JPH03252619A - Light modulator - Google Patents
Light modulatorInfo
- Publication number
- JPH03252619A JPH03252619A JP5091790A JP5091790A JPH03252619A JP H03252619 A JPH03252619 A JP H03252619A JP 5091790 A JP5091790 A JP 5091790A JP 5091790 A JP5091790 A JP 5091790A JP H03252619 A JPH03252619 A JP H03252619A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- light
- modulator
- refractive index
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 64
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 230000000694 effects Effects 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 239000010936 titanium Substances 0.000 abstract 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052719 titanium Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 11
- 238000004904 shortening Methods 0.000 description 4
- 229910003327 LiNbO3 Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005773 Enders reaction Methods 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光変調器、特に光導波型光変調器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical modulator, and particularly to an optical waveguide type optical modulator.
光通信において変調器は重要なキーデバイスである。特
に導波型外部変調器はチャーピングなく高速変調可能と
いう優れた特徴を持っている。この導波型外部変調器の
一方式として光の分岐干渉を利用するマツハツエンダ−
型変調器(以後MZ変調器と呼ぶ)が知られている。T
i拡散LiNbO3導波路を用いたMZ変調器を例に取
ってその動作原理を説明する。Modulators are important key devices in optical communications. In particular, waveguide external modulators have the excellent feature of being capable of high-speed modulation without chirping. Matsuhatsu Ender uses optical branching interference as a method of this waveguide external modulator.
type modulators (hereinafter referred to as MZ modulators) are known. T
The operating principle of an MZ modulator using an i-diffusion LiNbO3 waveguide will be explained as an example.
第4図はこのMZ変調器を示す斜視図である。FIG. 4 is a perspective view showing this MZ modulator.
LiNb09基板11上にTiを拡散することにより単
一モード光導波路12が形成されている。A single mode optical waveguide 12 is formed by diffusing Ti on a LiNb09 substrate 11.
この光導波路12は7分岐により二つのアームに分かれ
、制御用電極13を通過後再び7分岐により合流する。This optical waveguide 12 is divided into two arms by seven branches, and after passing through the control electrode 13, the two arms are merged again by seven branches.
また光導波路12と制御用電極13の間には電極による
光の吸収を防ぐためのバッファ層としてS i 02膜
14が形成されている。Further, an Si 02 film 14 is formed between the optical waveguide 12 and the control electrode 13 as a buffer layer to prevent absorption of light by the electrode.
第5図はMZ変調器の平面図である。第5図(A)のよ
うに制御用電極13間に電圧が印加されていない場合、
光導波路12に入射した0次モード光61はY分岐部分
で互いに位相の等しい、つまり同相な光62.63に2
分岐し、同相のまま合流し0次モードの出力光64とな
る。FIG. 5 is a plan view of the MZ modulator. When no voltage is applied between the control electrodes 13 as shown in FIG. 5(A),
The zero-order mode light 61 incident on the optical waveguide 12 is divided into two beams 62 and 63 that have the same phase, that is, in-phase, at the Y branch part.
The light beams are branched and merged while remaining in the same phase to become output light 64 in the zero-order mode.
第5図(B)のように制御用電極13間に半波長電圧に
相当する電圧がかけられている場合、2分岐した同相な
光はLiNbO3の電気光学効果により電極部分通過後
互いに位相の反転した逆相な光65.66となり合流部
分では1次モード光67が発生する。単一モード光導波
路12中では1次モード光67はカットオフとなり導波
できないため基板内に放射する、このため出力光は現わ
れない。よって制御用電極13間に変調信号電圧を印加
することにより光の変調を行うことができる。When a voltage equivalent to a half-wavelength voltage is applied between the control electrodes 13 as shown in FIG. 5(B), the two branches of in-phase light have phases reversed after passing through the electrode part due to the electro-optic effect of LiNbO3. The light beams 65 and 66 have opposite phases, and a first-order mode light 67 is generated at the merged portion. In the single mode optical waveguide 12, the first mode light 67 is cut off and cannot be guided, so it is radiated into the substrate, so no output light appears. Therefore, by applying a modulation signal voltage between the control electrodes 13, light can be modulated.
以上MZ変調器の動作原理をTi拡散LiNbo3光導
波路の場合を例に取って説明したが半導体等信の電気光
学効果を持つ光導波路でも同様であり、更にストレス印
加、電流注入等の手段により導波路屈折率を変え二つの
アーム間の実効的な光路長を変えることができればMZ
変調器を構成することができる。The operating principle of the MZ modulator was explained above using a Ti-diffused LiNbo3 optical waveguide as an example, but the same applies to optical waveguides with electro-optic effects such as semiconductors, and furthermore, it can be guided by means of stress application, current injection, etc. If the effective optical path length between the two arms can be changed by changing the waveguide refractive index, MZ
A modulator can be configured.
導波形外部変調器の小型化のためには制御用電極による
電界分布と光導波路を伝播する光のフィールド分布のオ
ーバーラツプを大きくすることにより変調効率を上げ、
電極長を短縮する方法が有効である。つまり導波光の光
フィールド分布を小さく、しかも制御用電極近傍に分布
するように閉じこめることが重要となる。しかしこの場
合分岐の合流部分でも光の閉じこめが強くなるため11
次モードの放射に要する距離は相対的に長くなってしま
う。このため変調効率向上による電極長短縮が必ずしも
素子全長の短縮に結びつかないという問題がある。In order to miniaturize the waveguide external modulator, the modulation efficiency is increased by increasing the overlap between the electric field distribution by the control electrode and the field distribution of the light propagating through the optical waveguide.
An effective method is to shorten the electrode length. In other words, it is important to keep the optical field distribution of the guided light small and to confine it so that it is distributed near the control electrode. However, in this case, the confinement of light becomes strong even at the junction of the branches, so 11
The distance required for radiation of the next mode becomes relatively long. Therefore, there is a problem that shortening the electrode length due to improved modulation efficiency does not necessarily lead to shortening the overall length of the device.
本発明は、基板上に屈折率を増加させる作用を持つ不純
物を拡散することにより形成した光導波路が、入射光導
波路、分岐光導波路、アーム部、合流光導波路、出射光
導波路から成り、アーム部に制御用電極を備えた光変調
器において、少なくとも前記出射光導波路に屈折率を減
少させる作用を持つ別の不純物を導入したことを特徴と
する構成になっている。In the present invention, an optical waveguide formed by diffusing an impurity having an effect of increasing the refractive index on a substrate is composed of an input optical waveguide, a branch optical waveguide, an arm part, a merging optical waveguide, and an output optical waveguide, and the arm part In the optical modulator including a control electrode, the structure is characterized in that another impurity having an effect of reducing the refractive index is introduced into at least the output optical waveguide.
本発明においてはMZ変調器の電極部分の光導波路を電
極近傍に強く閉じこめることにより変調効率を向上し電
極長の短縮を図る、更に合流部分の光導波路に屈折率を
減少させる作用を持つ別の不純物を導入することにより
部分的に光の閉じこめを弱くし1次モード光の放射に要
する距離を短縮する。つまり電極部分と合流部分で光導
波路の不純物組成を変えることにより各々の部分で最適
な光閉じこめ条件を実現し素子全長の短縮を図っている
。In the present invention, the optical waveguide of the electrode part of the MZ modulator is strongly confined near the electrode to improve the modulation efficiency and shorten the electrode length, and furthermore, the optical waveguide of the converging part is provided with another layer having the effect of reducing the refractive index. By introducing impurities, the confinement of light is partially weakened and the distance required for emission of first-order mode light is shortened. In other words, by changing the impurity composition of the optical waveguide at the electrode section and the confluence section, the optimal light confinement conditions are achieved at each section, thereby shortening the overall length of the device.
次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の第1の実施例を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of the present invention.
Z−Cut LiNbO5基板11上に以下の条件で
光導波路12を形成する。この光導波路12は、入射光
導波路12a、分岐光導波路12b、アーム部12c、
合流光導波路12d、出射光導波路12eから成ってい
る。はじめに屈折率を増加させる不純物としてTiを光
導波路幅W=8μm、拡散前のTi膜厚をdl−800
人として1050℃・8時間空気雰囲気中で拡散を行う
。さらに屈折率を減少させる不純物としてMgOを合流
後の出射光導波路1に幅W=8μm、拡散前のMgO膜
厚をd2−450人として950℃・4時間酸素雰囲気
中で拡散を行う。An optical waveguide 12 is formed on a Z-Cut LiNbO5 substrate 11 under the following conditions. This optical waveguide 12 includes an input optical waveguide 12a, a branch optical waveguide 12b, an arm portion 12c,
It consists of a merging optical waveguide 12d and an output optical waveguide 12e. First, Ti was added as an impurity to increase the refractive index, and the optical waveguide width W was 8 μm, and the Ti film thickness before diffusion was dl-800.
Diffusion is performed as a human in an air atmosphere at 1050°C for 8 hours. Furthermore, MgO is added as an impurity to reduce the refractive index and is diffused in an oxygen atmosphere at 950° C. for 4 hours with a width W of 8 μm and an MgO film thickness of d2-450 mm in the output optical waveguide 1 after merging.
その後バッファ層として5i02膜14を膜厚3000
人成膜し、その上部に制御用電極1.3を形成する。After that, a 5i02 film 14 with a thickness of 3000 was added as a buffer layer.
A film is formed manually, and a control electrode 1.3 is formed on the film.
アーム部12cの拡散前のTi膜厚d0は拡散後の光導
波路の伝播モードが1次モードカットオフよりもわずか
に弱い閉じ込め強さとなるように設定されている。また
合流後の出射光導波路12eは屈折率を増加させるTi
と屈折率を減少させるMgOを二重に拡散することによ
り1次モードカットオフよりも十分に弱い閉じ込め強さ
となるように設定されている。これによりアーム部12
Cでは制御用電極13による電界分布と伝播する光のフ
ィールド分布のオーバーラツプが最大になるため変調効
率が向上し電極長を従来よりも短縮することができる、
また合流後の出射光導波路12eでは光の閉じ込めか弱
いため0次モード光は伝播するが、電圧を印加したとき
に発生する1次モード光は十分に短い距離で光導波路外
に放射させることができる。The Ti film thickness d0 of the arm portion 12c before diffusion is set so that the propagation mode of the optical waveguide after diffusion has a confinement strength slightly weaker than the primary mode cutoff. Furthermore, the output optical waveguide 12e after merging is made of Ti, which increases the refractive index.
By doubly diffusing MgO, which reduces the refractive index, the confinement strength is set to be sufficiently weaker than the first-order mode cutoff. As a result, the arm portion 12
In C, since the overlap between the electric field distribution by the control electrode 13 and the field distribution of the propagating light is maximized, the modulation efficiency is improved and the electrode length can be made shorter than before.
In addition, in the output optical waveguide 12e after merging, the 0th mode light propagates because the confinement of light is weak, but the 1st mode light generated when a voltage is applied can be radiated out of the optical waveguide over a sufficiently short distance. .
このようにTiとMgOを選択的に二重拡散することに
より電極部分と合流部分の光閉じ込め強さを最適化しM
Z変調器の素子全長を短縮することができる。By selectively double-diffusing Ti and MgO in this way, the light confinement strength at the electrode part and the convergence part can be optimized.
The total element length of the Z modulator can be shortened.
第2図は本発明の第2の実施例を示す斜視図である。FIG. 2 is a perspective view showing a second embodiment of the invention.
本実施例では光導波路12を形成するなめ、はじめにT
iを光導波路幅W=8μm、拡散前のTi膜厚をdlと
して拡散し、次にMgOを合流後及び分岐前の直線部分
、すなわち、入射光導波路12aと出射光導波路12e
に幅W=8μm、拡散前のMgO膜厚をd2として拡散
する。その後バッファ層として5i02膜14を膜厚3
000人成膜し、その上部に制御用電極13を形成する
。これにより変調器は入射側、出射側とも対称な構造と
なり、それぞれを区別して使用する必要がなくなる。In this embodiment, in order to form the optical waveguide 12, first T
i is the optical waveguide width W = 8 μm, the Ti film thickness before diffusion is dl, and then MgO is diffused into the straight portion after merging and before branching, that is, the input optical waveguide 12a and the output optical waveguide 12e.
The width W is 8 μm, and the MgO film thickness before diffusion is d2. After that, a 5i02 film 14 with a thickness of 3 is used as a buffer layer.
The control electrode 13 is formed on top of the film. As a result, the modulator has a symmetrical structure on both the input side and the output side, and there is no need to use each side separately.
第3図は本発明の第3の実施例を示す斜視図である。FIG. 3 is a perspective view showing a third embodiment of the present invention.
本実施例では光導波路12を形成するため、Tiを拡散
前の膜厚d1として拡散し、その後合流後の出射光導波
路12e及び分岐前の入射光導波路12aのMgO膜厚
d2、光導波路12の合流光導波路12d及び分岐光導
波路12bにMgO膜厚テーパ部37を設けて拡散前の
MgO膜厚をゆるやかに変えて拡散することにより、光
閉じ込め強さの急激な変化によるモード変換損失の低減
を図っている。In this embodiment, in order to form the optical waveguide 12, Ti is diffused to have a film thickness d1 before diffusion, and then the MgO film thickness d2 of the output optical waveguide 12e after merging and the input optical waveguide 12a before branching, and the MgO film thickness d2 of the optical waveguide 12 before being split. By providing the MgO film thickness taper portion 37 in the converging optical waveguide 12d and the branching optical waveguide 12b and diffusing the MgO film by gradually changing the MgO film thickness before diffusion, it is possible to reduce mode conversion loss due to sudden changes in optical confinement strength. I'm trying.
以上Z−Cut LiNbO3基板にTi拡散を用い
て光導波路を形成した場合を例として説明したが他の基
板方位、あるいはG a A s、InPなどの半導体
その他の基板材料に不純物拡散を用いてMZ変調器を構
成した場合でも本発明による方法が有効なことは、MZ
変調器の原理から考えて明らかである。The above description has been given using an example in which an optical waveguide is formed using Ti diffusion in a Z-Cut LiNbO3 substrate, but it can also be formed in other substrate orientations, or in semiconductors such as GaAs, InP, or other substrate materials using impurity diffusion in MZ. The fact that the method according to the present invention is effective even when a modulator is configured is that MZ
This is obvious considering the principle of the modulator.
以上説明したように本発明によればMZ変調器の電極部
分及び合流部分の光閉じ込め強さをそれぞれ独立した最
適な強さに制御することができ、それにより素子全長を
短縮し小型な光変調器を得ることができる。As explained above, according to the present invention, it is possible to control the light confinement strength of the electrode part and the confluence part of the MZ modulator to the optimal strength independently, thereby shortening the overall length of the element and realizing compact optical modulation. You can get the equipment.
61・・・0次モード入射光、62.63・・・互いに
同相な導波光、64・・・0次モード出射光、65゜6
6・・・互いに逆相な導波光、67・・・1次モード光
。61... 0th-order mode incident light, 62.63... Mutually in-phase guided light, 64... 0th-order mode output light, 65°6
6... Guided light with opposite phases to each other, 67... First-order mode light.
Claims (1)
ることにより形成した光導波路が、入射光導波路、分岐
光導波路、アーム部、合流光導波路、出射光導波路から
成り、アーム部に制御用電極を備えた光変調器において
、少なくとも前記出射光導波路に屈折率を減少させる作
用を持つ別の不純物を導入したことを特徴とする光変調
器。The optical waveguide is formed by diffusing impurities that increase the refractive index on the substrate, and consists of an input optical waveguide, a branch optical waveguide, an arm section, a merging optical waveguide, and an output optical waveguide, and a control electrode is attached to the arm section. An optical modulator comprising: an optical modulator, characterized in that another impurity having an effect of reducing the refractive index is introduced into at least the output optical waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2050917A JP2669096B2 (en) | 1990-03-02 | 1990-03-02 | Optical modulator and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2050917A JP2669096B2 (en) | 1990-03-02 | 1990-03-02 | Optical modulator and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03252619A true JPH03252619A (en) | 1991-11-11 |
JP2669096B2 JP2669096B2 (en) | 1997-10-27 |
Family
ID=12872144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2050917A Expired - Fee Related JP2669096B2 (en) | 1990-03-02 | 1990-03-02 | Optical modulator and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2669096B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5815609A (en) * | 1995-09-13 | 1998-09-29 | Nec Corporation | Waveguide type optical external modulator |
CN106444095A (en) * | 2016-11-03 | 2017-02-22 | 吉林大学 | Organic polymer high-speed electro-optical modulator with loss compensation function, and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61134731A (en) * | 1984-12-06 | 1986-06-21 | Nec Corp | Production of optical control circuit |
JPS61156209A (en) * | 1984-12-28 | 1986-07-15 | Nec Corp | Module of light controlling element |
-
1990
- 1990-03-02 JP JP2050917A patent/JP2669096B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61134731A (en) * | 1984-12-06 | 1986-06-21 | Nec Corp | Production of optical control circuit |
JPS61156209A (en) * | 1984-12-28 | 1986-07-15 | Nec Corp | Module of light controlling element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5815609A (en) * | 1995-09-13 | 1998-09-29 | Nec Corporation | Waveguide type optical external modulator |
CN106444095A (en) * | 2016-11-03 | 2017-02-22 | 吉林大学 | Organic polymer high-speed electro-optical modulator with loss compensation function, and manufacturing method thereof |
CN106444095B (en) * | 2016-11-03 | 2018-12-28 | 吉林大学 | A kind of organic polymer electro-optic modulator and preparation method thereof with loss balancing function |
Also Published As
Publication number | Publication date |
---|---|
JP2669096B2 (en) | 1997-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6501867B2 (en) | Chirp compensated Mach-Zehnder electro-optic modulator | |
KR0162755B1 (en) | Modulator using electro-optic polymer | |
US5285507A (en) | Controllable polarisation transformer | |
EP0661577A2 (en) | Optical modulator with controllable chirp | |
JPH02500136A (en) | electro optical switch | |
US5303315A (en) | Near Z digital switch | |
JP2927795B2 (en) | Light switch | |
US20090290829A1 (en) | Light control element | |
US4763974A (en) | Δβ-Phase reversal coupled waveguide interferometer | |
US5655034A (en) | Mach-Zehnder type modulator and method of driving the same | |
GB2298720A (en) | Digital optical switches | |
JP2746216B2 (en) | Light switch | |
JPH06235891A (en) | Optical waveguide device | |
GB2262162A (en) | Optical coupler | |
JPH1184434A (en) | Light control circuit and its operation method | |
JPH03252619A (en) | Light modulator | |
JP2946630B2 (en) | Light modulator | |
JPH02136822A (en) | Optical modulator | |
US5537497A (en) | Optimized electrode geometries for digital optical switches | |
JPH02250027A (en) | Optical modulator | |
JPH01201609A (en) | Optical device | |
JP3164124B2 (en) | Light switch | |
KR100207599B1 (en) | Low electric power optical switch and the production method thereof | |
JP3119965B2 (en) | Optical waveguide type optical element | |
JPH0353225A (en) | Semiconductor optical modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070704 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080704 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |