JP2669096B2 - Optical modulator and manufacturing method thereof - Google Patents

Optical modulator and manufacturing method thereof

Info

Publication number
JP2669096B2
JP2669096B2 JP2050917A JP5091790A JP2669096B2 JP 2669096 B2 JP2669096 B2 JP 2669096B2 JP 2050917 A JP2050917 A JP 2050917A JP 5091790 A JP5091790 A JP 5091790A JP 2669096 B2 JP2669096 B2 JP 2669096B2
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
modulator
arm portion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2050917A
Other languages
Japanese (ja)
Other versions
JPH03252619A (en
Inventor
俊哉 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2050917A priority Critical patent/JP2669096B2/en
Publication of JPH03252619A publication Critical patent/JPH03252619A/en
Application granted granted Critical
Publication of JP2669096B2 publication Critical patent/JP2669096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光変調器、特に光導波型光変調器に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator, and more particularly to an optical waveguide type optical modulator.

〔従来の技術〕[Conventional technology]

光通信において変調器は重要なキーデバイスである。
特に導波型外部変調器はチャーピングなく高速変調可能
という優れた特徴を持っている。この導波型外部変調器
の一方式として光の分岐干渉を利用するマッハツェンダ
ー型変調器(以後MZ変調器と呼ぶ)が知られている。Ti
拡散LiNbO3導波路を用いたMZ変調器を例に取ってその動
作原理を説明する。
Modulators are important key devices in optical communications.
Particularly, the waveguide type external modulator has an excellent feature that high-speed modulation can be performed without chirping. A Mach-Zehnder modulator (hereinafter referred to as an MZ modulator) that utilizes optical branching interference is known as one method of this waveguide-type external modulator. Ti
The operating principle of an MZ modulator using a diffused LiNbO 3 waveguide will be described as an example.

第4図はこのMZ変調器を示す斜視図である。LiNbO3
板11上にTiを拡散することにより単一モード光導波路12
が形成されている。この光導波路12はY分岐により二つ
のアームに分かれ、制御用電極13を通過後再びY分岐に
より合流する。また光導波路12と制御用電極13の間には
電極による光の吸収を防ぐためのバッファ層としてSiO2
膜14が形成されている。
FIG. 4 is a perspective view showing the MZ modulator. Single mode optical waveguide 12 by diffusing Ti on LiNbO 3 substrate 11
Are formed. The optical waveguide 12 is divided into two arms by the Y branch, passes through the control electrode 13, and joins again by the Y branch. Further, between the optical waveguide 12 and the control electrode 13, SiO 2 is used as a buffer layer for preventing light absorption by the electrode.
A film 14 is formed.

第5図はMZ変調器の平面図である。第5図(A)のよ
うに制御用電極13間に電圧が印加されていない場合、光
導波路12に入射した0次モード光61はY分岐部分で互い
に位相の等しい、つまり同相な光62,63に2分岐し、同
相のまま合流し0次モードの出力光64となる。
FIG. 5 is a plan view of the MZ modulator. When no voltage is applied between the control electrodes 13 as shown in FIG. 5 (A), the 0th-order mode light 61 incident on the optical waveguide 12 has the same phase in the Y branch portion, that is, the in-phase light 62, The light is branched into two light beams 63 and merged in the same phase to become the output light 64 of the zero-order mode.

第5図(B)のように制御用電極13間に半波長電圧に
相当する電圧がかけられている場合、2分岐した同相な
光はLiNbO3の電気光学効果により電極部分通過後互いに
位相の反転した逆相な光65,66となり合流部分では1次
モード光67が発生する。単一モード光導波路12中では1
次モード光67はカットオフとなり導波できないため基板
内に放射する、このため出力光は現われない。よって制
御用電極13間に変調信号電圧を印加することにより光の
変調を行うことができる。
When a voltage corresponding to a half-wave voltage is applied between the control electrodes 13 as shown in FIG. 5 (B), the two in-phase light beams are in phase with each other after passing through the electrode portions due to the electro-optic effect of LiNbO 3 . The light 65 and 66 are inverted and have opposite phases, and a first-order mode light 67 is generated at the merging portion. 1 in the single mode optical waveguide 12
The second mode light 67 is cut off and cannot be guided, so that it is emitted into the substrate. Therefore, no output light appears. Therefore, light can be modulated by applying a modulation signal voltage between the control electrodes 13.

