JP2665931B2 - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JP2665931B2
JP2665931B2 JP63112544A JP11254488A JP2665931B2 JP 2665931 B2 JP2665931 B2 JP 2665931B2 JP 63112544 A JP63112544 A JP 63112544A JP 11254488 A JP11254488 A JP 11254488A JP 2665931 B2 JP2665931 B2 JP 2665931B2
Authority
JP
Japan
Prior art keywords
pitch
length
line
tire
longest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63112544A
Other languages
Japanese (ja)
Other versions
JPH01285406A (en
Inventor
知彦 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP63112544A priority Critical patent/JP2665931B2/en
Publication of JPH01285406A publication Critical patent/JPH01285406A/en
Priority to US07/725,109 priority patent/US5309964A/en
Application granted granted Critical
Publication of JP2665931B2 publication Critical patent/JP2665931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数の異なるピッチ長を有するトレッドデ
ザインエレメントをトレッド表面に配列したタイヤであ
って、転動に伴ってトレッドデザインエレメントが発生
する騒音(パターンノイズ)を低減せしめた空気入りタ
イヤに関する。
Description: TECHNICAL FIELD [0001] The present invention relates to a tire having a plurality of tread design elements having different pitch lengths arranged on a tread surface, and a noise generated by the tread design elements as the tire rolls. The present invention relates to a pneumatic tire with reduced (pattern noise).

〔従来技術〕(Prior art)

従来、パターンノイズを低減させるために、ピッチ周
波数のまわりの広い周波数(タイヤの回転数×トレッド
デザインエレメント数によってきまる周波数)帯域にパ
ターンノイズを分散させて騒音を目立たなくさせる工夫
がなされてきた。これは、バリアブルピッチ配列法と呼
ばれるもので、何種類かのピッチ長さの異なるトレッド
デザインエレメント(すなわち、ピッチ)をタイヤ周方
向に適当に配列し、各トレッドデザインエレメントが接
地面と接触する際に発生するパルス的騒音あるいは振動
の時間間隔を変化させ、特定周波数に騒音が集中しない
ようにする方法であり、無線工学等で用いられる周波数
変調理論に基づくものである。しかしながら、パターン
ノイズを十分に低減させるまでには至っていない。
Conventionally, in order to reduce the pattern noise, various measures have been taken to disperse the pattern noise in a wide frequency band around the pitch frequency (frequency determined by the number of rotations of the tire × the number of tread design elements) to make the noise inconspicuous. This is called a variable pitch arrangement method, in which several types of tread design elements (that is, pitches) having different pitch lengths are appropriately arranged in the circumferential direction of the tire, and when each tread design element comes into contact with the ground contact surface. This is a method of changing the time interval between pulse noises or vibrations generated at the same time so that noises do not concentrate on a specific frequency, and is based on a frequency modulation theory used in wireless engineering and the like. However, it has not yet been possible to sufficiently reduce the pattern noise.

そこで、本発明者は、パターンノイズの低減をはかる
べく研究した結果、タイヤ騒音のフィーリングを悪くし
ている要因として音圧レベルの脈動性を見逃せないこと
が判明した。すなわち、従来の騒音計測法のように或る
一定の時間で平均化された音圧レベルでは同等であるに
もかかわらず、人間の聴感覚上のフィーリングではその
音圧感に優劣が生じることがあり、この原因を探究した
ところ、約10Hz以下の低い周波数帯域において大きく脈
動する音圧レベルと脈動しない音圧レベルとの違いであ
ることが判明した。この音圧レベルの脈動性、すなわち
騒音の要因の1つである脈動性を定量的に観察するに
は、高速度で収録された騒音を低速度で再生して音圧レ
ベルの時間的変化を出力することによって可能である。
例えば、JASO C606−73タイヤ騒音試験方法に準ずる方
法、すなわち直径3000mmのスチールドラム上でタイヤを
50km/hで転動させ(空気圧、リムサイズ、荷重はJATMA
標準条件)、脈動性の評価をOA値(100〜2000Hzのバン
ドパスフィルターを通過した騒音のオーバーオール値)
のタイヤ1回転内の変動幅で評価することができる。
Then, the present inventor studied to reduce the pattern noise, and as a result, it was found that the pulsation of the sound pressure level could not be overlooked as a factor that deteriorated the tire noise feeling. In other words, although the sound pressure level averaged over a certain period of time is the same as in the conventional noise measurement method, the sound pressure sensation may be superior or inferior to the human sense of hearing. Investigation of the cause revealed that the difference was between a sound pressure level that greatly pulsated and a sound pressure level that did not pulsate in a low frequency band of about 10 Hz or less. In order to quantitatively observe the pulsation of the sound pressure level, that is, the pulsation which is one of the factors of the noise, the noise recorded at a high speed is reproduced at a low speed and the temporal change of the sound pressure level is measured. It is possible by outputting.
For example, a method according to the JASO C606-73 tire noise test method, that is, a tire is mounted on a steel drum having a diameter of 3000 mm.
Roll at 50km / h (air pressure, rim size, load is JATMA
OA value (overall value of noise passing through a band-pass filter of 100 to 2000 Hz)
Can be evaluated by the fluctuation width within one rotation of the tire.

一方、音圧レベルについての従来のトレッドデザイン
エレメント配列に関する理論では、1つのトレッドデザ
インエレメントから1つのサイン波が発生するものと仮
定して、タイヤ1周にトレッドデザインエレメントの並
び順と同じ時間的間隔で発生するサイン波列をフーリエ
級数展開して周波数軸上の分散をシュミレートするのが
一般である。とりわけ、周方向長さ、すなわちピッチ長
が短いトレッドデジンエレメントから長いトレッドデザ
インエレメントへと、そしてまた、短いトレッドデザイ
ンエレメントへと規則的にサイン波的な配列をする場合
の理論解析については多くの研究や工夫がなされている
(例えば、自動車技術Vol.28,No.1,1974「タイヤノイズ
について」、特開昭54−115801号公報参照)。しかし、
これらの考察において、前述した音圧レベルの脈動性に
ついて論ぜられていないのは、各トレッドデザインエレ
メントから発生する振動の大きさを一定に仮定したため
である。
On the other hand, in the conventional theory of tread design element arrangement for sound pressure level, it is assumed that one sine wave is generated from one tread design element, and the same time as the arrangement order of tread design elements is arranged on one circumference of the tire. In general, sine wave trains generated at intervals are Fourier-series expanded to simulate dispersion on the frequency axis. In particular, there are many theoretical analyzes in the case of regularly sine wave arrangement from a tread resin element having a short circumferential length, that is, a pitch length, to a long tread design element, and also to a short tread design element. Researches and contrivances have been made (for example, see “Techniques for automobile tires”, Vol. 28, No. 1, 1974, see JP-A-54-115801). But,
In these considerations, the pulsation of the sound pressure level described above is not discussed because the magnitude of vibration generated from each tread design element is assumed to be constant.

