JP2667665B2 - Film forming equipment - Google Patents

Film forming equipment

Info

Publication number
JP2667665B2
JP2667665B2 JP62182329A JP18232987A JP2667665B2 JP 2667665 B2 JP2667665 B2 JP 2667665B2 JP 62182329 A JP62182329 A JP 62182329A JP 18232987 A JP18232987 A JP 18232987A JP 2667665 B2 JP2667665 B2 JP 2667665B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
frequency application
film forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62182329A
Other languages
Japanese (ja)
Other versions
JPS6428810A (en
Inventor
孝司 五十嵐
信弘 福田
正人 小山
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP62182329A priority Critical patent/JP2667665B2/en
Publication of JPS6428810A publication Critical patent/JPS6428810A/en
Application granted granted Critical
Publication of JP2667665B2 publication Critical patent/JP2667665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は、グロー放電により連続的に薄膜を形成する
成膜装置に関するものであり、とくに、高性能の半導体
薄膜を高成膜速度において均一に連続的に形成する成膜
装置に関する。 [従来技術] シリコン化合物のグロー放電分解や光分解により得ら
れる非晶質シリコン系の半導体薄膜は、光−電気エネル
ギーの変換能力に優れ、光起電力素子として利用されて
いる。しかも、電卓等民生用機器ばかりでなく、電力用
太陽電池としての利用も検討されているが、このために
は、大面積の太陽電池を安価に製造する必要がある。こ
の点においても、非晶質シリコン系太陽電池は、基本的
に面積の拡大が比較的容易であり、大面積化の研究が行
われている。 しかしながら、従来の容量結合型の平行平板電極を用
いる成膜装置においては、高性能の半導体薄膜を高成膜
速度で均一にかつ連続的に形成するとき、いくつかの問
題があった。 すなわち、まず第一にこの成膜方法は高周波が印加さ
れる電極(高周波印加電極)と接地されている電極(接
地電極)の間に膜が形成される基板が設置されるもので
あるが、この場合、高周波印加電極面内において、グロ
ー放電の均一性が確保されなければ、薄膜の均一性は得
られない。次に、大面積の基板に成膜する場合には、当
然のことながら、高周波印加電極の面積を基板よりも大
きくせねばならないが、大面積の電極においては、高周
波電流独特の表皮効果が生じて有効に高周波電流を導入
することができない。また、電気力線にもとずく端効果
および先の表皮効果の結果、高周波印加電極周辺部のグ
ロー放電が強くなり、成膜速度が不均一になるばかりで
なく、得られた薄膜の特性も不均一となるうえ、高速成
膜条件においては、高周波印加電極周辺部のグロー放電
はより一層強くなり、かかる問題点がさらに一層強調さ
れる。 [発明の目的] 本発明の目的は、高周波印加電極と接地電極間におい
て、高濃度プラズマを生じさせ、均一な半導体薄膜を高
成膜速度で基板上に連続的に形成することのできる半導
体薄膜の所謂インライン成膜装置を提供することであ
る。 [基本的着想] 本発明者らは、かかる観点から鋭意検討した結果、連
続形成に用いられる種々のプラズマCVD装置およびグロ
ー放電の詳細な検討の結果、基板の進行方向にあたる高
周波印加電極の長さを一定の値より短くすることによ
り、電極全体に高濃度プラズマが均一に拡がることを見
いだして、本発明を完成するに至った。すなわち、 大面積の平行平板電極においては上記のごとく電極面
上でプラズマが局在すると云う問題点があるところ、本
発明者らは、特定の巾狭の電極を用いると、高密度のプ
ラズマが電極全面に一様に生成することをみいだし、こ
れをインライン方式の成膜装置による高速成膜に利用し
たものである。 [発明の開示] 本発明は、高周波印加電極と接地電極の間に発生する
グロー放電中を、基板保持具に保持された基板を進行せ
しめて該基板上に薄膜を連続的に形成するインライン成
膜装置において、該高周波印加電極の該基板の進行方向
の長さが、該基板保持具の進行方向の長さよりも短く、
かつ、0.5cm〜10cmの範囲にある巾狭の電極であること
を特徴とする成膜装置、であり、好ましくは、 高周波印加電極が複数個並列せしめてある成膜装置に
かかるものである。 本発明の対象としているインライン成膜装置とは、真
空を破ることなく基板(実際には、基板保持具に保持固
定された基板)を成膜室に搬送し、基板は成膜室内を移
動・進行しながら半導体薄膜が形成される装置である。 基板の進行方向にあたる高周波印加電極の長さLは具
体的には10cm以下好ましくは5cm以下である。10cmを越
えるようになると電極中央部と端部とのプラズマが均一
性を失ってくる。この結果、成膜速度が不均一になり得
られる薄膜の膜厚が不均一となる。特に、成膜時の圧力
を高めることが要求される高速成膜条件において、この
不均一性が顕著となっていた。薄膜の均一性は高周波印
加電極と接地電極との間隔や高周波印加電極と基板との
間隔等の装置形状によっても影響されるが、基板の進行
方向の高周波印加電極の長さLを上記のごとき範囲、特
に0.5〜5cmとすることにより、これらの装置形状による
影響はほとんどなくなる。 第1図および第2図に本発明の一実施例を示す具体的
な態様を示した。なお、第1図は模式的な断面図であ
り、第2図はその斜視図である。 すなわち、高周波印加電極1と接地電極2の間に発生
するグロー放電中を、基板保持具5に保持された基板を
進行せしめて該基板上に薄膜を連続的に形成するインラ
イン成膜装置において、該高周波印加電極の該基板の進
行方向の上さLが、該基板保持具5の進行方向の長さl
よりも短いものであり、かつ、0.5cm〜10cmの範囲にあ
る巾狭の電極である成膜装置である。 本発明においては、高周波印加電極1、1′、1″…
…を複数個同時に用いることができる。この場合におい
て、高周波印加電極間の間隔1〜1′、1′〜1″、…
…はとくに限定されるものではない。しかして、高周波
印加電極1にはアースシールド6を設備することによ
り、放電を有効に対向する接地電距側に方向づけること
ができるが、このために、電極間隔としてはアースシー
ルドを形成できる間隔をとることが好ましい。したがっ
て具体的な示例としては、少なくとも5mm以上の間隔が
存在すれば十分である。なお、複数の高周波印加電極
は、図示した如く並列せしめるのが好ましい。 接地電極の形状は本発明においては、必須の要件では
ないが、プラズマの安定性の観点からは高周波印加電極
と同じ形状であることが好ましい。すなわち、基板の進
行方向の長さが進行方向に直交する方向の長さよりも短
い形状の巾狭電極が好ましいものである。 これら高周波印加電極や接地電極等の材質について
は、とくに制限されるものではないが、形成される半導
体薄膜に与える不純物量、電気伝導性、熱的安定性等を
考慮するとステンレス鋼であるSUS316やSUS314やアルミ
ニウムが好ましい材料として用いられる。 本発明のインライン成膜装置とは、上記したごとく、
真空を破ることなく基板を成膜室に搬送することのでき
る、基板導入室および基板取り出し室、または基板取り
出し室を兼ねる基板導入室、またはこれらの機能を果た
す基板導入手段や基板取り出し手段を少なくとも有する
成膜装置であり、基板は移動しながら半導体薄膜が形成
される装置である。成膜室は反応ガス導入手段および排
気手段を備えた金属製の反応容器であり、少なくとも基
板を加熱するための加熱手段、高密度のプラズマを発生
するための巾狭の高周波印加電極および接地電極、基板
保持具(基板キャリヤー)を移動させるための搬送手段
が設備されているものである。 本発明において、基板保持具とは、半導体薄膜が形成
される基板を、はめ込み、設置等により固定して搬送す
るための搬送具である。従って、基板の主面が露出して
おり、この面上に薄膜が形成されうるものである限り、
基板の基板キャリアへの設置方法については、何ら限定
されるものはない。通常、基板保持具は、基板と略同一
の大きさか、これよりやや大きいのが普通である。基板
保持具上に保持された基板は、第1図の矢印で示される
ように、高周波印加電極と接地電極の間に発生する高密
度プラズマ中を、高周波印加電極および対向する接地電
極とに対して垂直方向に進行し、半導体薄膜等が移動中
の基板上に形成されるのである。基板保持具の材質とし
ては、形成される半導体薄膜に与える不純物量、電気伝
導性、熱的安定性等を考慮すると、ステンレス鋼である
SUS316やSUS304やアルミニウムが好ましい材料として挙
げられる。 なお、図において、3はプラズマ制御電極であり、プ
ラズマの不必要な広がりを抑えるために設置することも
また好ましい態様である。 反応容器の材質は限定されるものではないが、好まし
い材質としてはステンレススチール、ニッケルおよびそ
の合金、アルミニウムおよびその合金などである。加工
性や耐蝕性を考慮した取扱い上からはステンレススチー
ル(SUS316,SUS304)あるいはアルミニウムおよびその
合金が好ましいものである。 本発明において、基板の材質は限定されるものではな
い。ガラス基板は、酸化スズや酸化スズ・インジウムの
様な透明導電膜付きガラス基板、セラミックス基板、ア
ルミニウム、クロム、ステンレス(SUS316,SUS304)な
どの金属薄膜やアルミニウム、クロム、ステンレス(SU
S316,SUS304)などの金属を蒸着したセラミックス基板
やポリエチレンテレフタレートなどの高分子基板、ステ
ンレス基板、多結晶および単結晶シリコンウェハーなど
が基板として有効に用いられる。 本発明で用いる反応性ガスは、主にシリコン化合物ガ
スであり、一般式SinH2n+2(ここでnは自然数)で示さ
れるシラン、例えばモノシラン、ジシランである。さら
に、一般式SiHxF4-x(xは、0〜4の整数)で示される
フルオロシラン、一般式GenH2n+2(nは、自然数)で示
される水素化ゲルマンなどである。また、目的に応じ
て、フォスフィンPH3、ジボランB2H6、ヘリウムHe、炭
化水素ガス CyH2y+2、CyH2y、CyH2y-2(yは、自然
数)、モノメチルシランなどの有機けい素ガスなどを単
独ないし混合して用いることができる。 [実施例] まず、基板挿入室にSUS304製の基板保持具を設置し、
真空系で0.01torr以下に排気しつつ、加熱手段で基板を
所定の温度になるまで加熱する。所定の圧力並びに基板
温度に達した後、第1図に示される形状の巾狭(L=30
mm)の高周波印加電極1を50mmの間隔で5列以上並列に
配置して用い、ジシランの放電を発生させている反応室
内に250×500mmのガラス基板を嵌めこんだ300×500mmの
基板保持具を搬送手段に送り込み、反応室を進行通過せ
しめる間にアモルファスシリコン薄膜を成膜した。 成膜条件; ジシラン 20cc/min 高周波電力 60W 基板温度 300℃ 反応圧力 0.6torr 電極寸法 30*300mm 基板寸法 250*500mm 成膜結果; 平均成膜速度 25A/sec 基板対角線(第3図)上の成膜速度分布 ±5% 代表的な光伝導度 3.5*10-5S/cm 代表的な暗伝導度 4.6*10-11S/cm 〔比較例〕 成膜条件を実施例と同条件にして電極寸法のみを巾広
(L=150mm)すなわち150*300mmに変更した結果、 成膜速度は11A/sec〜27A/secの間で変化し、均一成膜
が極めて困難であるを確認した。 [発明の効果] 以上のごとく、本発明においては、本発明で規定する
特定の巾狭の高周波印加電極を用いることにより、高成
膜速度で大面積の基板上に均質に成膜することができ
る。得られた薄膜の特性は優れたものであり、本発明の
産業上の利用可能性は、極めて大きいものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming apparatus for continuously forming a thin film by glow discharge, and more particularly, to a method for forming a high performance semiconductor thin film uniformly and continuously at a high film forming rate. The present invention relates to a film forming apparatus for forming a film. [Prior Art] An amorphous silicon-based semiconductor thin film obtained by glow discharge decomposition or photodecomposition of a silicon compound has excellent photo-electric energy conversion ability and is used as a photovoltaic element. In addition, the use as not only consumer electronic devices such as calculators but also solar cells for electric power is being studied. For this purpose, it is necessary to manufacture large-area solar cells at low cost. Also in this regard, the area of the amorphous silicon-based solar cell is basically relatively easy to expand, and research on increasing the area is being conducted. However, in a conventional film forming apparatus using a capacitively coupled parallel plate electrode, there are some problems when forming a high-performance semiconductor thin film uniformly and continuously at a high film forming rate. That is, first of all, in this film forming method, a substrate on which a film is formed is placed between an electrode to which a high frequency is applied (a high-frequency application electrode) and an electrode that is grounded (a ground electrode). In this case, the uniformity of the thin film cannot be obtained unless uniformity of the glow discharge is secured in the surface of the high frequency application electrode. Next, when a film is formed on a large-area substrate, the area of the high-frequency application electrode must be larger than that of the substrate, as a matter of course. Therefore, the high-frequency current cannot be effectively introduced. In addition, as a result of the edge effect based on the lines of electric force and the skin effect, the glow discharge around the high-frequency application electrode becomes strong, and not only the film forming rate becomes non-uniform, but also the characteristics of the obtained thin film become poor. In addition to the non-uniformity, the glow discharge in the periphery of the high-frequency application electrode becomes stronger under high-speed film formation conditions, and this problem is further emphasized. [Object of the Invention] An object of the present invention is to generate a high-concentration plasma between a high-frequency application electrode and a ground electrode, and to form a uniform semiconductor thin film continuously on a substrate at a high deposition rate. Is to provide a so-called in-line film forming apparatus. [Basic idea] The inventors of the present invention have made intensive studies from such a viewpoint, and as a result of detailed studies of various plasma CVD apparatuses and glow discharges used for continuous formation, have found that the length of the high-frequency application electrode in the direction of travel of the substrate. It was found that by making the value shorter than a certain value, the high-concentration plasma spread uniformly over the entire electrode, and the present invention was completed. That is, in the case of a large-area parallel plate electrode, there is a problem that plasma is localized on the electrode surface as described above. It has been found that the film is uniformly formed on the entire surface of the electrode, and this is used for high-speed film formation by an in-line film forming apparatus. [Disclosure of the Invention] The present invention provides an in-line component for continuously forming a thin film on a substrate by advancing a substrate held by a substrate holder during a glow discharge generated between a high-frequency application electrode and a ground electrode. In the membrane device, the length of the high-frequency application electrode in the traveling direction of the substrate is shorter than the length of the substrate holder in the traveling direction,
The present invention also relates to a film forming apparatus characterized by a narrow electrode in a range of 0.5 cm to 10 cm, and more preferably, to a film forming apparatus in which a plurality of high frequency applying electrodes are arranged in parallel. The in-line film forming apparatus to which the present invention is applied transfers a substrate (actually, a substrate held and fixed by a substrate holder) to a film forming chamber without breaking vacuum, and moves the substrate in the film forming chamber. This is an apparatus in which a semiconductor thin film is formed as it proceeds. The length L of the high-frequency application electrode in the traveling direction of the substrate is specifically 10 cm or less, preferably 5 cm or less. When it exceeds 10 cm, the plasma at the center and the end of the electrode loses uniformity. As a result, the deposition rate becomes non-uniform, and the thickness of the obtained thin film becomes non-uniform. In particular, this non-uniformity has been remarkable under high-speed film forming conditions required to increase the pressure during film formation. The uniformity of the thin film is also affected by the shape of the device such as the distance between the high-frequency application electrode and the ground electrode and the distance between the high-frequency application electrode and the substrate. By setting the range, especially 0.5 to 5 cm, the influence of these device shapes is almost eliminated. FIG. 1 and FIG. 2 show a specific embodiment showing one embodiment of the present invention. FIG. 1 is a schematic sectional view, and FIG. 2 is a perspective view thereof. That is, during the glow discharge generated between the high-frequency application electrode 1 and the ground electrode 2, in an in-line film forming apparatus that advances a substrate held by the substrate holder 5 and continuously forms a thin film on the substrate, The height L of the high-frequency applying electrode in the traveling direction of the substrate is the length l of the substrate holder 5 in the traveling direction.