以上MZ変調器の動作原理をTi拡散LiNbO3光導波路の場
合を例に取って説明したが半導体等他の電気光学効果を
持つ光導波路でも同様であり、更にストレス印加、電流
注入等の手段により導波路屈折率を変え二つのアーム間
の実効的な光路長を変えることができればMZ変調器を構
成することができる。
The operation principle of the MZ modulator has been described above by taking the case of a Ti-diffused LiNbO 3 optical waveguide as an example, but the same applies to other optical waveguides having an electro-optical effect such as semiconductor, and further, by applying stress, current injection, etc. If the waveguide refractive index can be changed to change the effective optical path length between the two arms, an MZ modulator can be constructed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

導波形外部変調器の小型化のためには制御電極による
電界分布と光導波路を伝播する光のフィールド分布のオ
ーバーラップを大きくすることにより変調効率を上げ、
電極長を短縮する方法が有効である。つまり導波光の光
フィールド分布を小さく、しかも制御用電極近傍に分布
するように閉じこめることが重要となる。しかしこの場
合分岐の合流部分でも光の閉じこめが強くなるため1次
モードの放射に要する距離は相対的に長くなってしま
う。このため変調効率向上による電極長短縮が必ずしも
素子全長の短縮に結びつかないという問題がある。
In order to miniaturize the waveguide type external modulator, the modulation efficiency is increased by increasing the overlap between the electric field distribution by the control electrode and the field distribution of the light propagating in the optical waveguide.
A method of shortening the electrode length is effective. That is, it is important to confine the optical field distribution of the guided light so that it is distributed near the control electrode. However, in this case, the confinement of light becomes stronger even at the merging portion of the branches, so that the distance required for the emission of the first-order mode becomes relatively long. Therefore, there is a problem that shortening the electrode length by improving the modulation efficiency does not necessarily lead to shortening the total element length.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の光変調器は、器板上に屈折率を増加させる作
用を持つ不純物を拡散することにより形成した光導波路
が、入射光導波路、分岐光導波路、アーム部、合流光導
波路、出射光導波路から成り、アーム部に制御用電極を
備えた光変調器でにおいて、屈折率を減少させる作用を
持つ別の不純物を導入して前記出射光導波路の屈折率を
前記アーム部の屈折率より低く、かつ、屈折率を一定と
したことを特徴とする。
In the optical modulator of the present invention, the optical waveguide formed by diffusing the impurity having the action of increasing the refractive index on the device plate includes an incident optical waveguide, a branched optical waveguide, an arm portion, a converging optical waveguide, and an outgoing optical waveguide. In the optical modulator having a control electrode in the arm portion, another impurity having a function of decreasing the refractive index is introduced to make the refractive index of the output optical waveguide lower than the refractive index of the arm portion. Further, it is characterized in that the refractive index is fixed.

〔作用〕[Action]

本発明においてはMZ変調器の電極部分の光導波路を電
極近傍に強く閉じこめることにより変調効率を向上し電
極長の短縮を図る、更に合流部分の光導波路に屈折率を
減少させる作用を持つ別の不純物を導入することにより
部分的に光の閉じこめを弱くし1次モード光の放射に要
する距離を短縮する。つまり電極部分と合流部分で光導
波路の不純物組成を変えることにより各々の部分で最適
な光閉じこめ条件を実現し素子全長の短縮を図ってい
る。
In the present invention, by strongly confining the optical waveguide of the electrode portion of the MZ modulator in the vicinity of the electrode, the modulation efficiency is improved to shorten the electrode length, and the optical waveguide of the confluent portion has another function of reducing the refractive index. The introduction of impurities partially weakens the light confinement and shortens the distance required to emit the first-order mode light. In other words, by changing the impurity composition of the optical waveguide between the electrode portion and the merging portion, the optimum optical confinement condition is realized in each portion and the total length of the element is shortened.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す斜視図である。 FIG. 1 is a perspective view showing a first embodiment of the present invention.