本発明者は、トレッドデザインエレメントの周方向長
さが大きいとそのエレメントから発生する振動レベルが
大きくなることに着目して、次のような仮定のもとで理
論計算を試みた。すなわち、各トレッドデザインエレメ
ントから発生する振動は、トレッドデザインエレメント
の周方向長さに比例して大きな振幅を有するサイン波で
あると仮定してフーリエ級数展開するのである。この結
果、第8図(a),(b)および第9図(a),(b)
に示すように、従来の計算法により各トレッドデザイン
エレメントから均等な大きさのサイン波が生じると仮定
すると第8図(b)の如く低い周波数帯域で何らの振動
も表われないが、トレッドデザインエレメントのピッチ
長に見合った振幅を有するサイン波が生じると仮定した
場合には、第9図(b)の如くトレッドデザインエレメ
ント配列が持つ特別の周期数に相当する低い周波数帯域
で振幅のピークが見られる。特に、トレッドデザインエ
レメント配列が規則的な配列であると、この低い周波数
帯域でのピークが顕著となり、これにより音圧レベルの
脈動性を高め、騒音のフィーリングを悪くしてしまう。
The inventors of the present invention have paid attention to the fact that when the circumferential length of a tread design element is large, the vibration level generated from the element increases, and tried theoretical calculations under the following assumptions. That is, the vibration generated from each tread design element undergoes Fourier series expansion on the assumption that it is a sine wave having a large amplitude in proportion to the circumferential length of the tread design element. As a result, FIGS. 8 (a) and (b) and FIGS. 9 (a) and (b)
As shown in FIG. 8, if it is assumed that a sine wave of an equal size is generated from each tread design element by the conventional calculation method, no vibration is exhibited in a low frequency band as shown in FIG. Assuming that a sine wave having an amplitude commensurate with the pitch length of the element is generated, as shown in FIG. 9 (b), the peak of the amplitude in a low frequency band corresponding to the special cycle number of the tread design element array is obtained. Can be seen. In particular, when the tread design element arrangement is a regular arrangement, the peak in this low frequency band becomes remarkable, thereby increasing the pulsation of the sound pressure level and deteriorating the noise feeling.

第8図(a)および第9図(a)は、それぞれ、ピッ
チ配列(トレッドデザインエレメント配列)を示す説明
図である。2は振動波形を示す。第8図(b)および第
9図(b)は、それぞれ、フーリェ解析を実施したとき
の次数とその次数に対応する振幅との関係図である。第
8図(a)および第9図(a)において、ピッチAのピ
ッチ長=31.7mm、ピッチBのピッチ長27.5mm、ピッチの
Cのピッチ長=24.5mm、ピッチ群E1=CCCCCC、ピッチ群
E2=BBBBBBBB、ピッチ群E3=AAAAAAA、ピッチ群E4=BBB
B、ピッチ群E5=CCCCCC、ピッチ群E6=BBB、ピッチ群E7
=AAAAAA、ピッチ群E8=BBBBBBB、ピッチ群E9=CCCCCCC
CC、ピッチ群E10=BBBB、ピッチ群E11=AAAAA、ピッチ
群E12=BBBBである。第8図(a)のピッチ配列と第9
図(a)のピッチ配列とは同じである。ここで、「ピッ
チ」とは、一般にタイヤトレッドデザインはその周方向
に連続する繰り返し模様として構成されるが、その繰り
返し模様の最小単位を意味する。また、「ピッチ群」と
は、ピッチのうち同一ピッチが連続して配置されている
部分を意味する。
8 (a) and 9 (a) are explanatory diagrams each showing a pitch arrangement (tread design element arrangement). 2 indicates a vibration waveform. 8 (b) and 9 (b) are diagrams showing the relationship between the order and the amplitude corresponding to the order when Fourier analysis is performed. 8 (a) and 9 (a), the pitch length of pitch A = 31.7 mm, the pitch length of pitch B = 27.5 mm, the pitch length of pitch C = 24.5 mm, the pitch group E 1 = CCCCCC, the pitch group
E 2 = BBBBBBBB, pitch group E 3 = AAAAAAA, pitch group E 4 = BBB
B, pitch group E 5 = CCCCCC, pitch group E 6 = BBB, pitch group E 7
= AAAAAA, pitch group E 8 = BBBBBBB, pitch group E 9 = CCCCCCC
CC, pitch group E 10 = BBBB, pitch group E 11 = AAAAA, and pitch group E 12 = BBBB. The pitch arrangement shown in FIG.
This is the same as the pitch arrangement in FIG. Here, “pitch” generally means the minimum unit of the repeating pattern, which is a tire tread design that is configured as a repeating pattern that is continuous in the circumferential direction. The “pitch group” means a portion of the pitch in which the same pitch is continuously arranged.

〔発明の目的〕[Object of the invention]

本発明は、ピッチの構成・配列を改善して音圧レベル
の脈動性を低減すべくなされたもので、各ピッチの長さ
とそのピッチがタイヤ周上に現れる個数との積を特定の
組み合わせにすることによりパターンノイズを低減させ
て自動車の居住性・快適性を向上せしめた空気入りタイ
ヤを提供することを目的とする。
The present invention is intended to reduce the pulsation of the sound pressure level by improving the configuration and arrangement of the pitch, and the product of the length of each pitch and the number of the pitches appearing on the tire circumference is specified. Accordingly, an object of the present invention is to provide a pneumatic tire in which pattern noise is reduced to improve the comfort and comfort of a vehicle.

〔発明の構成〕[Configuration of the invention]

このため、本発明は、異なる長さをもつ3〜8種類の
ピッチでトレッド表面の1周を構成し、これらピッチの
種類のうちi番目の種類のピッチの長さをPiとすると共
に該ピッチがタイヤ1周に出現する総個数をNiとし、各
ピッチ種類の構成割合αをα=(pi×Ni)/タイヤ
全周とし、NPをピッチ長さの種類数とした場合におい
て、(1)横軸をピッチ長さとしかつ縦軸をαとし
て、最長ピッチの長さのαを(1/NP)×0.2〜(1/NP)
の間に定めると共に最短ピッチの長さのαを(1/NP)〜
(1/NP)×1.8の間に定め、これらのα間を連結してL
L′線を形成し、このLL′線に対してαを±10%増減し
て得られる範囲内にαが存在すること、又は(2)横
軸をピッチ長さとしかつ縦軸をαとして、上記(1)
で定めたLL′線に対して最長ピッチと最短ピッチのαが
LL′線によって決まるものよりも4〜30%小さく、ま
た、最長ピッチの次に短いピッチと最短ピッチの次に長
いピッチのαがLL′線によって決まるものよりも4〜30
%大きくして決まるα間を連結して折れ線ll′を形成
し、この折れ線ll′に対してαを±10%増減して得られ
る範囲内にαが存在することを特徴とする空気入りタ
イヤを要旨とする。
Therefore, the present invention is the conjunction constitute one round of the tread surface in 3-8 different pitches having different lengths, the length of the pitch of the i th kind of types of these pitches and P i the total number of pitches appears in one round tire and N i, each pitch type allocations α i α i = (p i × N i) / tires and the entire circumference, and the number of types of pitches lengths NP In the case, (1) the horizontal axis is the pitch length and the vertical axis is α i , and α of the longest pitch is (1 / NP) × 0.2 to (1 / NP)
And the minimum pitch length α is (1 / NP) ~
(1 / NP) × 1.8, and connect these α to L
An L 'line is formed, and α i exists within a range obtained by increasing or decreasing α by ± 10% with respect to the LL' line, or (2) the horizontal axis is the pitch length and the vertical axis is α i The above (1)
Is the longest pitch and the shortest pitch α for the LL 'line determined in
The α of the shortest pitch next to the longest pitch and the longest pitch next to the shortest pitch is 4 to 30% smaller than that determined by the LL ′ line.
% By connecting the determined by increasing alpha 'is formed and the polygonal line ll' polyline ll pneumatic, characterized in that alpha i is present in a range obtained by increasing or decreasing ± 10% of alpha against The gist is a tire.

以下、本発明の構成につき詳しく説明する。 Hereinafter, the configuration of the present invention will be described in detail.

本発明者は、前述した騒音の脈動性、すなわち規則的
にピッチの大きさが変化するような配列における低い周
波数の成分に関して種々計算を試みた。その結果、各ピ
ッチの周上に現れるピッチ総数が1つの重要な要因であ
ることが判明した。第1図(a),(b)、第2図
(a),(b)、第3図(a),(b)、および第4図
(a),(b)に示すように、ピッチ長48mm、44mm、40
mm、36mm、32mmの5種類のピッチを用いて、各ピッチが
周上に現れる総個数Niを下記表1の如く変化させて計算
した。
The present inventor has made various calculations on the above-described pulsation of noise, that is, low frequency components in an arrangement in which the pitch size changes regularly. As a result, it was found that the total number of pitches appearing on the circumference of each pitch was one important factor. As shown in FIGS. 1 (a) and (b), FIGS. 2 (a) and (b), FIGS. 3 (a) and (b), and FIGS. Length 48mm, 44mm, 40
Using five types of pitches of mm, 36 mm and 32 mm, the total number N i of each pitch appearing on the circumference was calculated as shown in Table 1 below.

この結果、配列の規則性がタイヤ1周について2周期
であることから、フーリエ級数展開すると2次ピークが
現れ、このピークは中間ピッチを多くすればするほど小
さくなる。一方、ピッチ周波数付近(トータルピッチ数
の次数付近)に現れるピークのようすを見ると最短・最
長ピッチを多くするとピッチ周波数の中心付近の成分が
少なく、その両わきにピークが出現する。しかし、中間
ピッチを多くするとピッチ周波数の中心付近でピークが
発生する。以上のことから、ピッチノイズを極小とする
各ピッチの個数配分に適値が存在すると考えられる。し
かも、フーリエ級数展開の特徴から各ピッチの個数の配
列ではなく、各ピッチの占める時間割合、すなわちピッ
チ長×ピッチ個数の割合が重要であると考えられる。
As a result, since the regularity of the arrangement is two periods for one round of the tire, a secondary peak appears when Fourier series is developed, and this peak becomes smaller as the intermediate pitch increases. On the other hand, looking at the appearance of a peak near the pitch frequency (near the order of the total pitch number), when the shortest and longest pitches are increased, the components near the center of the pitch frequency are reduced, and peaks appear on both sides. However, when the intermediate pitch is increased, a peak occurs near the center of the pitch frequency. From the above, it is considered that there is an appropriate value in the number distribution of each pitch that minimizes the pitch noise. Moreover, from the characteristics of Fourier series expansion, it is considered that not the arrangement of the number of pitches but the time ratio occupied by each pitch, that is, the ratio of pitch length × pitch number is important.

以上の論理的背景から、本発明者は、各ピッチの全周
長に占める長さの割合が小さいピッチほどその割合が大
きく、かつ最短・最長ピッチの占める割合が他よりも小
さければ低次の脈動に関する成分も、ピッチ周波数に関
する成分もバランスよく改善されるという結論を得た。
本発明は、このような知見に基づいてなされたものであ
る。
From the above logical background, the present inventor considers that the smaller the ratio of the length to the entire circumference of each pitch is, the larger the ratio is, and that the ratio of the shortest and longest pitches is smaller than other pitches, the lower It was concluded that both the component related to pulsation and the component related to the pitch frequency were improved in a well-balanced manner.
The present invention has been made based on such findings.

(1) 本発明では、異なる長さをもつ3〜8種類のピ
ッチでトレッド表面の1周を構成したこと。
(1) In the present invention, one round of the tread surface is configured with 3 to 8 types of pitches having different lengths.

ピッチの種類数は多いほど騒音の低減には有利である
が、多いほど金型制作費用がかさむため、この兼ね合い
を考慮して3〜8種類としたのである。
The greater the number of types of pitches, the more advantageous in reducing noise, but the greater the number of pitches, the higher the cost of mold production. Therefore, three to eight types are taken into account in consideration of this balance.

(2) また、本発明では、これらピッチの種類のうち
i番目の種類のピッチの長さをPiとすると共に該ピッチ
がタイヤ1周に出現する総個数をNiとし、各ピッチ種類
の構成割合αをα=(pi×Ni)/タイヤ全周とし、
NPをピッチ長さの種類数とした場合において、下記の
又はのいずれかとしたのである。
(2) Further, in the present invention, the total number of said pitch appears in one round tire with the length of the pitch of the i th kind of types of these pitches and P i and N i, of each pitch type The component ratio α i is defined as α i = (p i × N i ) / tire circumference,
When NP is the number of pitch length types, one of the following or one of the following is used.

横軸をピッチ長さとしかつ縦軸をαとして、最長
ピッチの長さのαを(1/NP)×0.2〜(1/NP)の間に定
めると共に最短ピッチの長さのαを(1/NP)〜(1/NP)
×1.8の間に定め、これらのα間を連結してLL′線を形
成し、このLL′線に対してαを±10%増減して得られる
範囲内にαが存在すること。
Assuming that the horizontal axis is the pitch length and the vertical axis is α i , the length α of the longest pitch is defined as (1 / NP) × 0.2 to (1 / NP), and α of the shortest pitch is (1 / NP) to (1 / NP)
X is set between 1.8 and these α are connected to form the LL 'line, and α i exists within the range obtained by increasing or decreasing α by ± 10% with respect to the LL' line.

第5図にピッチ長さとαとの関係を示す。第5図
中、mは上側の線(LL′よりも10%αが大)、nは下側
の線(LL′よりも10%αが小)、P1は最長ピッチ長、P
npは最短ピッチ長、αは最長ピッチの長さのα値、α
npはは最短ピッチの長さのα値である。第5図におい
て、αは斜線部分1に存在する。
FIG. 5 shows the relationship between the pitch length and α i . In FIG. 5, m is the upper line (10% α is larger than LL ′), n is the lower line (10% α is smaller than LL ′), P 1 is the longest pitch length,
np is the shortest pitch length, alpha 1 is the longest pitch length of the alpha value, alpha
np is the α value of the length of the shortest pitch. In FIG. 5, α i exists in the hatched portion 1.

各ピッチから発せられる振動は、大きいピッチほど大
きい、したがって、騒音の周波数分散においても大きい
ピッチから発せられる成分が強くなる。すなわち、α
を均等にしたのでは大きいピッチに相当する低周波数側
の成分が強くなってしまうので周波数分散に偏りが生
じ、その結果として騒音のピークが大きくなってしま
う。そこで、大きいピッチのαが小さくして小さいピッ
チのαを大きくすることにより、はじめて周波数分散が
均等になり、騒音のピークが極小値となる。このαの各
ピッチの配分は最短ピッチ長Pnpで均等配分(1/NP)よ
りも0〜80%多くし((1/NP)〜(1/NP)×1.8の
間)、最長ピッチ長P1で均等配分(1/NP)よりも0〜80
%少なくして((1/NP)×0.2〜(1/NP)の間)得るこ
とができる。この範囲外の場合には、逆に小さいピッチ
の成分が多くなりすぎて均等な周波数分布が得られな
い。
The larger the pitch, the larger the vibration emitted from each pitch. Therefore, the component emitted from the large pitch becomes stronger in the frequency dispersion of noise. That is, α i
If the values are equalized, the component on the low frequency side corresponding to a large pitch becomes strong, so that the frequency dispersion is biased, and as a result, the peak of noise increases. Therefore, by reducing the α of the large pitch and increasing the α of the small pitch, the frequency dispersion becomes uniform for the first time, and the noise peak becomes the minimum value. The distribution of each pitch of α is 0 to 80% larger than the equal distribution (1 / NP) at the shortest pitch length P np (between (1 / NP) and (1 / NP) × 1.8), and the longest pitch length 0 to 80 than the uniform distribution (1 / NP) in the P 1
% (Between (1 / NP) × 0.2 and (1 / NP)). If it is out of this range, on the other hand, components having small pitches become too large, and a uniform frequency distribution cannot be obtained.

横軸をピッチ長さとしかつ縦軸をαとして、上記
で定めたLL′線に対して最長ピッチと最短ピッチのα
がLL′線によって決まるものよりも4〜30%小さく、ま
た、最長ピッチの次に短いピッチと最短ピッチの次に長
いピッチのαがLL′線によって決まるものよりも4〜30
%大きくして決まるα間を連結して折れ線ll′を形成
し、この折れ線ll′に対してαを±10%増減して得られ
る範囲内にαが存在すること。
With the horizontal axis being the pitch length and the vertical axis being α i , the longest pitch and the shortest pitch α for the LL ′ line defined above
Is 4 to 30% smaller than that determined by the LL ′ line, and α of the shortest pitch next to the longest pitch and the next longest pitch after the shortest pitch is 4 to 30% smaller than that determined by the LL ′ line.
% By connecting the determined by increasing alpha 'is formed and the polygonal line ll' polyline ll be alpha i is present in a range obtained by increasing or decreasing ± 10% of the alpha respect.

第6図にピッチ長さとαとの関係を示す。第6図
中、gは上側の折れ線(ll′よりも10%αが大)、hは
下側の折れ線(ll′よりも10%αが小)、P1は最長ピッ
チ長、Pnpは最短ピッチ長であり、LL′は第5図におけ
るLL′線である。第6図において、αは斜線部分1に
存在する。
FIG. 6 shows the relationship between the pitch length and α i . In FIG. 6, g is the upper polygonal line (10% α is larger than ll ′), h is the lower polygonal line (10% α is smaller than ll ′), P 1 is the longest pitch length, and P np is This is the shortest pitch length, and LL 'is the LL' line in FIG. In FIG. 6, α i exists in the hatched portion 1.