This is a film forming apparatus which is a shorter electrode and is a narrow electrode in the range of 0.5 cm to 10 cm. In the present invention, the high frequency applying electrodes 1, 1 ', 1 "...
Can be used simultaneously. In this case, the intervals 1 to 1 ', 1' to 1 "between the high frequency applying electrodes,...
… Is not particularly limited. The provision of the earth shield 6 on the high-frequency applying electrode 1 enables the discharge to be effectively directed to the opposite grounding distance side. For this reason, the interval between the electrodes at which the earth shield can be formed is reduced. It is preferred to take. Therefore, as a specific example, it is sufficient that there is an interval of at least 5 mm or more. It is preferable that a plurality of high-frequency application electrodes are arranged in parallel as shown in the figure. The shape of the ground electrode is not an essential requirement in the present invention, but is preferably the same as the high-frequency application electrode from the viewpoint of plasma stability. That is, a narrow electrode in which the length of the substrate in the traveling direction is shorter than the length in the direction perpendicular to the traveling direction is preferable. The material of the high-frequency application electrode and the ground electrode is not particularly limited, but in consideration of the amount of impurities given to the semiconductor thin film to be formed, electric conductivity, thermal stability, etc. SUS314 and aluminum are used as preferred materials. With the in-line film forming apparatus of the present invention, as described above,
A substrate introduction chamber and a substrate removal chamber capable of transporting a substrate to a film formation chamber without breaking a vacuum, or a substrate introduction chamber also serving as a substrate removal chamber, or at least a substrate introduction means or a substrate removal means performing these functions. This is an apparatus for forming a semiconductor thin film while moving a substrate. The film formation chamber is a metal reaction vessel provided with a reaction gas introduction unit and an exhaust unit, and includes at least a heating unit for heating the substrate, a narrow high-frequency application electrode for generating high-density plasma, and a ground electrode. In addition, transport means for moving the substrate holder (substrate carrier) is provided. In the present invention, the substrate holder is a carrier for fixing and transporting a substrate on which a semiconductor thin film is to be formed by fitting, setting, or the like. Therefore, as long as the main surface of the substrate is exposed and a thin film can be formed on this surface,
There is no limitation on the method of installing the substrate on the substrate carrier. Usually, the substrate holder is generally the same size as the substrate or slightly larger than this. As shown by the arrow in FIG. 1, the substrate held on the substrate holder passes through the high-density plasma generated between the high-frequency application electrode and the ground electrode with respect to the high-frequency application electrode and the opposite ground electrode. The semiconductor thin film and the like are formed on the moving substrate. The material of the substrate holder is stainless steel in consideration of the amount of impurities given to the semiconductor thin film to be formed, electric conductivity, thermal stability, and the like.
SUS316, SUS304 and aluminum are preferred materials. In the figure, reference numeral 3 denotes a plasma control electrode, which is also preferably installed to suppress unnecessary spread of plasma. The material of the reaction vessel is not limited, but preferred materials include stainless steel, nickel and its alloys, aluminum and its alloys, and the like. From the viewpoint of handling in consideration of workability and corrosion resistance, stainless steel (SUS316, SUS304) or aluminum and alloys thereof are preferable. In the present invention, the material of the substrate is not limited. Glass substrates include glass substrates with transparent conductive films such as tin oxide and tin oxide / indium, ceramic substrates, metal thin films such as aluminum, chromium, and stainless steel (SUS316, SUS304), and aluminum, chromium, and stainless steel (SU
Ceramic substrates on which metals such as S316, SUS304) are deposited, polymer substrates such as polyethylene terephthalate, stainless steel substrates, polycrystalline and single-crystal silicon wafers, etc. are effectively used as substrates. The reactive gas used in the present invention is mainly a silicon compound gas, and is a silane represented by the general formula Si n H 2n + 2 (where n is a natural number), for example, monosilane and disilane. Moreover, (the x, an integer of 0 to 4) general formula SiH x F 4-x fluorosilane represented by the general formula Ge n H 2n + 2 (n is a natural number) and the like hydrogenated germane represented by. Also, depending on the purpose, phosphine PH 3, diborane B 2 H 6, helium He, hydrocarbon gas C y H 2y + 2, C y H 2y, C y H 2y-2 (y is a natural number), monomethyl silane And the like can be used alone or in combination. [Example] First, a substrate holder made of SUS304 was installed in the substrate insertion chamber,
The substrate is heated to a predetermined temperature by a heating means while evacuating to 0.01 torr or less in a vacuum system. After reaching a predetermined pressure and substrate temperature, the shape shown in FIG. 1 becomes narrow (L = 30).
mm) high-frequency application electrodes 1 are arranged in parallel in five or more rows at 50 mm intervals, and a 300 × 500 mm substrate holder in which a 250 × 500 mm glass substrate is fitted in a reaction chamber where disilane discharge is generated. Was transported to the transporting means, and an amorphous silicon thin film was formed while passing through the reaction chamber. Deposition conditions: Disilane 20cc / min High frequency power 60W Substrate temperature 300 ° C Reaction pressure 0.6torr Electrode size 30 * 300mm Substrate size 250 * 500mm Deposition result; Average deposition rate 25A / sec Film speed distribution ± 5% Typical photoconductivity 3.5 * 10 -5 S / cm Typical dark conductivity 4.6 * 10 -11 S / cm [Comparative example] As a result of changing only the dimensions to wide (L = 150 mm), that is, 150 * 300 mm, it was confirmed that the film formation speed varied between 11 A / sec and 27 A / sec, and uniform film formation was extremely difficult. [Effects of the Invention] As described above, in the present invention, a uniform film can be formed uniformly on a large-area substrate at a high film forming rate by using the specific narrow high-frequency application electrode defined in the present invention. it can. The properties of the obtained thin film are excellent, and the industrial applicability of the present invention is extremely large.

【図面の簡単な説明】 第1図は、巾狭の高周波印加電極を有する反応室の模式
的な断面図であり、第2図はおなじく斜視図である。 第3図は、本発明実施例において、成膜速度分布を計測
した基板上の位置を示す説明図である。なお、この場
合、対角線上0.5cm間隔で測定点を設けた。 図において、1……高周波印加電極、2……接地電極、
3……プラズマ制御電極、4……ヒーター、5……基板
保持具、6……アースシールド、L……基板進行方向の
電極巾
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a reaction chamber having a narrow high-frequency application electrode, and FIG. 2 is a perspective view likewise. FIG. 3 is an explanatory view showing a position on a substrate at which a film deposition rate distribution is measured in the embodiment of the present invention. In this case, measurement points were provided at 0.5 cm intervals on a diagonal line. In the figure, 1 ... high-frequency application electrode, 2 ... ground electrode,
3 ... plasma control electrode, 4 ... heater, 5 ... substrate holder, 6 ... earth shield, L ... electrode width in substrate traveling direction

Claims (1)

(57)【特許請求の範囲】 1.高周波印加電極と接地電極の間に発生するグロー放
電中を、基板保持具に保持された基板を進行せしめて該
基板上に薄膜を連続的に形成するインライン成膜装置に
おいて、該基板は高周波印加電極と接地電極の間を進行
し、該高周波印加電極の該基板の進行方向の長さが、該
基板保持具の進行方向の長さよりも短く、かつ、0.5cm
〜10cmの範囲にある巾狭の電極であるとともに、該高周
波印加電極間には、アースシールドを設け放電を有効に
該接地電極側に方向づけることを特徴とする成膜装置。 2.高周波印加電極が複数個並列せしめてある特許請求
の範囲第1項記載の装置。
(57) [Claims] During the glow discharge generated between the high-frequency application electrode and the ground electrode, the substrate held by the substrate holder is advanced to continuously form a thin film on the substrate. Proceeding between the electrode and the ground electrode, the length of the high-frequency application electrode in the direction of travel of the substrate is shorter than the length of the substrate holder in the direction of travel, and 0.5 cm
A film forming apparatus comprising: a narrow electrode having a width of about 10 cm; and an earth shield provided between the high-frequency applying electrodes to effectively direct discharge toward the ground electrode. 2. 2. The apparatus according to claim 1, wherein a plurality of high-frequency application electrodes are arranged in parallel.
JP62182329A 1987-07-23 1987-07-23 Film forming equipment Expired - Fee Related JP2667665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62182329A JP2667665B2 (en) 1987-07-23 1987-07-23 Film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62182329A JP2667665B2 (en) 1987-07-23 1987-07-23 Film forming equipment

Publications (2)

Publication Number Publication Date
JPS6428810A JPS6428810A (en) 1989-01-31
JP2667665B2 true JP2667665B2 (en) 1997-10-27

Family

ID=16116403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62182329A Expired - Fee Related JP2667665B2 (en) 1987-07-23 1987-07-23 Film forming equipment

Country Status (1)

Country Link
JP (1) JP2667665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936310B1 (en) 1999-04-02 2005-08-30 Sharp Kabushiki Kaisha Plasma processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565972A (en) * 1979-06-27 1981-01-22 Canon Inc Film forming method
JPS62208623A (en) * 1986-03-03 1987-09-12 Mitsubishi Electric Corp Semiconductor device manufacture apparatus

Also Published As

Publication number Publication date
JPS6428810A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
US4634601A (en) Method for production of semiconductor by glow discharge decomposition of silane
EP0002383A1 (en) Method and apparatus for depositing semiconductor and other films
EP1188847B1 (en) Plasma processing method and apparatus
EP0327253A2 (en) Forming films, e.g. of amorphous silicon
GB2043042A (en) Production of semiconductor bodies made of amorphous silicon
JP3960792B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon thin film
JP2667665B2 (en) Film forming equipment
US7964430B2 (en) Silicon layer on a laser transparent conductive oxide layer suitable for use in solar cell applications
JP2602873B2 (en) Film forming equipment
JP2601488B2 (en) Film forming equipment
JP2602881B2 (en) Film forming equipment
JPH01226148A (en) Film forming apparatus
JPH11121381A (en) Plasma chemical vapor depositing device
JP2601488C (en)
JP2708503B2 (en) Thin film forming equipment
JP2637143B2 (en) Film forming equipment
JP2515329B2 (en) Thin film formation method
JPH01226147A (en) Apparatus and method for forming film
JPH01196118A (en) Film forming apparatus
JP3912868B2 (en) Plasma chemical vapor deposition equipment
JP2700177B2 (en) Thin film forming method and apparatus
JPS63142627A (en) Manufacture of semiconductor thin film
JP2602881C (en)
JP2573970B2 (en) Semiconductor thin film manufacturing equipment
WO1985003803A1 (en) Film forming method and apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees