduction to obtain the catalyst of the present invention.

【0015】有機珪素源としては、例えば珪酸エチル、
珪酸メチルなどの有機珪素化合物が例示される。金属源
として例えばニッケル、コバルトおよびクロムの硝酸
塩、炭酸塩、塩化物、酢酸塩などが例示される。有機珪
素化合物と金属源化合物との配合割合は、目的とする触
媒中の金属の含有量に応じて適宜選択することができ
る。
Examples of the organic silicon source include ethyl silicate,
Examples are organic silicon compounds such as methyl silicate. Examples of the metal source include nitrates, carbonates, chlorides and acetates of nickel, cobalt and chromium. The mixing ratio of the organosilicon compound and the metal source compound can be appropriately selected according to the content of the metal in the target catalyst.

【0016】また、還元剤としては、水素、一酸化炭
素、メタノールなどが挙げられる。還元処理は、得られ
た固形生成物をメタノールの脱水素反応における触媒と
して使用する反応直前に行っても差支えない。さらにま
た、上記の固形生成物の還元処理前または還元処理後
に、例えばヘリウム、窒素、アルゴンなどの不活性ガス
中500〜700℃程度の温度で固形生成物の安定化処
理を行っても、差支えない。
Further, examples of the reducing agent include hydrogen, carbon monoxide, methanol and the like. The reduction treatment may be carried out immediately before the reaction in which the obtained solid product is used as a catalyst in the dehydrogenation reaction of methanol. Furthermore, even before or after the reduction treatment of the solid product, the stabilization treatment of the solid product may be performed at a temperature of about 500 to 700 ° C. in an inert gas such as helium, nitrogen or argon. Absent.

【0017】本発明による触媒中の金属含有量は、通常
15〜70重量%程度、好ましくは20〜60重量%程
度である。本発明による触媒の形状は、特に制限され
ず、例えば粉末状、粒状、細片状、球状、ペレット状、
ハニカム状などいずれであっても良い。触媒を粉末状或
いは粒状乃至球状で使用する場合には、特に限定される
ものではないが、通常粒径10〜150メッシュ程度、
より好ましくは粒径20〜80メッシュ程度である。
The metal content in the catalyst according to the present invention is usually about 15 to 70% by weight, preferably about 20 to 60% by weight. The shape of the catalyst according to the present invention is not particularly limited, and examples thereof include powder, granules, flakes, spheres, pellets,
Any shape such as a honeycomb shape may be used. When the catalyst is used in the form of powder or particles or spheres, it is not particularly limited, but usually a particle size of about 10 to 150 mesh,
More preferably, the particle size is about 20-80 mesh.

【0018】また、本発明触媒は、反応に悪影響を与え
ない公知のバインダー、例えば、シリカゲルなど混合
し、常法に従って成形して使用しても良い。この様な成
形触媒を使用する場合には、反応原料の拡散を促進する
とともに、触媒の活性を適度にコントロールすることが
できる。
The catalyst of the present invention may be mixed with a known binder that does not adversely influence the reaction, such as silica gel, and molded by a conventional method before use. When such a shaped catalyst is used, the diffusion of the reaction raw materials can be promoted and the activity of the catalyst can be appropriately controlled.

【0019】本発明によるメタノールの脱水素分解反応
は、本発明触媒の存在下に気相流通方式で行われる。反
応温度は、通常150〜350℃程度、好ましくは18
0〜300℃程度とすればよい。反応温度が低すぎる場
合には、メタノールの分解効率が低下するのに対し、反
応温度が高すぎる場合には、メタンなどの副生によりメ
タノールの脱水素生成物への選択性が低下するおそれが
ある。メタノールの供給方法は、特に制限されないが、
通常ガス状として供給する。ガス状のメタノールは、ヘ
リウム、窒素、アルゴンなどの反応に悪影響を及ぼさな
いガスで希釈して、供給してもよい。メタノールの供給
量は、反応器の大きさおよび形状、反応温度などに応じ
て適宜選択すれば良いが、通常触媒1g当り0.1〜1
0mol/h程度とすれば良い。
The dehydrogenative decomposition reaction of methanol according to the present invention is carried out in the gas phase flow system in the presence of the catalyst of the present invention. The reaction temperature is usually about 150 to 350 ° C, preferably 18
It may be about 0 to 300 ° C. If the reaction temperature is too low, the decomposition efficiency of methanol will decrease, whereas if the reaction temperature is too high, the selectivity for the dehydrogenation product of methanol may decrease due to by-products such as methane. is there. The supply method of methanol is not particularly limited,
Usually supplied in gaseous form. Gaseous methanol may be diluted with a gas such as helium, nitrogen, or argon that does not adversely affect the reaction and supplied. The amount of methanol supplied may be appropriately selected according to the size and shape of the reactor, the reaction temperature, etc., but is usually 0.1 to 1 per 1 g of the catalyst.
It may be about 0 mol / h.

【0020】[0020]

【発明の効果】本発明による触媒は、メタノールの脱水
素反応において、公知の触媒に比して、低温で良好な触
媒活性および高い一酸化炭素への選択性を発揮し、良好
な速度でメタノールを分解することができる。
INDUSTRIAL APPLICABILITY The catalyst according to the present invention exerts good catalytic activity and high carbon monoxide selectivity at low temperature in methanol dehydrogenation reaction as compared with known catalysts, and exhibits good methanol speed at a good rate. Can be disassembled.

【0021】[0021]

【実施例】以下に触媒の製造例および実施例を挙げ、本
発明の特徴とするところをさらに一層明瞭なものとす
る。
EXAMPLES The production examples and examples of the catalyst will be given below to further clarify the characteristics of the present invention.

【0022】製造例1 硝酸ニッケル6水物8.3g、珪酸テトラエチル25m
l、水10ml、エタノール20mlおよび濃硝酸2m
lの混合物を室温で5時間撹拌し、ゲル化物を得た。こ
れを120℃で2時間乾燥した後、空気中500℃で5
時間加熱した。この生成物を粉砕した後、反応直前にア
ルゴン−水素混合気体(水素15%)中500℃で1時
間還元し、メタノール分解触媒を得た。この触媒中の金
属含量は、20重量%であった。
Production Example 1 8.3 g of nickel nitrate 6-hydrate, 25 m of tetraethyl silicate
1, water 10 ml, ethanol 20 ml and concentrated nitric acid 2 m
The mixture of 1 was stirred at room temperature for 5 hours to obtain a gelled product. After drying this at 120 ° C for 2 hours, it is dried in air at 500 ° C for 5
Heated for hours. This product was pulverized and then reduced immediately before the reaction in an argon-hydrogen mixed gas (hydrogen 15%) at 500 ° C. for 1 hour to obtain a methanol decomposition catalyst. The metal content in this catalyst was 20% by weight.

【0023】製造例2 硝酸コバルト6水物49.7g、珪酸テトラエチル25
ml、水10ml、エタノール20mlおよび濃硝酸2
mlの混合物を室温で10時間撹拌し、ゲル化物を得
た。これを120℃で2時間乾燥した後、空気中500
℃で5時間加熱した。この生成物を粉砕した後、反応直
前にアルゴン−水素混合気体(水素15%)中500℃
で1時間還元し、メタノール分解触媒を得た。この触媒
中の金属含量は、60重量%であった。
Production Example 2 Cobalt nitrate 6-hydrate 49.7 g, tetraethyl silicate 25
ml, water 10 ml, ethanol 20 ml and concentrated nitric acid 2
The mixture of ml was stirred at room temperature for 10 hours to obtain a gelled product. After drying it at 120 ° C for 2 hours, it is dried in air at 500
Heated at ° C. for 5 hours. After crushing this product, immediately before the reaction, 500 ° C. in an argon-hydrogen mixed gas (hydrogen 15%).
And reduced for 1 hour to obtain a methanol decomposition catalyst. The metal content in this catalyst was 60% by weight.

【0024】製造例3 硝酸ニッケル6水物11.1g、硝酸コバルト6水物1
1.1g、珪酸テトラエチル25ml、水10ml、エ
タノール20mlおよび濃硝酸2mlの混合物を室温で
10時間撹拌し、ゲル化物を得た。これを120℃で2
時間乾燥した後、空気中500℃で5時間加熱した。こ
の生成物を粉砕した後、反応直前にアルゴン−水素混合
気体(水素15%)中500℃で1時間還元し、メタノ
ール分解触媒を得た。この触媒中の金属含量は、40重
量%であった。
Production Example 3 11.1 g of nickel nitrate 6-hydrate, 1 part of cobalt nitrate 6-hydrate
A mixture of 1.1 g, tetraethyl silicate 25 ml, water 10 ml, ethanol 20 ml and concentrated nitric acid 2 ml was stirred at room temperature for 10 hours to obtain a gelled product. This at 120 ° C for 2
After drying for an hour, it was heated in air at 500 ° C. for 5 hours. This product was pulverized and then reduced immediately before the reaction in an argon-hydrogen mixed gas (hydrogen 15%) at 500 ° C. for 1 hour to obtain a methanol decomposition catalyst. The metal content in this catalyst was 40% by weight.

【0025】製造例4 硝酸ニッケル6水物11.8g、硝酸クロム9水物1
6.2g、珪酸テトラエチル25ml、水10ml、エ
タノール20mlおよび濃硝酸2mlの混合物を室温で
12時間撹拌し、ゲル化物を得た。これを120℃で2
時間乾燥した後、空気中500℃で5時間加熱した。こ
の生成物を粉砕した後、反応直前にアルゴン−水素混合
気体(水素15%)中500℃で1時間還元し、メタノ
ール分解触媒を得た。この触媒中の金属含量は、40重
量%であった。
Production Example 4 Nickel nitrate 6-hydrate 11.8 g, chromium nitrate 9-hydrate 1
A mixture of 6.2 g, tetraethyl silicate 25 ml, water 10 ml, ethanol 20 ml and concentrated nitric acid 2 ml was stirred at room temperature for 12 hours to obtain a gelled product. This at 120 ° C for 2
After drying for an hour, it was heated in air at 500 ° C. for 5 hours. After crushing this product, immediately before the reaction, it was reduced in an argon-hydrogen mixed gas (hydrogen 15%) at 500 ° C. for 1 hour to obtain a methanol decomposition catalyst. The metal content in this catalyst was 40% by weight.

【0026】製造例5 硝酸ニッケル22.2g、珪酸テトラエチル25ml、
水10ml、エタノール20mlおよび濃硝酸2mlの
混合物を室温で8時間撹拌し、ゲル化物を得た。これを
120℃で2時間乾燥した後、空気中500℃で5時間
加熱した。この生成物を粉砕した後、反応直前にアルゴ
ン−水素混合気体(水素15%)中300℃で16時間
還元し、メタノール分解触媒を得た。この触媒の金属含
量は、40重量%であった。
Production Example 5 22.2 g of nickel nitrate, 25 ml of tetraethyl silicate,
A mixture of 10 ml of water, 20 ml of ethanol and 2 ml of concentrated nitric acid was stirred at room temperature for 8 hours to obtain a gelled product. This was dried at 120 ° C. for 2 hours and then heated in air at 500 ° C. for 5 hours. This product was pulverized and then reduced in an argon-hydrogen mixed gas (hydrogen 15%) at 300 ° C for 16 hours immediately before the reaction to obtain a methanol decomposition catalyst. The metal content of this catalyst was 40% by weight.

【0027】実施例1 製造例1で得られた触媒1gをステンレス製反応管に充
填し、これにアルゴンで希釈されたメタノール(0.2
5atm、ガス総流量12l/h)を反応温度250℃
で供給し、メタノールの分解反応を行った。この反応に
おいて、触媒1gあたりのメタノールの定常分解活性7
1mmol/h、一酸化炭素への選択率93.5%とい
う結果が得られた。
Example 1 1 g of the catalyst obtained in Production Example 1 was charged into a stainless steel reaction tube, and methanol (0.2%) diluted with argon (0.2
5 atm, total gas flow 12 l / h) at reaction temperature 250 ° C.
And the decomposition reaction of methanol was carried out. In this reaction, the steady-state decomposition activity of methanol per 1 g of catalyst was 7
The results were 1 mmol / h and a selectivity to carbon monoxide of 93.5%.

【0028】実施例2 製造例2で得られた触媒1gをステンレス製反応管に充
填し、これにアルゴンで希釈されたメタノール(0.2
5atm、ガス総流量 12l/h)を反応温度200
℃で供給し、メタノールの分解反応を行った。この反応
において、触媒1gあたりのメタノールの定常分解活性
25mmol/h、一酸化炭素への選択率87.8%と
いう結果が得られた。
Example 2 1 g of the catalyst obtained in Production Example 2 was charged into a stainless reaction tube, and methanol (0.2%) diluted with argon (0.2
5 atm, total gas flow 12 l / h) at reaction temperature 200
It was supplied at a temperature of ℃, and the decomposition reaction of methanol was carried out. In this reaction, a steady-state decomposition activity of methanol per 1 g of the catalyst was 25 mmol / h, and the selectivity to carbon monoxide was 87.8%.

【0029】実施例3 製造例3で得られた触媒1gをステンレス製反応管に充
填し、これにアルゴンで希釈されたメタノール(0.2
5atm、ガス総流量 12l/h)を反応温度200
℃で供給し、メタノールの分解反応を行った。この反応
において、触媒1gあたりのメタノールの定常分解活性
22mmol/h、一酸化炭素への選択率98.4%と
いう結果が得られた。
Example 3 1 g of the catalyst obtained in Production Example 3 was filled in a stainless steel reaction tube, and methanol (0.2
5 atm, total gas flow 12 l / h) at reaction temperature 200
It was supplied at a temperature of ℃, and the decomposition reaction of methanol was carried out. In this reaction, the result was that the steady-state decomposition activity of methanol per 1 g of the catalyst was 22 mmol / h, and the selectivity to carbon monoxide was 98.4%.

【0030】実施例4 製造例4で得られた触媒1gをステンレス製反応管に充
填し、これにアルゴンで希釈されたメタノール(0.2
5atm、ガス総流量 12l/h)を反応温度200
℃で供給し、メタノールの分解反応を行った。この反応
において、触媒1gあたりのメタノールの定常分解活性
20mmol/h、一酸化炭素への選択率100%とい
う結果が得られた。
Example 4 1 g of the catalyst obtained in Production Example 4 was charged into a stainless reaction tube, and methanol (0.2%) diluted with argon (0.2
5 atm, total gas flow 12 l / h) at reaction temperature 200
It was supplied at a temperature of ℃, and the decomposition reaction of methanol was carried out. In this reaction, a steady decomposition activity of methanol per 1 g of catalyst of 20 mmol / h and a selectivity of 100% for carbon monoxide were obtained.

【0031】実施例5 製造例5で得られた触媒1gをステンレス製反応管に充
填し、これにアルゴンで希釈されたメタノール(0.2
5atm、ガス総流量 12l/h)を反応温度200
℃で供給し、メタノールの分解反応を行った。この反応
において、触媒1gあたりのメタノールの定常分解活性
34mmol/h、一酸化炭素への選択率73.2%と
いう結果が得られた。
Example 5 1 g of the catalyst obtained in Production Example 5 was charged into a stainless reaction tube, and methanol (0.2%) diluted with argon (0.2
5 atm, total gas flow 12 l / h) at reaction temperature 200
It was supplied at a temperature of ℃, and the decomposition reaction of methanol was carried out. In this reaction, the result was that the steady-state decomposition activity of methanol per 1 g of the catalyst was 34 mmol / h, and the selectivity to carbon monoxide was 73.2%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01B 3/22 C10K 3/00 C10K 3/00 B01J 23/74 311M (56)参考文献 特開 昭58−166937(JP,A) 特開 昭62−254846(JP,A) 特開 平4−26503(JP,A) 特公 平1−16767(JP,B2)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C01B 3/22 C10K 3/00 C10K 3/00 B01J 23/74 311M (56) References 58-166937 (JP, A) JP 62-254846 (JP, A) JP 4-26503 (JP, A) JP 1-16767 (JP, B2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル、コバルトおよびクロムの化合
物の少なくとも1種と有機珪酸化合物とを反応させてゲ
ル化せしめた後に焼成し、さらに還元することを特徴と
する金属と珪素酸化物との複合体からなるメタノール脱
水素反応用触媒の製造方法。
1. A composite of a metal and a silicon oxide, wherein at least one compound of nickel, cobalt and chromium is reacted with an organic silicic acid compound to cause gelation, followed by firing and further reduction. A method for producing a methanol dehydrogenation catalyst comprising
【請求項2】 ゾル−ゲル法により得られた、ニッケ
ル、コバルトおよびクロムの少なくとも1種の粒子径6
〜22nmの還元された金属粒子が珪素酸化物中に分散
した状態の複合体からなるメタノール脱水素反応用触
媒。
2. A particle size 6 of at least one of nickel, cobalt and chromium obtained by a sol-gel method.
~ 22nm reduced metal particles dispersed in silicon oxide
A catalyst for a methanol dehydrogenation reaction, which is composed of a complex in the formed state .
【請求項3】 請求項2に記載のメタノール脱水素反応
用触媒の存在下に気相でメタノールの脱水素反応を行う
ことを特徴とするメタノールの分解方法。
3. A method for decomposing methanol, which comprises carrying out a dehydrogenation reaction of methanol in a gas phase in the presence of the catalyst for methanol dehydrogenation reaction according to claim 2.
JP6315754A 1994-11-24 1994-11-24 Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst Expired - Lifetime JP2677320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6315754A JP2677320B2 (en) 1994-11-24 1994-11-24 Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6315754A JP2677320B2 (en) 1994-11-24 1994-11-24 Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst

Publications (2)

Publication Number Publication Date
JPH08141397A JPH08141397A (en) 1996-06-04
JP2677320B2 true JP2677320B2 (en) 1997-11-17

Family

ID=18069150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6315754A Expired - Lifetime JP2677320B2 (en) 1994-11-24 1994-11-24 Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst

Country Status (1)

Country Link
JP (1) JP2677320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900428B1 (en) * 2006-08-09 2016-01-06 Mitsubishi Gas Chemical Company, Inc. Production method of primary amines and catalysts for producing primary amines

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117366B (en) * 1982-03-12 1985-06-26 Coal Ind Catalyst and method of its preparation
JPH0767530B2 (en) * 1986-04-30 1995-07-26 三井東圧化学株式会社 Catalyst activation method
JPS6416767A (en) * 1987-07-09 1989-01-20 Dainippon Pharmaceutical Co 8-halogenoquinoline derivative, its ester and salt
JP2734481B2 (en) * 1990-05-23 1998-03-30 三菱重工業株式会社 Methanol reforming method

Also Published As

Publication number Publication date
JPH08141397A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US4897253A (en) Catalytic generation of hydrogen from hydrocarbons
CN100352760C (en) One step conversion of methanol into hydrogen and carbon dioxide
CN108671917A (en) A kind of catalyst and preparation method thereof of efficient cryogenic catalysis VOCs exhaust gas decompositions
JPH0716448A (en) Preparation of aerogel containing transition metal, transition metal-aerogel carrier catalyst and method for oxidation of hydrogen and decomposition of hydrogen peroxide
CN109201048A (en) A kind of monatomic catalyst and preparation method thereof
JP2002012408A (en) Method of autothermal catalytic steam reforming for hydrocarbon
JP2022114919A (en) Ammonia decomposition catalyst and ammonia decomposition method using the same
JPH07116517A (en) Methanol reforming catalyst, its production and methanol reforming method
JP3005647B2 (en) Photocatalyst, method for producing the same, and method for producing hydrogen using the same
US20090202417A1 (en) System and method for ammonia synthesis
JP2677320B2 (en) Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst
JP3259020B2 (en) Oxide-based catalyst, method for producing the same, and method for catalytic hydrogenation of CO2 using the catalyst
CN117258799A (en) Ruthenium nickel-aluminum-based catalyst for preparing nitrogen and hydrogen by ammonia catalysis, and preparation method and application thereof
CN114082297A (en) Method for decomposing nitrous oxide under low-temperature condition
CN102029155B (en) Hydrogen producing catalyst
JP3622211B2 (en) Methane oxidation method
CN114054017B (en) Bi plasma modified bismuth strontium tantalate photocatalyst and preparation method thereof
CN114832848B (en) Catalyst and preparation method and application thereof
RU2087189C1 (en) Method of preparing catalyst for conversion of methanol into hydrogen-carbon monoxide mixture
JPH04363141A (en) Catalyst for catalytic reduction of carbon dioxide and production of methanol using the same
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JP3187179B2 (en) Method for producing oxide-based catalyst
WO2024029604A1 (en) Method for producing acetone
CN114984950A (en) Low-Pd-content efficient composite Pd-Zn/ZnTiO 3 Catalyst, preparation method and application thereof
JPH02277546A (en) Catalyst for reforming of methanol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term