第6図において、最長ピッチの次に短いピッチの長さ
のP2〜最短ピッチの次に長いピッチの長さPnp-1につい
て、ll′はLL′よりも4〜30%大きい。最長ピッチ長
P1、最短ピッチ長Pnpについて、ll′はLL′よりも4〜3
0%小さい。
In the sixth view, next to the long pitch length P np-1 of P 2 ~ shortest pitch next shortest pitch length of the longest pitch, ll 'is LL' 4 to 30% than the larger. Longest pitch length
For P 1 and the shortest pitch length P np , ll ′ is 4 to 3 more than LL ′.
0% smaller.

低周波の脈動性を考慮すると最長ピッチ長P1、最短ピ
ッチ長Pnpのαを小さくすれば各ピッチから発せられる
振動のレベルの変化が相対的に少なくなり、脈動性が改
善される。しかし、P1、Pnpのαが小さすぎるとピッチ
の最大/最小の比が実質的に小さくなり、かえってピッ
チノイズが悪化してしまう。このために、P1、Pnpにつ
いて、ll′をLL′よりも4〜30%小さくする。また、
P1、Pnp以外のピッチについては、P1、Pnpを低減した分
だけ逆に4〜30%大きくするのである。
In consideration of the pulsation of low frequency, if α of the longest pitch length P 1 and the shortest pitch length P np is reduced, the change in the level of the vibration emitted from each pitch is relatively reduced, and the pulsation is improved. However, if α of P 1 and P np is too small, the maximum / minimum ratio of the pitch becomes substantially small, and the pitch noise worsens. For this reason, for P 1 and P np , ll ′ is made 4 to 30% smaller than LL ′. Also,
For pitches other than P 1 and P np , the pitch is increased by 4 to 30% by the amount corresponding to the reduction of P 1 and P np .

(3) つぎに、本発明におけるピッチ配分の計算法の
具体例を下記に示す。
(3) Next, a specific example of the method of calculating the pitch distribution in the present invention will be described below.

まず、従来のピッチ設計法と同じく最大ピッチ長/
最小ピッチ長の比βとトータルピッチ数Nとを決める。
タイヤ騒音を改良するにはN、βとも大きいほどよい
が、騒音の他の特性からβ=1.3〜1.8、N=40〜90の範
囲で選ばれることが望ましい。仮に、N=57、β=1.54
を選ぶ。
First, as with the conventional pitch design method, the maximum pitch length /
The ratio β of the minimum pitch length and the total pitch number N are determined.
To improve the tire noise, it is better to increase both N and β, but it is desirable to select from β = 1.3 to 1.8 and N = 40 to 90 from other characteristics of the noise. Suppose N = 57, β = 1.54
Choose

ついで、タイヤの外径とN、βから各ピッチの長さ
を決定する。ここで、外径Dが600mmのタイヤについて
計算すると、D×π÷N=33.07よりこれを整数化して
中間ピッチの長さを33mmとする。
Next, the length of each pitch is determined from the outer diameter of the tire and N and β. Here, when a calculation is made for a tire having an outer diameter D of 600 mm, this is converted into an integer from D × π ÷ N = 33.07, and the length of the intermediate pitch is set to 33 mm.

つぎに、ピッチの種類数を決める。種類数は、前述
したように3〜8種類である。ここでは、5種類とす
る。
Next, the number of pitch types is determined. The number of types is 3 to 8 types as described above. Here, there are five types.

β=1.54、中間ピッチ長=33mmで5種類のピッチ長
さを設計する場合、最長〜中間および中間〜最短ピッチ
の差をkとして、(33+k)/(33−k)=β=1.54か
らk=7を得て、最長40、最短26を得る。残りの3種類
のものは適当に間を埋めるようにして結局、40、36、3
3、29、26mmのピッチ長を選ぶ。
When designing five types of pitch lengths with β = 1.54 and intermediate pitch length = 33 mm, the difference between the longest to middle and middle to shortest pitches is k, and (33 + k) / (33−k) = β = 1.54 to k = 7, get the longest 40, the shortest 26. The remaining three types should be filled in appropriately, and eventually 40, 36, 3
Choose a pitch length of 3, 29, 26mm.

ピッチ配分の基準となるものとして、各ピッチの配
分比率αは、まず、5種類のピッチがあることから、
(1/5)=0.2により基準の配分、すなわち第7図に示す
ように各ピッチが等しく配分されるべきMM′線が決めら
れる。
As a reference for pitch distribution, the distribution ratio α i of each pitch is firstly determined because there are five types of pitches.
Based on (1/5) = 0.2, the reference distribution, that is, the MM 'line to which each pitch should be distributed equally as shown in FIG. 7, is determined.

つぎに、第7図に示すように、最長ピッチ長と最短
ピッチ長との間の中間とMM′線との交点C1と、A1もしく
はE1とによって、短いピッチほど配分を多くするLL′線
を定める。A1点は最短ピッチ長26mmの縦線上にあり、等
配分α=0.2よりも13.5%高く、α=0.227によって与え
られる。最長ピッチ長40mmの場合でLL′線を定める場合
には、最長ピッチ長40mmの縦線上にあり、等配分α=0.
2よりも12.5%低く、α=0.175によって与えられるE1点
とC1点とを結んで得られる。
Next, as shown in FIG. 7, an intersection C1 between the middle between the longest pitch length and the shortest pitch length and the MM 'line, and A1 or E1, the LL' line that increases the distribution as the pitch becomes shorter, Determine. Point A1 is on a vertical line with a minimum pitch length of 26 mm, 13.5% higher than the equal distribution α = 0.2, and is given by α = 0.227. When the LL 'line is determined in the case of the longest pitch length of 40 mm, it is on the vertical line of the longest pitch length of 40 mm, and the equal distribution α = 0.
12.5% lower than 2, obtained by connecting the E1 and C1 points given by α = 0.175.

このように、LL′線は最短もしくは最長ピッチにお
けるαを等配分よりも0%〜80%増・減して決められる
が、傾きが左下りであっては(最短ピッチで減、最長ピ
ッチで増)、より長いピッチの影響が大きすぎてピッチ
周波数のうち周波数側で大きなピークを発生してしま
う。一方、80%超の傾きをつけると、より短いピッチの
影響が強すぎてピッチ周波数のうち高周波数側で大きな
ピークを発生してしまう。
In this way, the LL 'line is determined by increasing or decreasing the α at the shortest or longest pitch by 0% to 80% from the equal distribution, but when the slope is down to the left (decreasing at the shortest pitch, decreasing at the longest pitch) Increase), the influence of the longer pitch is too large, and a large peak is generated on the frequency side of the pitch frequency. On the other hand, if the inclination is more than 80%, the influence of the shorter pitch is too strong, and a large peak is generated on the high frequency side of the pitch frequency.

このようにしてLL′線が決められると、各ピッチ長
とLL′線との交点から第2の基準配分を得る。第5図に
示されるように、長さの短いものから順にA,B,C,D,Eと
すれば、A1,B1,C1,D1、E1点としてαの値は次のように
定まる(αは第2の基準配分)。第2の基準分配に対
して10%超のずれがあると騒音低減効果はない。
When the LL 'line is determined in this manner, a second reference distribution is obtained from the intersection of each pitch length and the LL' line. As shown in FIG. 5, if A, B, C, D, and E are set in order from the shortest one, the value of α is determined as A1, B1, C1, D1, and E1 as follows ( α i is the second reference allocation). If there is a deviation of more than 10% from the second reference distribution, there is no noise reduction effect.

α A1 0.227 B1 0.218 C1 0.200 D1 0.190 E1 0.175 つぎに、低い周波数に着目して最長・最短ピッチの
割合を減じ、中間ピッチの割合を増す。最長ピッチにお
いてE1=0.175から14.3%減じてE2=0.15、最短ピッチ
においてA1=0.227から9.7%減じてA2=0.205、また、
中間ピッチはC1=0.200から12.5%増してC2=0.225とし
た。
α i A1 0.227 B1 0.218 C1 0.200 D1 0.190 E1 0.175 Next, paying attention to low frequencies, the ratio of the longest and shortest pitches is reduced, and the ratio of the intermediate pitches is increased. At the longest pitch, E1 = 0.175 from 14.75% reduced to E2 = 0.15, at the shortest pitch A1 = 0.227 to 9.7% reduced from A2 = 0.205, and
The intermediate pitch was increased by 12.5% from C1 = 0.200 to C2 = 0.225.

このように最短・最長ピッチでは4%〜30%第2の
基準分配よりも減じ、中間ピッチでは4%〜30%増すこ
とによって低い周波数の脈動性を改善できる。4%未満
では脈動性の改善効果が実質的に得られず、30%超では
ピッチ周波数における分散が不十分となる。
In this way, the pulsation at low frequencies can be improved by decreasing the minimum pitch by 4% to 30% from the second reference distribution and increasing the intermediate pitch by 4% to 30%. If it is less than 4%, the effect of improving pulsation cannot be substantially obtained, and if it exceeds 30%, dispersion at the pitch frequency becomes insufficient.

残りの2種のピッチについては、各々の両隣りの増
減値の中間をとるようにして設計する。すなわち、ピッ
チBではピッチAが9.7%減、ピッチCが12.5%増であ
るので増減なし、また、ピッチDではピッチCが12.5%
増、ピッチEが14.3%減であるので5.3%増として、各
ピッチ配分αを下記の通りに決定した(α′はα
の調整値)。なお、αの総合計が1.0にならない場合
には、各αを比例させて調整する。
The remaining two pitches are designed so as to take the middle between the increase and decrease values on both sides. That is, in pitch B, pitch A is reduced by 9.7% and pitch C is increased by 12.5%, so that there is no change. In pitch D, pitch C is reduced by 12.5%.
Since the pitch E is 14.3% decreased, the pitch distribution α i is determined as follows (α i ′ is α i).
Adjustment value). If the total sum of α i does not reach 1.0, each α i is adjusted in proportion.

α α A2 0.205 0.2054 B2 0.218 0.2184 C2 0.225 0.2255 D2 0.200 0.2004 E2 0.150 0.1503 計 0.998 1.0000 上記で決定されたα′を用いて、各ピッチの個
数は次のように求めることができる。
α i α i A2 0.205 0.2054 B2 0.218 0.2184 C2 0.225 0.2255 D2 0.200 0.2004 E2 0.150 0.1503 Total 0.998 1.0000 Using α i ′ determined above, the number of each pitch can be obtained as follows.

Ni=周長×αi/ピッチ長Pi したがって、ピッチ長、α、Ni、Ni′(Niの整数
化)は下記のようになる。この結果、当初仮に定めたト
ータルピッチ数57よりも僅かに多いトータルピッチ数で
各ピッチの個数配分が決定される。ピッチ ピッチ長(mm) α Ni Ni A 26 0.2054 14.9 15 B 29 0.2184 14.2 14 C 33 0.2255 12.9 13 D 36 0.2004 10.5 10 E 40 0.1503 7.1 7 ここで、各ピッチの調整を行う。すなわち、上記
で決められた各ピッチの個数配分ではΣ(Pi×Ni)/π
=593.6であり、これはタイヤ周長(600mm)に一致しな
いので(593.6<600)、ピッチ長を比例して調整する。
600÷593.6=1.0108であるので、これを当初仮に決めた
各ピッチ長に乗じて最終のピッチ長さを得る。その値を
下記に示す。Pi′はピッチ長Piを調整したものである。ピッチ ピッチ長(mm) Pi α A 26 26.3 0.2092 B 29 29.3 0.2175 C 33 33.4 0.2303 D 36 36.4 0.1930 E 40 40.4 0.1500 以下に実施例を示す。
N i = perimeter × α i / pitch length P i Therefore, the pitch length, α i , N i , and N i ′ (integralization of N i ) are as follows. As a result, the number distribution of each pitch is determined based on the total pitch number slightly larger than the total pitch number 57 provisionally initially determined. Pitch length (mm) α i N i N i 'A 26 0.2054 14.9 15 B 29 0.2184 14.2 14 C 33 0.2255 12.9 13 D 36 0.2004 10.5 10 E 40 0.1503 7.1 7 wherein the adjustment of the pitch. That is, in the number distribution of each pitch determined above, Σ (P i × N i ) / π
= 593.6, which does not match the tire circumference (600mm) (593.6 <600), so the pitch length is adjusted in proportion.
Since 600 ÷ 593.6 = 1.0108, the final pitch length is obtained by multiplying this by the respective pitch lengths tentatively determined initially. The values are shown below. P i ′ is obtained by adjusting the pitch length P i . Pitch Pitch length (mm) P i α i A 26 26.3 0.2092 B 29 29.3 0.2175 C 33 33.4 0.2303 D 36 36.4 0.1930 E 40 40.4 0.1500 Examples are shown below.

実施例 外径600mm、タイヤサイズ165SR 13のスチールラジア
ルタイヤ(本発明タイヤ、比較タイヤ)につき、騒音の
脈動幅(dB)および騒音のフィーリングにつき評価し
た。この結果を表2に示す。
Example A steel radial tire (external tire, comparative tire) having an outer diameter of 600 mm and a tire size of 165SR13 was evaluated for noise pulsation width (dB) and noise feeling. Table 2 shows the results.

騒音の脈動幅の評価方法: JASO C606−73タイヤ騒音試験方法に準ずる方法、す
なわち直径3000mmのスチールドラム上でタイヤを50km/h
で転動させ(空気圧、リムサイズ、荷重はJATMA標準条
件)、脈動性の評価をOA値(100〜2000Hzのバンドパス
フィルターを通過した騒音のオーバーオール値)のタイ
ヤ1回転内の変動幅で評価した。
Evaluation method of noise pulsation width: A method according to the JASO C606-73 tire noise test method, that is, a tire is driven at 50 km / h on a steel drum having a diameter of 3000 mm.
(The air pressure, rim size, and load are JATMA standard conditions), and the pulsation was evaluated based on the fluctuation range of the OA value (overall value of noise passing through a bandpass filter of 100 to 2000 Hz) within one rotation of the tire. .

表2から判るように、比較タイヤ1は、最短・最長ピ
ッチの配分が多いため、ピッチノイズの分散および低次
の脈動性が強く実用に耐えない。比較タイヤ2は、大き
いピッチほど配分が多くなっているため、やはり同様に
実用に耐えない。比較タイヤ3は、各ピッチの配分がほ
ぼ等分であり、α=0.2±10%の範囲にあるのでピッチ
ノイズの分散が比較的良好で低次の脈動も改善され、実
用に耐える。本発明のタイヤ1は、短いピッチほど配分
が多く、Aピッチでは等配分よりも25%多く、Eピッチ
では等配分よりも25%少なく、A〜Eピッチまで徐々に
少なく配分されている。したがって、ピッチノイズの分
散・脈動性とも比較タイヤ3よりもさらに改善されてい
る。本発明タイヤ2は、Aピッチで等配分よりも13%多
く、Eピッチで等配分よりも13%少なくした配分から、
さらにCピッチの割合を13%増し、A,Eピッチの割合を1
0〜14%減じて配分したものである。このためピッチノ
イズは比較的良好に保たれ、脈動性は最も大幅に改善さ
れている。
As can be seen from Table 2, the comparative tire 1 has a large distribution of the shortest and longest pitches, and therefore has high dispersion of pitch noise and low-order pulsation, and is not practical. In the comparative tire 2, the larger the pitch is, the more the distribution is. In the comparative tire 3, the distribution of each pitch is almost equally divided, and α = 0.2 ± 10%. Therefore, the dispersion of pitch noise is relatively good, the low-order pulsation is improved, and the tire is practically usable. In the tire 1 of the present invention, the shorter the pitch, the more the distribution, the more the distribution is 25% than the equal distribution at the A pitch, the less 25% than the equal distribution at the E pitch, and the smaller the distribution from the A to the E pitch. Therefore, both the dispersion and the pulsation of the pitch noise are further improved as compared with the comparative tire 3. The tire 2 of the present invention has a distribution that is 13% larger than the equal distribution at the A pitch and 13% smaller than the equal distribution at the E pitch,
Furthermore, the ratio of C pitch is increased by 13%, and the ratio of A, E pitch is
0-14% reduced and allocated. For this reason, pitch noise is kept relatively good, and pulsation is most significantly improved.

〔発明の効果〕〔The invention's effect〕

以上説明したように、ピッチの長さに従ってピッチの
剛性が大きくなり、各ピッチから発生するピッチ振動が
ピッチの大きさと共に変動するようなタイヤ騒音におい
て、ピッチの配列法は各々のピッチの配分割合が重要な
問題であり、本発明では、各ピッチ配分を等分にするか
もしくは短いピッチほど多く配分するか又は最長・最短
ピッチの配分を減ずることによりピッチノイズの分散と
脈動性の改善とをはかることが可能となる。
As described above, in the tire noise in which the pitch stiffness increases according to the pitch length and the pitch vibration generated from each pitch fluctuates with the pitch size, the pitch arrangement method determines the distribution ratio of each pitch. Is an important problem.In the present invention, the distribution of pitch noise and the improvement of pulsation can be improved by equally dividing each pitch distribution or distributing more pitches for shorter pitches or reducing the distribution of longest and shortest pitches. It becomes possible to measure.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)、第2図(a),(b)、第3図
(a),(b)、および第4図(a),(b)はそれぞ
れピッチ配列と、フーリェ解析を実施したときの次数と
その次数に対応する振幅との関係を示した説明図であ
る。 第5図、第6図、および第7図はそれぞれピッチ長さと
ピッチの構成割合αとの関係を示した説明図である。 第8図(a)および第9図(a)はそれぞれピッチ配列
を示す説明図、第8図(b)および第9図(b)はそれ
ぞれフーリェ解析を実施したときの次数とその次数に対
応する振幅との関係を示した説明図である。 1……斜線部分、2……振動波形。
FIGS. 1 (a) and (b), FIGS. 2 (a) and (b), FIGS. 3 (a) and (b), and FIGS. 4 (a) and (b) each show a pitch arrangement, It is explanatory drawing which showed the relationship between the order when Fourier analysis was performed, and the amplitude corresponding to the order. Figure 5, Figure 6, and 7 is an explanatory diagram showing the relationship between the composition ratio alpha i of the pitch length and pitch, respectively. 8 (a) and 9 (a) are explanatory diagrams each showing a pitch arrangement, and FIGS. 8 (b) and 9 (b) respectively correspond to the order and the order when Fourier analysis is performed. FIG. 5 is an explanatory diagram showing a relationship between the amplitude and the amplitude. 1 ... shaded area, 2 ... vibration waveform.

フロントページの続き (56)参考文献 特開 昭61−200006(JP,A) 特開 平1−4501(JP,A) 特開 昭63−13410(JP,A) 特開 昭62−155106(JP,A) 特開 昭60−139504(JP,A) 特開 昭60−88606(JP,A) 特開 昭60−88605(JP,A) 特開 昭60−82408(JP,A) 特開 昭54−115801(JP,A) 特開 昭63−22703(JP,A) 特公 昭58−2844(JP,B2) 特公 平3−23366(JP,B2)Continuation of the front page (56) References JP-A-61-200006 (JP, A) JP-A-1-4501 (JP, A) JP-A-63-13410 (JP, A) JP-A-62-155106 (JP, A) JP-A-60-139504 (JP, A) JP-A-60-88606 (JP, A) JP-A-60-88605 (JP, A) JP-A-60-82408 (JP, A) 54-115801 (JP, A) JP-A-63-22703 (JP, A) JP-B-58-2844 (JP, B2) JP-B-3-23366 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】異なる長さをもつ3〜8種類のピッチでト
レッド表面の1周を構成し、これらピッチの種類のうち
i番目の種類のピッチの長さをPiとすると共に該ピッチ
がタイヤ1周に出現する総個数をNiとし、各ピッチ種類
の構成割合αをα=(pi×Ni)/タイヤ全周とし、
NPをピッチ長さの種類数とした場合において、(1)横
軸をピッチ長さとしかつ縦軸をαとして、最長ピッチ
の長さのαを(1/NP)×0.2〜(1/NP)の間に定めると
共に最短ピッチの長さのαを(1/NP)〜(1/NP)×1.8
の間に定め、これらのα間を連結してLL′線を形成し、
このLL′線に対してαを±10%増減して得られる範囲内
にαが存在すること、又は(2)横軸をピッチ長さと
しかつ縦軸をαとして、上記(1)で定めたLL′線に
対して最長ピッチと最短ピッチのαがLL′線によって決
まるものよりも4〜30%小さく、また、最長ピッチの次
に短いピッチと最短ピッチの次に長いピッチのαがLL′
線によって決まるものよりも4〜30%大きくして決まる
α間を連結して折れ線ll′を形成し、この折れ線ll′に
対してαを±10%増減して得られる範囲内にαが存在
することを特徴とする空気入りタイヤ。
[Claim 1] constitute one round of the tread surface in 3-8 different pitches having different lengths, is the pitch with the length of the pitch of the i th kind of types of these pitches and P i the total number of occurrences in one round tire and N i, and each pitch type allocations α i α i = (p i × N i) / tire entire circumference,
In the case of the NP and the number of kinds of pitch length, (1) as the pitch length Toshikatsu ordinate the horizontal axis alpha i, the longest pitch length of the alpha (1 / NP) × 0.2 to (1 / NP ) And the shortest pitch length α is (1 / NP)-(1 / NP) x 1.8
Between these α, forming the LL 'line by connecting these α,
Α i exists within the range obtained by increasing or decreasing α by ± 10% with respect to the LL ′ line, or (2) the horizontal axis is the pitch length and the vertical axis is α i , The α of the longest pitch and the shortest pitch is 4 to 30% smaller than that determined by the LL ′ line for the determined LL ′ line, and α of the shortest pitch next to the longest pitch and the longest pitch next to the shortest pitch is LL ′
The line α is determined by connecting α between 4% and 30% larger than that determined by the line to form a polygonal line ll ′, and α i is within a range obtained by increasing or decreasing α by ± 10% with respect to the polygonal line ll ′. A pneumatic tire characterized by being present.
JP63112544A 1988-05-11 1988-05-11 Pneumatic tire Expired - Lifetime JP2665931B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63112544A JP2665931B2 (en) 1988-05-11 1988-05-11 Pneumatic tire
US07/725,109 US5309964A (en) 1988-05-11 1991-07-03 Pneumatic tire having tread pattern arrayed for reduced noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112544A JP2665931B2 (en) 1988-05-11 1988-05-11 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH01285406A JPH01285406A (en) 1989-11-16
JP2665931B2 true JP2665931B2 (en) 1997-10-22

Family

ID=14589307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112544A Expired - Lifetime JP2665931B2 (en) 1988-05-11 1988-05-11 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2665931B2 (en)

Also Published As

Publication number Publication date
JPH01285406A (en) 1989-11-16

Similar Documents

Publication Publication Date Title
US5027875A (en) Pneumatic tire having reduced tread pattern noise
US5062461A (en) Pneumatic tire having a tread pattern for reducing noise
CA1203463A (en) Reduction of the travel noise of tires
US5383506A (en) Pneumatic tire having reduced noise
US5240054A (en) Pneumatic tire having tread designed for reduced noise
US5125444A (en) Pneumatic tire generating musical pattern sound
JPH0698883B2 (en) Auto tire tire tread
JPS62283004A (en) Noise control type tire
US6568444B1 (en) Pneumatic radial tire having small negative ratio and small tread ground contacting width to rim width
US5309964A (en) Pneumatic tire having tread pattern arrayed for reduced noise
JP2665931B2 (en) Pneumatic tire
JP2665932B2 (en) Pneumatic tire
JP2665933B2 (en) Pneumatic tire
JPS63188505A (en) Low noise pneumatic tire
JP2796241B2 (en) Pneumatic tire
JP3096924B2 (en) Pneumatic radial tires for passenger cars
JPH1058920A (en) Pneumatic tire
JPS582844B2 (en) pneumatic tires
JPH05178019A (en) Pneumatic tire
JP2000177320A (en) Pneumatic tire
JPS6012318A (en) Low noise tyre
JP2816863B2 (en) Pneumatic radial tires for passenger cars
EP3492280B1 (en) Tire
JPH05608A (en) Pneumatic tire
JPS60139504A (en) Pneumatic tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term