JP2669722B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2669722B2
JP2669722B2 JP2417713A JP41771390A JP2669722B2 JP 2669722 B2 JP2669722 B2 JP 2669722B2 JP 2417713 A JP2417713 A JP 2417713A JP 41771390 A JP41771390 A JP 41771390A JP 2669722 B2 JP2669722 B2 JP 2669722B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
semiconductor device
low
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2417713A
Other languages
Japanese (ja)
Other versions
JPH04216618A (en
Inventor
茂夫 大西
あきつ 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2417713A priority Critical patent/JP2669722B2/en
Publication of JPH04216618A publication Critical patent/JPH04216618A/en
Priority to US07/932,746 priority patent/US5298446A/en
Priority to US07/979,457 priority patent/US5420079A/en
Application granted granted Critical
Publication of JP2669722B2 publication Critical patent/JP2669722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は半導体装置の製造方法
に関し、更に詳しくはMOSトランジスタのソース・ド
レインの接合層を形成するのに低温アニールにより無欠
陥の接合層を形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a defect-free junction layer by low temperature annealing for forming a source / drain junction layer of a MOS transistor. .

【0002】[0002]

【従来の技術】デバイスの高集積化に伴い、接合層が浅
く、かつ結晶欠陥等の欠陥の無い高品質な接合層を形成
する事が必要になる。活性化率が高く、さらに浅い接合
層を形成するのに、ランプアニール等の高温・短時間熱
処理技術が有望視されてきた。しかし、熱処理過程にお
いて発生した転位ループを核にして、冷却時にスリップ
・ラインが導入され、接合層の特性が劣化する事が問題
となった。特に短時間アニール(RTA)の場合、急冷
プロセスであるため、スリップ・ラインの導入される確
率が高かった。そのため短時間アニールを行う前に結晶
性を完全に回復させる必要がある。しかも接合層を深さ
方向及び水平方向(横方向)に伸ばさずに結晶性を回復
させるには、800℃以下の低温領域でアニールを行う
必要がある。
2. Description of the Related Art As devices are highly integrated, it is necessary to form a high-quality junction layer having a shallow junction layer and no defects such as crystal defects. High-temperature and short-time heat treatment techniques such as lamp annealing have been regarded as promising for forming a shallow junction layer having a high activation rate. However, there has been a problem in that slip lines are introduced at the time of cooling with the dislocation loops generated during the heat treatment as nuclei and the characteristics of the bonding layer are deteriorated. Especially in the case of short-time annealing (RTA), the probability of introducing a slip line was high because of the rapid cooling process. Therefore, it is necessary to completely restore the crystallinity before annealing for a short time. Moreover, in order to recover the crystallinity without extending the bonding layer in the depth direction and the horizontal direction (lateral direction), it is necessary to perform annealing in a low temperature region of 800 ° C. or lower.

【0003】[0003]

【発明が解決しようとする課題】しかし、通常例えば、
Si基板3上にAsのイオン注入層を形成するために
LSIで使用する注入条件(Asの加速エネルギー:
40〜80KeV、注入量:3〜5×1015
−2)では、Si基板上のAs注入領域において、
転位ループを核にして元の非晶質SiおよびSi結晶の
界面1と、Rp付近2との上下二段にわたり欠陥が発生
する〔図6参照〕。それら欠陥部分を符号1a,2aで
示す。特に深い位置の界面1に発生した欠陥1aは接合
リークを引き起こし易くなる。
However, usually, for example,
Implantation conditions used in the LSI for forming an As + ion-implanted layer on the Si substrate 3 (As + acceleration energy:
40-80 KeV, injection amount: 3-5 × 10 15 c
m −2 ), in the As + implantation region on the Si substrate,
Defects are generated in the upper and lower two stages of the interface 1 between the original amorphous Si and the Si crystal and the vicinity 2 of Rp with the dislocation loop as a nucleus [see FIG. 6]. Those defective portions are indicated by reference numerals 1a and 2a. In particular, the defect 1a generated at the interface 1 at a deep position easily causes a junction leak.

【0004】[0004]

【発明を解決するための手段及び作用】上述したよう
に、従来法ではイオン注入時においては非晶質/結晶界
面1において結晶性が乱れている領域が大きく、熱処理
時にそこを核にして結晶欠陥が発生する。そのため、注
入時に発生するダメージ層(非晶質/結晶界面の乱れ)
を少なくする必要がある。
As described above, according to the conventional method, the region where the crystallinity is disturbed at the amorphous / crystalline interface 1 is large at the time of ion implantation, and the region is used as a nucleus at the time of heat treatment to form crystals. Defects occur. Therefore, a damage layer generated at the time of implantation (turbulence at the amorphous / crystalline interface)
Need to be less.

【0005】この発明は、半導体基板上に低加速エネル
ギーでイオンを注入してイオン注入領域を形成し、低温
熱処理を付してイオン注入領域の結晶性を回復させ、次
ランプアニール法により高温・短時間熱処理を行って
高活性化された接合層を形成することを特徴とする半導
体装置の製造方法である。
According to the present invention, ions are implanted on a semiconductor substrate at a low acceleration energy to form an ion-implanted region, a low temperature heat treatment is applied to recover the crystallinity of the ion-implanted region, and then a high temperature is applied by a lamp annealing method. A method for manufacturing a semiconductor device, characterized by forming a highly activated bonding layer by performing heat treatment for a short time.

【0006】この発明では、例えばAsを用いたイオ
ン注入を10〜20KeVの低加速エネルギーで行い、
800℃の熱処理で結晶性を回復し、無欠陥接合層を形
成し、その後、ランプアニールにより、例えば1000
℃、10秒程度の短時間の高温熱処理を行い、高活性化
率の浅い無欠陥接合層を形成したものである。この発明
では、例えばまず半導体基板がSi基板であり、このS
i基板上に注入イオンとしてAsイオンあるいはBF
イオンが1×1015〜5×1015cm−2のイオン
注入量で注入される。その注入エネルギーは20KeV
以下の低加速エネルギーである。次に、イオン注入領域
の形成されたSi基板は低温熱処理に付される。この熱
処理温度は800〜850℃が好ましく、800℃がよ
り好ましい。この低温熱処理によってSi基板、特にイ
オン注入領域の結晶性が回復される。最後に、高温・短
時間熱処理が950〜1100℃で付される。その熱処
理温度は、例えば公知のランプアニール法を用いた場
合、1000℃が好ましく、しかも10秒間程度の短時
間で熱処理されるのが好ましい。
In the present invention, for example, ion implantation using As + is performed at a low acceleration energy of 10 to 20 KeV,
The crystallinity is recovered by heat treatment at 800 ° C., a defect-free bonding layer is formed, and then lamp annealing is performed to, for example, 1000 ° C.
A shallow defect-free bonding layer having a high activation rate is formed by performing high-temperature heat treatment at a temperature of 10 ° C. for a short time of about 10 seconds. In the present invention, for example, first, the semiconductor substrate is a Si substrate,
As ions or BF 2
Ions are implanted at an ion implantation dose of 1 × 10 15 to 5 × 10 15 cm −2 . The injection energy is 20 KeV
It has the following low acceleration energy. Next, the Si substrate on which the ion-implanted region is formed is subjected to a low-temperature heat treatment. The heat treatment temperature is preferably from 800 to 850C, more preferably 800C. This low-temperature heat treatment restores the crystallinity of the Si substrate, particularly the ion-implanted region. Finally, a high temperature, short time heat treatment is applied at 950-1100 ° C. The heat treatment temperature is preferably 1000 ° C. when a known lamp annealing method is used, and the heat treatment is preferably performed in a short time of about 10 seconds.

【0007】[0007]

【実施例】以下図に示す実施例にもとづいてこの発明を
詳述する。なお、これによってこの発明は限定を受ける
ものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in the drawings. The present invention is not limited by this.

【0008】サイドウォール3を備えた複数のゲート電
極4,4を有するSi基板5上に、Asイオン6を注入
して0.1μm深さdのソース・ドレインの接合層7を
形成するには、まず、ゲート4,4を有するSi基板5
を形成〔図1参照〕した後、20KeVの低加速エネル
ギー、5×1015cm−2のAsイオン注入量でイオ
ン注入を行い、イオン注入層8を形成する〔図2参
照〕。
To form a source / drain junction layer 7 having a depth of 0.1 μm by implanting As ions 6 on a Si substrate 5 having a plurality of gate electrodes 4 and 4 having sidewalls 3. First, a Si substrate 5 having gates 4 and 4
(See FIG. 1), ion implantation is performed with a low acceleration energy of 20 KeV and an As ion implantation amount of 5 × 10 15 cm −2 to form an ion implantation layer 8 (see FIG. 2).

【0009】次に、800℃、1時間の低温熱処理を窒
素ガス雰囲気で行う。この際、注入エネルギーが20K
eV以下であることから、イオン注入によるSi基板内
の結晶性が乱れる領域を小さくでき、そこを核にして結
晶欠陥が発生するのを防止できる。そのことは界面1お
よびRp付近2の特性図を描いた図4から分かる。図4
の実線で示す曲線Cは界面1における特性を示し、破線
Dで示す曲線DはRp付近2における特性を示す。この
ようにして800℃の低温熱処理で結晶性を回復して無
欠陥接合層7を形成する〔図3参照〕。
Next, a low-temperature heat treatment at 800 ° C. for one hour is performed in a nitrogen gas atmosphere. At this time, the injection energy is 20K
Since it is eV or less, the region where the crystallinity is disturbed in the Si substrate due to ion implantation can be made small, and it is possible to prevent the occurrence of crystal defects by using it as a nucleus. This can be seen from FIG. 4 which shows a characteristic diagram of the interface 1 and the vicinity 2 of Rp. FIG.
The curve C shown by the solid line in FIG. 2 shows the characteristics at the interface 1, and the curve D shown by the broken line D shows the characteristics at around Rp 2. Thus, the crystallinity is recovered by the low temperature heat treatment at 800 ° C. to form the defect-free bonding layer 7 [see FIG. 3].

【0010】続いて、結晶性を回復させた無欠陥接合層
を有するSi基板を1000℃、10秒間のランプアニ
ールに付す。この際、1000℃までは浅い接合層の深
さdが変わらない事が図5の破線で示す曲線Aで確認さ
れている。
Subsequently, the Si substrate having the defect-free bonding layer whose crystallinity has been restored is subjected to lamp annealing at 1000 ° C. for 10 seconds. At this time, it is confirmed by the curve A shown by the broken line in FIG. 5 that the depth d of the shallow junction layer does not change up to 1000 ° C.

【0011】すなわち、図5において、曲線Aはランプ
アニール温度の接合深さd依存性を示し、これにより、
1000℃以上では接合深さは上昇するものの、それ以
下では略一定の深さ(0.1μm)に維持されているこ
とが分かる。又、曲線Bは接合層のシート抵抗R依存性
を示し、ランプアニール温度の上昇とともにシート抵抗
Rが減少しているのが分かるが、本実施例の1000℃
(1000℃以下も同様)では50Ω/□以下の低い値
が得られる。
That is, in FIG. 5, the curve A shows the dependence of the lamp annealing temperature on the junction depth d.
It can be seen that the junction depth increases at 1000 ° C. or higher, but is maintained at a substantially constant depth (0.1 μm) at 1000 ° C. or lower. The curve B shows the sheet resistance R dependence of the bonding layer, and it can be seen that the sheet resistance R decreases as the lamp annealing temperature rises.
(The same applies to 1000 ° C or less), a low value of 50Ω / □ or less is obtained.

【0012】このように本実施例では、注入エネルギー
の減少と共に欠陥密度は減少し、20KeV以下のエネ
ルギーでは、特にRpおよび非晶質/結晶界面の両者に
おける欠陥はほぼ消滅することを利用してランプアニー
ルにより10秒間のアニールを行いランプアニール温度
の上昇と共にシート抵抗が減少して1000℃以上の温
度で50Ω/□以下の低い値が得られた。尚、この時1
000℃までは接合深さが変わらない事が確認された。
As described above, in the present embodiment, the defect density decreases as the implantation energy decreases, and at the energy of 20 KeV or less, the defects at both Rp and the amorphous / crystalline interface almost disappear. Annealing was performed for 10 seconds by lamp annealing, and the sheet resistance decreased as the lamp annealing temperature increased, and a low value of 50Ω / □ or less was obtained at a temperature of 1000 ° C. or higher. At this time, 1
It was confirmed that the bonding depth did not change up to 000 ° C.

【0013】[0013]

【発明の効果】以上のようにこの発明によれば、半導体
装置のソース・ドレインの接合層を形成するのに、低加
速でイオン注入を行い、低温で結晶性を回復させた後
に、ランプアニールで高温アニールを行うようにしたこ
とから、高活性化された無欠陥の浅い接合層を形成でき
る効果がある。
As described above, according to the present invention, in forming the source / drain junction layer of the semiconductor device, ion implantation is performed at a low acceleration, the crystallinity is recovered at a low temperature, and then the lamp annealing is performed. Since the high temperature annealing is performed in the above step, there is an effect that a highly activated and defect-free shallow junction layer can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明の一実施例における製造工程の
第1ステップを示す製造工程説明図である。
FIG. 1 is an explanatory diagram of a manufacturing process showing a first step of a manufacturing process according to an embodiment of the present invention.

【図2】図2は上記実施例における製造工程の第2ステ
ップを示す製造工程説明図である。
FIG. 2 is an explanatory view of a manufacturing process showing a second step of the manufacturing process in the embodiment.

【図3】図3は上記実施例における製造工程の第3ステ
ップを示す製造工程説明図である。
FIG. 3 is an explanatory diagram of a manufacturing process showing a third step of the manufacturing process in the embodiment.

【図4】図4は欠陥密度に対するそのAsイオン注入エ
ネルギー依存性を示す特性図である。
FIG. 4 is a characteristic diagram showing the dependency of defect density on As ion implantation energy.

【図5】図5はシート抵抗及び接合層の接合深さのラン
プアニール温度依存性を示す特性図である。
FIG. 5 is a characteristic diagram showing the lamp annealing temperature dependence of the sheet resistance and the junction depth of the junction layer.

【図6】図6はAsイオン注入層の結晶欠陥を示す構成
説明図である。
FIG. 6 is a configuration explanatory view showing crystal defects of an As ion implantation layer.

【符号の説明】[Explanation of symbols]

5 Si基板 6 Asイオン 7 接合層 8 イオン注入領域 5 Si substrate 6 As ions 7 Bonding layer 8 Ion implantation region

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に低加速エネルギーでイオ
ンを注入してイオン注入領域を形成し、低温熱処理を付
してイオン注入領域の結晶性を回復させ、次にランプア
ニール法により高温・短時間熱処理を行って高活性化さ
れた接合層を形成することを特徴とする半導体装置の製
造方法。
1. A by implanting ions at a low acceleration energy on a semiconductor substrate to form an ion implanted region, denoted by the low-temperature heat treatment to restore the crystallinity of the ion-implanted region, then Ranpua
A method for manufacturing a semiconductor device, which comprises performing a high-temperature and short-time heat treatment by a Neil method to form a highly activated bonding layer.
【請求項2】 低加速エネルギーが、20keV以下で
ある請求項1記載の半導体装置の製造方法。
2. The method according to claim 1 , wherein the low acceleration energy is 20 keV or less.
2. A method for manufacturing a semiconductor device according to claim 1.
JP2417713A 1990-02-20 1990-12-14 Method for manufacturing semiconductor device Expired - Lifetime JP2669722B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2417713A JP2669722B2 (en) 1990-12-14 1990-12-14 Method for manufacturing semiconductor device
US07/932,746 US5298446A (en) 1990-02-20 1992-08-25 Process for producing semiconductor device
US07/979,457 US5420079A (en) 1990-02-20 1992-11-20 Process for producing semiconductor device comprising two step annealing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417713A JP2669722B2 (en) 1990-12-14 1990-12-14 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04216618A JPH04216618A (en) 1992-08-06
JP2669722B2 true JP2669722B2 (en) 1997-10-29

Family

ID=18525771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417713A Expired - Lifetime JP2669722B2 (en) 1990-02-20 1990-12-14 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2669722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121120A (en) * 1997-08-07 2000-09-19 Nec Corporation Method for manufacturing semiconductor device capable of flattening surface of selectively-grown silicon layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294080A (en) * 1976-02-03 1977-08-08 Nec Corp Process for preparing semi-conductors
JPS6245179A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH04216618A (en) 1992-08-06

Similar Documents

Publication Publication Date Title
KR100875909B1 (en) Method for manufacturing SIO wafers and SIO wafers obtained by this method
JP3182893B2 (en) Method for manufacturing thin film transistor
JPS62501320A (en) Semiconductor with shallow hyper-doped region and its processing method using implanted impurities
JPH10284431A (en) Manufacture of soi substrate
JPH11145436A (en) Laminated soi substrate and manufacture thereof
JPH08191140A (en) Manufacture of soi substrate
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
CN100474513C (en) Method for manufacturing a semiconductor device and semiconductor device made thereby
JP2669722B2 (en) Method for manufacturing semiconductor device
JP3890270B2 (en) Thin film transistor manufacturing method
JP2669722C (en)
JP3450163B2 (en) Method for manufacturing semiconductor device
JPH0411736A (en) Semiconductor device and manufacture thereof
JP3732472B2 (en) Manufacturing method of MOS transistor
JPH1041241A (en) Manufacturing method of semiconductor device
KR100545990B1 (en) How to remove metal impurities in silicon wafer
JPH10214843A (en) Manufacturing method of semiconductor substrate
JPH05152304A (en) Manufacture of semiconductor substrate
JP2527545B2 (en) Method for manufacturing semiconductor device
JP3296304B2 (en) Method for manufacturing semiconductor device
JPH0387022A (en) Formation of diffused layer
JPH0590272A (en) Semiconductor device and manufacture thereof
JPH05283355A (en) Manufacture of semiconductor device
JPH1187258A (en) Manufacture of semiconductor device
JPS62235726A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14