Z−Cut LiNbO3基板11上に以下の条件で光導波路12を
形成する。この光導波路12は、入射光導波路12a、分岐
光導波路12b、アーム部12c、合流光導波路12d、出射光
導波路12eから成っている。はじめに屈折率を増加させ
る不純物としてTiを光導波路幅W=8μm、拡散前のTi
膜厚をd1=800Åとして1050℃・8時間空気雰囲気中で
拡散を行う。さらに屈折率を減少させる不純物としてMg
Oを合流後の出射光導波路1に幅W=8μm、拡散前のM
gO膜厚をd2=450Åとして950℃・4時間酸素雰囲気中で
拡散を行う。
An optical waveguide 12 is formed on a Z-Cut LiNbO 3 substrate 11 under the following conditions. The optical waveguide 12 is composed of an incident optical waveguide 12a, a branch optical waveguide 12b, an arm portion 12c, a merging optical waveguide 12d, and an outgoing optical waveguide 12e. First, Ti as an impurity for increasing the refractive index is made of Ti before diffusion with an optical waveguide width W = 8 μm.
Diffusion is performed in an air atmosphere at 1050 ° C. for 8 hours at a film thickness d 1 = 800 °. Mg as an impurity to further reduce the refractive index
O is merged into the outgoing optical waveguide 1 after merging, with a width W = 8 μm and M before diffusion.
Diffusion is performed in an oxygen atmosphere at 950 ° C. for 4 hours with a gO film thickness of d 2 = 450 °.

その後バッファ層としてSiO2膜14を膜厚3000Å成膜
し、その上部に制御用電極13を形成する。
Thereafter, an SiO 2 film 14 is formed as a buffer layer to a thickness of 3000 μm, and a control electrode 13 is formed thereon.

アーム部12cの拡散前のTi膜厚d1は拡散後の光導波路
の伝播モードが1次モードカットオフよりもわずかに弱
い閉じ込め強さとなるように設定されている。また合流
後の出射光導波路12eは屈折率を増加させるTiと屈折率
を減少させるMgOを二重に拡散することにより1次モー
ドカットオフよりも十分に弱い閉じ込め強さとなるよう
に設定されている。これによりアーム部12cでは制御用
電極13による電界分布と伝播する光のフィールド分布の
オーバーラップが最大になるため変調効率が向上し電極
長を従来よりも短縮することができる、また合流後の出
射光導波路12eでは光の閉じ込めが弱いため0次モード
光は伝播するが、電圧を印加したときに発生する1次モ
ード光は十分に短い距離で光導波路外に放射させること
ができる。
The Ti film thickness d 1 of the arm portion 12c before diffusion is set so that the propagation mode of the optical waveguide after diffusion has a confinement strength slightly weaker than the first-order mode cutoff. The exiting optical waveguide 12e after the merging is set to have a confinement strength sufficiently weaker than the first-order mode cutoff by doubly diffusing Ti that increases the refractive index and MgO that decreases the refractive index. . As a result, in the arm portion 12c, the overlap between the electric field distribution by the control electrode 13 and the field distribution of the propagating light is maximized, so that the modulation efficiency is improved and the electrode length can be reduced as compared with the conventional case. In the optical waveguide 12e, light confinement is weak so that the 0th-order mode light propagates, but the 1st-order mode light generated when a voltage is applied can be emitted to the outside of the optical waveguide at a sufficiently short distance.

このようにTiとMgOを選択的に二重拡散することによ
り電極部分と合流部分の光閉じ込め強さを最適化しMZ変
調器の素子全長を短縮することができる。
By selectively double-diffusing Ti and MgO in this way, the optical confinement strength at the electrode portion and the merging portion can be optimized and the element total length of the MZ modulator can be shortened.

第2図は本発明の第2の実施例を示す斜視図である。 FIG. 2 is a perspective view showing a second embodiment of the present invention.

本実施例では光導波路12を形成するため、はじめにTi
を光導波路幅W=8μm、拡散前のTi膜厚をd1として拡
散し、次にMgOを合流後及び分岐前の直線部分、すなわ
ち、入射光導波路12aと出射光導波路12eに幅W=8μ
m、拡散前のMgO膜厚をd2として拡散する。その後バッ
ファ層としてSiO2膜14を膜厚3000Å成膜し、その上部に
制御用電極13を形成する。これにより変調器は入射側、
出射側とも対称な構造となり、それぞれを区別して使用
する必要がなくなる。
In the present embodiment, in order to form the optical waveguide 12, first, Ti
With the optical waveguide width W = 8 μm and the Ti film thickness before diffusion as d 1 , and then MgO is merged and before the branching, that is, the incident light waveguide 12a and the outgoing optical waveguide 12e have a width W = 8 μm.
m, to spread the MgO film thickness before diffusion as d 2. Thereafter, an SiO 2 film 14 is formed as a buffer layer to a thickness of 3000 μm, and a control electrode 13 is formed thereon. This allows the modulator to be on the entrance side,
The output side also has a symmetrical structure, so that it is not necessary to use them separately.

第3図は本発明の第3の実施例を示す斜視図である。 FIG. 3 is a perspective view showing a third embodiment of the present invention.

本実施例では光導波路12を形成するため、Tiを拡散前
の膜厚d1として拡散し、その後合流後の出射光導波路12
e及び分岐前の入射光導波路12aのMgO膜厚d2、光導波路1
2の合流光導波路12d及び分岐光導波路12bにMgO膜厚テー
パ部37を設けて拡散前のMgO膜厚をゆるやかに変えて拡
散することにより、光閉じ込め強さの急激な変化による
モード変換損失の低減を図っている。
In the present embodiment, since the optical waveguide 12 is formed, Ti is diffused as the film thickness d 1 before diffusion, and then the outgoing optical waveguide 12 after merging.
e and the MgO film thickness d 2 of the incident optical waveguide 12a before branching, the optical waveguide 1
By providing the MgO film thickness taper portion 37 in the merging optical waveguide 12d and the branching optical waveguide 12b of 2 and gently changing the MgO film thickness before diffusion to diffuse, the mode conversion loss due to the abrupt change of the optical confinement strength We are trying to reduce it.

以上Z−Cut LiNbO3基板にTi拡散を用いて光導波路を
形成した場合を例として説明したが他の基板方位、ある
いはGsAs、InPなどの半導体その他の基板材料に不純物
拡散を用いてMZ変調器を構成した場合でも本発明による
方法が有効なことは、MZ変調器の原理から考えて明らか
である。
The case where the optical waveguide is formed by using Ti diffusion on the Z-Cut LiNbO 3 substrate has been described above as an example, but the MZ modulator is formed by using impurity diffusion on another substrate orientation, or a semiconductor or other substrate material such as GsAs or InP. It is apparent from the principle of the MZ modulator that the method according to the present invention is effective even when the above is configured.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によればMZ変調器の電極部
分及び合流部分の光閉じ込め強さをそれぞれ独立した最
適な強さに制御することができ、それにより素子全長を
短縮し小型な光変調器を得ることができる。
As described above, according to the present invention, it is possible to control the optical confinement strengths of the electrode portion and the merging portion of the MZ modulator to the optimum strengths independent of each other, thereby shortening the total length of the element and reducing the size of the optical modulator. You can get a bowl.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例を示す斜視図。第2図は
本発明の第2の実施例を示す斜視図。第3図は本発明の
第3の実施例を示す斜視図。第4図は従来例を示す斜視
図。第5図はマッハツェンダー型変調器の動作原理を示
す平面図である。 11……Z−Cut LiNbO3基板、12……光導波路、13……制
御用電極、14……SiO2バッファ層、12a……分岐前の入
射光導波路、12c……アーム部、12e……合流後の出射光
導波路、61……0次モード入射光、62,63……互いに同
相な導波光、64……0次モード出射光、65,66……互い
に逆相な導波光、67……1次モード光。
FIG. 1 is a perspective view showing a first embodiment of the present invention. FIG. 2 is a perspective view showing a second embodiment of the present invention. FIG. 3 is a perspective view showing a third embodiment of the present invention. FIG. 4 is a perspective view showing a conventional example. FIG. 5 is a plan view showing the operation principle of the Mach-Zehnder modulator. 11 …… Z-Cut LiNbO 3 substrate, 12 …… optical waveguide, 13 …… control electrode, 14 …… SiO 2 buffer layer, 12a …… incident optical waveguide before branching, 12c …… arm part, 12e …… Output optical waveguide after merging, 61 …… 0th-order mode incident light, 62,63 …… In-phase guided light, 64 …… 0th-order mode emitted light, 65,66 …… Reverse-phase guided light, 67… ... First-order mode light.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に屈折率を増加させる作用を持つ不
純物を拡散させることにより形成した光導波路が、入射
光導波路、分岐光導波路、アーム部、合流光導波路、出
射光導波路から成り、アーム部に制御用電極を備えた光
変調器において、屈折率を減少させる作用を持つ別の不
純物を前記合流光導波路と前記出射光導波路に導入し
て、前記出射光導波路の屈折率を前記アーム部の屈折率
より低くし、かつ、前記合流光導波路の屈折率を出射光
導波路に向かって減少させ、減少した屈折率を前記出射
光導波路でそのまま一定に保ったことを特徴とする光変
調器。
1. An optical waveguide formed by diffusing an impurity having an action of increasing a refractive index on a substrate comprises an incident optical waveguide, a branch optical waveguide, an arm portion, a converging optical waveguide, and an outgoing optical waveguide. In the optical modulator having a control electrode in its part, another impurity having a function of reducing the refractive index is introduced into the merging optical waveguide and the output optical waveguide, and the refractive index of the output optical waveguide is adjusted to the arm portion. The optical modulator is characterized in that the refractive index of the merging optical waveguide is decreased toward the output optical waveguide, and the reduced refractive index is kept constant in the output optical waveguide.
【請求項2】基板上に屈折率を増加させる作用を持つ不
純物を拡散して入射光導波路、分岐光導波路、アーム
部、合流光導波路、出射光導波路を形成し、前記アーム
部に制御用電極を形成する光変調器の製造方法におい
て、屈折率を増加させる作用を持つ不純物を拡散して入
射光導波路、分岐光導波路、アーム部、合流光導波路、
出射光導波路を形成した後、屈折率を減少させる作用を
持つ別の不純物を前記合流光導波路及び前記出射光導波
路に拡散して、前記出射光導波路の屈折率を前記アーム
部の屈折率より低くし、かつ、前記合流光導波路の屈折
率を出射光導波路に向かって減少させ、減少した屈折率
を前記出射光導波路でそのまま一定とすることを特徴と
する光変調器の製造方法。
2. An incident optical waveguide, a branched optical waveguide, an arm portion, a converging optical waveguide, and an outgoing optical waveguide are formed by diffusing impurities having an action of increasing the refractive index on a substrate, and a control electrode is provided on the arm portion. In a method of manufacturing an optical modulator for forming a film, an impurity which has an action of increasing a refractive index is diffused to make an incident optical waveguide, a branch optical waveguide, an arm portion, a merging optical waveguide,
After forming the output optical waveguide, another impurity having a function of reducing the refractive index is diffused into the converging optical waveguide and the output optical waveguide, so that the output optical waveguide has a lower refractive index than the arm portion. In addition, the method for manufacturing an optical modulator is characterized in that the refractive index of the converging optical waveguide is decreased toward the output optical waveguide, and the decreased refractive index is kept constant in the output optical waveguide.
JP2050917A 1990-03-02 1990-03-02 Optical modulator and manufacturing method thereof Expired - Fee Related JP2669096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050917A JP2669096B2 (en) 1990-03-02 1990-03-02 Optical modulator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050917A JP2669096B2 (en) 1990-03-02 1990-03-02 Optical modulator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03252619A JPH03252619A (en) 1991-11-11
JP2669096B2 true JP2669096B2 (en) 1997-10-27

Family

ID=12872144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050917A Expired - Fee Related JP2669096B2 (en) 1990-03-02 1990-03-02 Optical modulator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2669096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980364A (en) * 1995-09-13 1997-03-28 Nec Corp Waveguide type optical device
CN106444095B (en) * 2016-11-03 2018-12-28 吉林大学 A kind of organic polymer electro-optic modulator and preparation method thereof with loss balancing function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697287B2 (en) * 1984-12-06 1994-11-30 日本電気株式会社 Light control circuit manufacturing method
JPH0610691B2 (en) * 1984-12-28 1994-02-09 日本電気株式会社 Light control element module

Also Published As

Publication number Publication date
JPH03252619A (en) 1991-11-11

Similar Documents

Publication Publication Date Title
US6571038B1 (en) Multimode interference coupler with tunable power splitting ratios and method of tuning
US6501867B2 (en) Chirp compensated Mach-Zehnder electro-optic modulator
JP2927795B2 (en) Light switch
WO2010082673A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
JP2746216B2 (en) Light switch
JP2705664B2 (en) Light switch
JPH06235891A (en) Optical waveguide device
JP2669096B2 (en) Optical modulator and manufacturing method thereof
JPH1184434A (en) Light control circuit and its operation method
JP2000028979A (en) Optical control element independent of polarization
JPH05173099A (en) Optical control element
US5537497A (en) Optimized electrode geometries for digital optical switches
JPH02136822A (en) Optical modulator
JPH01201609A (en) Optical device
JPH02250027A (en) Optical modulator
KR100207599B1 (en) Low electric power optical switch and the production method thereof
JPS6396626A (en) Waveguide type light control element
JP3164124B2 (en) Light switch
JPH0553157A (en) Optical control device
JP3139009B2 (en) Light switch
JPS6262304A (en) Y branched optical waveguide device
JPH01128037A (en) Optical switching and modulating device
JP2001201725A (en) Optical modulation method and optical modulator
JPH06250131A (en) Optical control element
Zhu et al. Proposal for high extinction ratio LiNbO3 optical waveguide cutoff modulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees