JPH01285406A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH01285406A
JPH01285406A JP63112544A JP11254488A JPH01285406A JP H01285406 A JPH01285406 A JP H01285406A JP 63112544 A JP63112544 A JP 63112544A JP 11254488 A JP11254488 A JP 11254488A JP H01285406 A JPH01285406 A JP H01285406A
Authority
JP
Japan
Prior art keywords
pitch
pitches
length
shortest
longest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63112544A
Other languages
Japanese (ja)
Other versions
JP2665931B2 (en
Inventor
Tomohiko Kogure
知彦 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP63112544A priority Critical patent/JP2665931B2/en
Publication of JPH01285406A publication Critical patent/JPH01285406A/en
Priority to US07/725,109 priority patent/US5309964A/en
Application granted granted Critical
Publication of JP2665931B2 publication Critical patent/JP2665931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE:To reduce pattern noise and to improve living condition and amenity by forming one round of a tread surface by plural kinds of pitches having different lengths, and making a specified combination of the products of the length of each pitch and the number of pitches appearing in one round of a tire. CONSTITUTION:At the time of forming one round of a read by three to eight kinds of pitches, wherein the pitch length is Pi, the total number of appearing pitches is Ni, the construction ration of the respective pitches is expressed by alphai=PiXNi, and the number of kinds of pitch lengths is expressed by NP, the longest pitch alpha is set within the range of (1/NP)X0.2-1/NP, and the shortest pitch alpha is set within (1/NP)-(1/NPX1.8), and alphai is set within the range of + or -10% with respect to a line LL' connecting both alpha as shown in the drawing. The longest and shortest pitches alpha are made smaller by 4-30% than that decided by LL'. The second rank pitch alpha is set larger by 4-30%, and set within the range of + or -10% with respect to a kinked line ll' connecting them. Thus, pattern noise can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数の異なるピッチ長を有するトレッドデザ
インエレメントをトレッド表面に配列したタイヤであっ
て、転勤に伴ってトレッドデザインエレメントが発生す
る騒音(パターンノイズ)を低減せしめた空気入りタイ
ヤに関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a tire in which tread design elements having a plurality of different pitch lengths are arranged on the tread surface, and which reduces the noise ( This invention relates to a pneumatic tire that reduces pattern noise.

〔従来技術〕[Prior art]

従来、パターンノイズを低減させるために、ピッチ周波
数のまわりの広い周波数(タイヤの回転数×トレッドデ
ザインエレメント数によってきまる周波数)帯域にパタ
ーンノイズを分散させて騒音を目立たなくさせる工夫が
なされてきた。これは、バリアプルピッチ配列法と呼ば
れるもので、何種類かのピッチ長さの異なるトレッドデ
ザインエレメント(すなわち、ピンチ)をタイヤ周方向
に適当に配列し、各トレッドデザインエレメントが接地
面と接触する際に発生するパルス的騒音あるいは振動の
時間間隔を変化させ、特定周波数に騒音が集中しないよ
うにする方法であり、無線工学等で用いられる周波数変
調理論に基づくものである。しかしながら、パターンノ
イズを十分に低減させるまでには至っていない。
Conventionally, in order to reduce pattern noise, efforts have been made to make the noise less noticeable by dispersing the pattern noise into a wide frequency band around the pitch frequency (a frequency determined by the number of tire rotations x the number of tread design elements). This is called the barrier pull pitch arrangement method, in which tread design elements with different pitch lengths (i.e., pinches) are arranged appropriately in the circumferential direction of the tire, and each tread design element makes contact with the ground contact surface. This is a method to prevent noise from concentrating on a specific frequency by changing the time interval of the pulsed noise or vibration that occurs when the noise is generated, and is based on frequency modulation theory used in radio engineering. However, pattern noise has not yet been sufficiently reduced.

そこで、本発明者は、パターンノイズの低減をはかるべ
く研究した結果、タイヤ騒音のフィーリングを悪くして
いる要因として音圧レベルの脈動性を見逃せないことが
判明した。
Therefore, as a result of research aimed at reducing pattern noise, the present inventor found that the pulsation of the sound pressure level cannot be overlooked as a factor that worsens the feeling of tire noise.

すなわち、従来の騒音計測法のように成る一定の時間で
平均化された音圧レベルでは同等であるにもかかわらず
、人間の聴感室上のフィーリングではその音圧感に優劣
が生じることがあり、この原因を探究したところ、約1
0Hz以下の低い周波数帯域において大きく脈動する音
圧レベルと脈動しない音圧レベルとの違いであることが
判明した。この音圧レベルの脈動性、すなわち騒音の要
因の1つである脈動性を定量的に観察するには、高速度
で収録された騒音を低速度で再生して音圧レベルの時間
的変化を出力することによって可能である6例えば、J
ASOC606−73タイヤ騒音試験方法に準する方法
、すなわち直径3000mmのスチールドラム上でタイ
ヤを50 km/hで転勤させ(空気圧、リムサイズ、
荷重はJATMA標準条件)、脈動性の評価をOA値(
100〜2000 Hzのバンドパスフィルターを通過
した騒音のオーバーオール値)のタイヤ1回転内の変動
幅で評価することができる。
In other words, even though the sound pressure levels averaged over a certain period of time as in conventional noise measurement methods are the same, there may be differences in the perceived sound pressure in the human hearing room. , when we investigated the cause of this, we found that approximately 1
It has been found that there is a difference between a sound pressure level that pulsates significantly and a sound pressure level that does not pulsate in a low frequency band below 0 Hz. In order to quantitatively observe the pulsation of this sound pressure level, which is one of the causes of noise, the noise recorded at high speed is played back at low speed to observe the temporal changes in the sound pressure level. For example, it is possible by outputting 6
A method similar to ASOC606-73 tire noise test method, i.e., tires were transferred at 50 km/h on a steel drum with a diameter of 3000 mm (inflate pressure, rim size,
Load is JATMA standard condition), pulsation evaluation is OA value (
It can be evaluated based on the overall value of the noise that has passed through a band-pass filter of 100 to 2000 Hz) within one rotation of the tire.

一方、音圧レベルについての従来のトレッドデザインエ
レメント配列に関する理論では、1つのトレッドデザイ
ンエレメントから1つのサイン波が発生するものと仮定
して、タイヤ1周にトレッドデザインエレメントの並び
順と同じ時間的間隔で発生するサイン波列をフーリエ級
数展開して周波数軸上の分散をシュミレートするのが一
般である。とりわけ、周方向長さ、すなわちピッチ長が
短いトレッドデザインエレメントから長いトレッドデザ
インエレメントへと、そしてまた、短いトレッドデザイ
ンエレメントへと規則的にサイン波的な配列をする場合
の理論解析については多くの研究や工夫がなされている
(例えば、自動車技術Vo1.28 、 Nll 、 
1974  rタイヤノイズについて」、特開昭54−
115801号公報参照)。しかし、これらの考察にお
いて、前述した音圧レベルの脈動性について論ぜられて
いないのは、各トレッドデザインエレメントから発生す
る振動の大きさを一定に仮定したためである。
On the other hand, in the conventional theory regarding the arrangement of tread design elements regarding sound pressure level, it is assumed that one sine wave is generated from one tread design element, and the time period in one tire rotation is the same as the arrangement order of the tread design elements. Generally, dispersion on the frequency axis is simulated by expanding a sine wave train that occurs at intervals into a Fourier series. In particular, a lot of theoretical analysis has been done regarding the regular sine wave arrangement of tread design elements with short circumferential length, that is, pitch length, from short tread design elements to long tread design elements, and then back to short tread design elements. Research and innovations are being carried out (for example, Automotive Technology Vol. 1.28, Nll,
1974 ``About Tire Noise'', Japanese Patent Publication No. 1974-
(See Publication No. 115801). However, in these considerations, the reason why the above-mentioned pulsating nature of the sound pressure level is not discussed is because the magnitude of vibration generated from each tread design element is assumed to be constant.

本発明者は、トレッドデザインエレメントの周方向長さ
が大きいとそのエレメントから発生する振動レベルが大
きくなることに着目して、次のような仮定のもとて理論
計算を試みた。すなわち、各トレッドデザインエレメン
トから発生する振動は、トレッドデザインエレメントの
周方向長さに比例して大きな振幅を有するサイン波であ
ると仮定してフーリエ級数展開するのである。この結果
、第8図(a)、(b)および第9図(a)、(b)に
示すように、従来の計算法により各トレッドデザインエ
レメントから均等な大きさのサイン波が生じると仮定す
ると第8図(b)の如く低い周波数帯域で何らの振動も
表われないが、トレッドデザインエレメントのピッチ長
に見合った振幅を有するサイン波が生じると仮定した場
合には、第9図(b)の如くトレッドデザインエレメン
ト配列が持つ特別の周期数に相当する低い周波数帯域で
振幅のピークが見られる。特に、トレッドデザインエレ
メント配列が規則的な配列であると、この低い周波数帯
域でのピークが顕著となり、これにより音圧レベルの脈
動性を高め、騒音のフィーリングを悪くしてしまう。
The present inventor focused on the fact that when the circumferential length of a tread design element is large, the vibration level generated from that element becomes large, and attempted theoretical calculations based on the following assumptions. That is, the vibration generated from each tread design element is expanded into a Fourier series on the assumption that it is a sine wave having a large amplitude in proportion to the circumferential length of the tread design element. As a result, it is assumed that a sine wave of equal size is generated from each tread design element using the conventional calculation method, as shown in FIGS. 8(a), (b) and 9(a), (b). Then, as shown in Fig. 8(b), no vibration appears in the low frequency band, but if it is assumed that a sine wave with an amplitude commensurate with the pitch length of the tread design element is generated, as shown in Fig. 9(b). ), the amplitude peak is seen in a low frequency band corresponding to a particular number of cycles of the tread design element arrangement. In particular, when the tread design elements are arranged in a regular manner, the peak in this low frequency band becomes noticeable, which increases the pulsation of the sound pressure level and worsens the feeling of noise.

第8図(a)および第9図(a)は、それぞれ、ピッチ
配列(トレッドデザインエレメント配列)を示す説明図
である。2は振動波形を示す。第8図(b)および第9
図<b)は、それぞれ、フーリエ解析を実施したときの
次数とその次数に対応する振幅との関係図である。第8
図(a)および第9図(a)において、ピッチAのピッ
チ長=31.7 mm 、ピッチBのピッチ長=27.
5 +am 、ピッチCのピッチ長=24.5 mm 
、ピッチ群E+ =CCCCCC,ピッチ群Ez =B
BBBBBBB、ピッチ群E3冨AAAAAAA、ピン
チ群E。
FIG. 8(a) and FIG. 9(a) are explanatory diagrams showing the pitch arrangement (tread design element arrangement), respectively. 2 shows a vibration waveform. Figures 8(b) and 9
Figure <b) is a relationship diagram between the order and the amplitude corresponding to the order when Fourier analysis is performed. 8th
In Figures (a) and 9(a), the pitch length of pitch A = 31.7 mm, and the pitch length of pitch B = 27.
5 + am, pitch length of pitch C = 24.5 mm
, pitch group E+ =CCCCCC, pitch group Ez =B
BBBBBBBB, pitch group E3 tiumaaaaaa, pinch group E.

=BBBB、ピッチ群Es ”” CCCCCC。=BBBB, pitch group Es ” CCCCCC.

ピッチ群E、=BBB、ピッチ群Eフ=AAAAAA、
ピッチ群E@ =BBBBBBB。
Pitch group E = BBB, pitch group E = AAAAAA,
Pitch group E@ =BBBBBBBB.

ピッチ群E 9 = CCCCCCCCC、ピ・フチ群
E、。=BBBB、ピッチ群E r + = A A 
A AA1ピッ千群E、t= B B B Bである。
Pitch group E 9 = CCCCCCCCCC, pitch group E,. =BBBB, pitch group E r + = A A
A AA1 pitch group E, t = B B B B.

第8図(a)のピッチ配列と第9図(a)のピッチ配列
とは同じである。ここで、「ピッチ」とは、一般にタイ
ヤトレッドデザインはその周方向に連続する繰り返し模
様として構成されるが、その繰り返し模様の最小単位を
意味する。また、「ピッチ群」とは、ピッチのうち同一
ピッチが連続して配置されている部分を意味する。
The pitch arrangement in FIG. 8(a) and the pitch arrangement in FIG. 9(a) are the same. Here, the term "pitch" refers to the smallest unit of a repeating pattern of a tire tread design that is generally continuous in the circumferential direction. Furthermore, the term "pitch group" refers to a portion of the pitches in which the same pitches are consecutively arranged.

〔発明の目的〕[Purpose of the invention]

本発明は、ピッチの構成・配列を改善して音圧レベルの
脈動性を低減すべくなされたもので、各ピッチの長さと
そのピッチがタイヤ同上に現れる個数との積を特定の組
み合わせにすることによりパターンノイズを低減させて
自動車の居住性・快適性を向上せしめた空気入りタイヤ
を提供することを目的とする。
The present invention was made to reduce the pulsation of the sound pressure level by improving the structure and arrangement of pitches, and the product of the length of each pitch and the number of tires in which that pitch appears is made into a specific combination. The purpose of the present invention is to provide a pneumatic tire that reduces pattern noise and improves the comfort and comfort of automobiles.

〔発明の構成〕[Structure of the invention]

このため、本発明は、異なる長さをもつ3〜8種類のピ
ッチでトレッド表面の1周を構成し・これらピッチの種
類のうちi番目の種類のピッチの長さをP、とすると共
に該ピンチがタイヤ1周に出現する総個数をNiとし、
各ピッチ種類の構成割合αiをαム=(PtXNi)/
タイヤ全周とし、NPをピッチ長さの種類数とした場合
において、(1)横軸をピッチ長さとしかつ縦軸をα五
として、最長ピッチの長さのαを(1/NP) ×0.
2〜(1/NP)の間に定めると共に最短ピッチの長さ
のαを(1/NP)〜(1/NP)  ×1.8の間に
定め、これらのα間を連結してLL’線を形成し、この
LL”線に対してαを±10%増減して得られる範囲内
にαiが存在すること、又は(2)横軸をピッチ長さと
しかつ縦軸をα五として、上記(1)で定めたLL’線
に対して最長ピッチと最短ピッチのαがLL’線によっ
て決まるものよりも4〜30%小さく、また、最長ピッ
チの次に短いピッチと最短ピッチの次に長いピッチのα
がLL’線によって決まるものよりも4〜30%大きく
して決まるα間を連結して折れ線11’を形成し、この
折れ線11’に対してαを±lO%増減して得られる範
囲内にαiが存在することを特徴とする空気入りタイヤ
を要旨とする。
Therefore, in the present invention, one circumference of the tread surface is made up of three to eight types of pitches having different lengths, and the length of the i-th type of pitch among these types of pitches is defined as P. Let Ni be the total number of pinches that appear in one tire lap,
The composition ratio αi of each pitch type is αm = (PtXNi)/
When the entire circumference of the tire is the entire circumference of the tire and NP is the number of pitch length types, (1) the horizontal axis is the pitch length and the vertical axis is α5, and the longest pitch length α is (1/NP) × 0 ..
LL' (2) If the horizontal axis is the pitch length and the vertical axis is α5, The α of the longest pitch and the shortest pitch with respect to the LL' line defined in (1) is 4 to 30% smaller than that determined by the LL' line, and the next shortest pitch after the longest pitch and the second longest pitch after the shortest pitch α of pitch
is determined by 4 to 30% larger than that determined by the LL' line to form a polygonal line 11', and within the range obtained by increasing or decreasing α with respect to this polygonal line 11' by ±lO%. The gist of this invention is a pneumatic tire characterized by the presence of αi.

以下、本発明の構成につき詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明者は、前述した騒音の脈動性、すなわち規則的に
ピッチの大きさが変化するような配列における低い周波
数の成分に関して種々計算を試みた。その結果、各ピッ
チの周上に現れるピッチ総数が1つの重要な要因である
ことが判明した。第1図(a)、  (b)、第2図(
a)、  (b)、第3図(a)、  (b)、および
第4図(a)、  (b)に示すように、ピッチ長48
 mm 、 44 mm 、 40 am 、 36 
nu++ 。
The present inventor attempted various calculations regarding the pulsation of the noise described above, that is, the low frequency components in an arrangement in which the pitch size changes regularly. As a result, it was found that one important factor was the total number of pitches appearing on the circumference of each pitch. Figure 1 (a), (b), Figure 2 (
As shown in FIGS. 3(a), (b), and 4(a), (b), the pitch length is 48.
mm, 44 mm, 40 am, 36
nu++.

32IllII+の5種類のピッチを用いて、各ピンチ
が同上に現れる総個数Niを下記表1の如く変化させて
計算した。
Using five types of pitches of 32IllII+, the total number Ni in which each pinch appears on the same page was calculated by varying it as shown in Table 1 below.

(本頁以下余白) 紅 この結果、配列の規則性がタイヤ1周について2周期で
あることから、フーリエ級数展開すると2次にピークが
現れ、このピークは中間ピッチを多(すればするほど小
さくなる。
(Margins below this page) As a result of Beniko, since the regularity of the arrangement is two cycles per tire rotation, a quadratic peak appears when expanded into a Fourier series, and this peak becomes smaller as the intermediate pitch increases. Become.

一方、ピンチ周波数付近(トータルピッチ数の次数付近
)に現れるピークのようすを見ると最短・最長ピッチを
多くするとピッチ周波数の中心付近の成分が少なく、そ
の両わきにピークが出現する。しかし、中間ピッチを多
くするとピンチ周波数の中心付近でピークが発生する。
On the other hand, looking at the peaks that appear near the pinch frequency (near the order of the total pitch number), as the shortest and longest pitches are increased, the component near the center of the pitch frequency decreases, and peaks appear on both sides. However, when the intermediate pitch is increased, a peak occurs near the center of the pinch frequency.

以上のことから、ピッチノイズを極小とする各ピッチの
個数配分に適値が存在すると考えられる。しかも、フー
リエ級数展開の特徴から各ピッチの個数の配列ではなく
、各ピッチの占める時間割合、すなわちピッチ長×ピン
千個数の割合が重要であると考えられる。
From the above, it is considered that there is an appropriate value for the distribution of the number of pitches that minimizes pitch noise. Furthermore, from the characteristics of Fourier series expansion, it is considered that not the arrangement of the number of each pitch but the time ratio occupied by each pitch, that is, the ratio of pitch length x number of 1,000 pins is important.

以上の理論的背景から、本発明者は、各ピッチの全周長
に占める長さの割合が小さいピッチはどその割合が大き
く、かつ最短・最長ピッチの占める割合が他よりも小さ
ければ低次の脈動に関する成分も、ピッチ周波数に関す
る成分もバランスよく改善されるという結論を得た。本
発明は、このような知見に基づいてなされたものである
Based on the above theoretical background, the present inventor believes that pitches whose ratio of length to the total circumferential length of each pitch is small has a large ratio, and if the ratio of the shortest and longest pitches is smaller than the others, the pitch is of low order. It was concluded that both the pulsation-related components and the pitch frequency-related components were improved in a well-balanced manner. The present invention has been made based on such knowledge.

(11本発明では、異なる長さをもつ3〜8種類のピッ
チでトレッド表面の1周を構成したこと。
(11) In the present invention, one circumference of the tread surface is composed of three to eight types of pitches having different lengths.

ピッチの種類数は多いほど騒音の低減には有利であるが
、多いほど金型制作費用がかさむため、この兼ね合いを
考慮して3〜8種類としたのである。
The greater the number of pitches, the more advantageous it is to reducing noise, but the greater the number of pitches, the higher the cost of mold production, so in consideration of this balance, three to eight pitches were selected.

(2)  また、本発明では、これらピッチの種類のう
ちi番目の種類のピッチの長さをP。
(2) Furthermore, in the present invention, the length of the i-th type of pitch among these pitch types is P.

とすると共に該ピッチがタイヤ1周に出現する総個数を
N□とし、各ピッチ種類の構成割合αiをα= = (
P i ×N正)/タイヤ全周とし、NPをピッチ長さ
の種類数とした場合において、下記の■又は■のいずれ
かとしたのである。
Let the total number of pitches that appear in one circumference of the tire be N□, and the composition ratio αi of each pitch type is α = = (
When P i ×N (positive)/entire circumference of the tire and NP is the number of types of pitch lengths, either of the following (■) or (■) is adopted.

■ 横軸をピッチ長さとしかつ縦軸をα。■ The horizontal axis is the pitch length and the vertical axis is α.

とじて、最長ピッチの長さのαを(1/NP)×0.2
〜(1/NP)の間に定めると共に最短ピッチの長さの
αを(1/NP)〜(1/NP)×1.8の間に定め、
これらのα間を連結してLL’ 線を形成し、このLL
’線に対してαを±10%増減して得られる範囲内にα
iが存在すること。
Then, the longest pitch length α is (1/NP) x 0.2
〜(1/NP), and the shortest pitch length α is determined between (1/NP)〜(1/NP)×1.8.
These α are connected to form the LL' line, and this LL
' within the range obtained by increasing or decreasing α by ±10% with respect to the line.
i must exist.

第5図にピッチ長さとαiとの関係を示す。FIG. 5 shows the relationship between pitch length and αi.

第5図中、mは上側の線(L L’ よりも10%αが
大)、nは下側の線(L L’ よりも10%αが小)
、P、は最長ピッチ長、P□は最短ピッチ長、αiは最
長ピッチの長さのα値、αi、、はは最短ピッチの長さ
のα値である。第5図において、αiは斜線部分1に存
在する。
In Figure 5, m is the upper line (α is 10% larger than L L'), and n is the lower line (α is 10% smaller than L L').
, P is the longest pitch length, P□ is the shortest pitch length, αi is the α value of the longest pitch length, αi, , is the α value of the shortest pitch length. In FIG. 5, αi exists in the shaded area 1.

各ピッチから発せられる振動は、大きいピッチはど大き
い。したがって、騒音の周波数分散においても大きいピ
ッチから発せられる成分が強くなる。すなわち、α五を
均等にしたのでは大きいピッチに相当する低周波数側の
成分が強くなってしまうので周波数分散に偏りが生じ、
その結果として騒音のピークが大きくなってしまう。そ
こで、大きいピッチのαを小さくして小さいピッチのα
を大きくすることにより、はじめて周波数分散が均等に
なり、騒音のピークが極小値となる。このαの各ピッチ
の配分は最短ピッチ長P npで均等配分(1/NP)
よりもθ〜80%多クシ((1/NP)〜(1/NP)
 xl、8の間)、最長ピッチ長P、で均等配分(1/
NP)よりもθ〜80%少なくして((1/NP)  
×0.2〜(1/NP)の間)得ることができる。この
範囲外の場合には、逆に小さいピッチの成分が多くなり
すぎて均等な周波数分布が得られない。
The vibrations emitted from each pitch are the larger the pitch. Therefore, in the frequency dispersion of noise, components emitted from large pitches become stronger. In other words, if α5 is made equal, the low frequency components corresponding to large pitches will become stronger, resulting in biased frequency dispersion.
As a result, the noise peak becomes larger. Therefore, by reducing α of the large pitch, α of the small pitch is
By increasing , the frequency dispersion becomes even and the noise peak becomes its minimum value. The distribution of each pitch of this α is equal distribution with the shortest pitch length P np (1/NP)
θ ~ 80% more combs than ((1/NP) ~ (1/NP)
xl, between 8) and the longest pitch length P, evenly distributed (1/
θ~80% less than ((1/NP)
×0.2 to (1/NP)). If it is outside this range, on the contrary, there will be too many small pitch components, making it impossible to obtain an even frequency distribution.

■ 横軸をピッチ長さとしかつ縦軸をαiとして、上記
■で定めたLL’線に対して最長ピッチと最短ピッチの
αがLL’線によって決まるものよりも4〜30%小さ
く、また、最長ピッチの次に短いピッチと最短ピッチの
次に長いピッチのαがLL’線によって決まるものより
も4〜30%大きくして決まるα間を連結して折れ線E
l’ を形成し、この折れ線11” に対してαを±1
0%増減して得られる範囲内にαiが存在すること。
■ If the horizontal axis is the pitch length and the vertical axis is αi, then the longest pitch and the shortest pitch α are 4 to 30% smaller than those determined by the LL' line determined in (■) above, and the longest pitch is The next shortest pitch after the shortest pitch and the second longest pitch after the shortest pitch are determined by α being 4 to 30% larger than the one determined by the LL' line, and then the polygonal line E is connected.
l' and set α to ±1 for this polygonal line 11".
αi exists within the range obtained by increasing or decreasing by 0%.

第6図にピッチ長さとα五との関係を示す。FIG. 6 shows the relationship between pitch length and α5.

第6図中、Cは上側の折れ線(/Il’ よりも10%
αが大)、hは下側の折れ6%(i!/’ よりもlO
%αが小)、Piは最長ピッチ長、P7、は最短ピッチ
長であり、LL’ は第5図におけるLL’線である。
In Figure 6, C is 10% lower than the upper polygonal line (/Il').
α is larger), h is 6% of the lower fold (lO than i!/'
%α is small), Pi is the longest pitch length, P7 is the shortest pitch length, and LL' is the LL' line in FIG.

第6図において、α3は斜線部分1に存在する。In FIG. 6, α3 exists in the shaded area 1.

第6図において、最長ピッチの次に短いピッチの長さP
2〜最短ピッチの次に長いピンチの長さP、%l、−8
について、17!゛ はLL’ よりも4〜30%大き
い。最長ピッチ長P8、最短ピッチ長P、について、1
1’ はLL”よりも4〜30%小さい。
In Figure 6, the length P of the next shortest pitch after the longest pitch
2 to length of the next longest pinch after the shortest pitch P, %l, -8
About 17!゛ is 4 to 30% larger than LL'. Regarding the longest pitch length P8 and the shortest pitch length P, 1
1' is 4 to 30% smaller than LL''.

低周波の脈動性を考慮すると最長ピッチ長PI、最短ピ
ッチ長P7.のαを小さくすれば各ピッチから発せられ
る振動のレベルの変化が相対的に少なくなり、脈動性が
改善される。
Considering low frequency pulsation, the longest pitch length PI, the shortest pitch length P7. If α is made small, changes in the level of vibrations emitted from each pitch will be relatively small, and pulsation will be improved.

しかし、P、、P、、のαが小さすぎるとピッチの最大
/最小の比が実質的に小さくなり、かえってピンチノイ
ズが悪化してしまう。このために、P、 SP□につい
て、Ill’をLL゛よりも4〜30%小さくする。ま
た、P3、P1111以外のピッチについては、PIS
pH11を低減した分だけ逆に4〜30%大きくするの
である。
However, if α of P, , P, , is too small, the maximum/minimum pitch ratio becomes substantially small, and the pinch noise becomes worse. For this purpose, Ill' is made smaller than LL' by 4 to 30% for P and SP□. In addition, for pitches other than P3 and P1111, PIS
On the contrary, it is increased by 4 to 30% by the amount that pH 11 is reduced.

(3)つぎに、本発明におけるピッチ配分の計算法の具
体例を下記に示す。
(3) Next, a specific example of the pitch distribution calculation method in the present invention will be shown below.

■ まず、従来のピッチ設計法と同じく最大ピッチ長/
最小ピッチ長の比βとトータルピッチ数Nとを決める。
■ First, as with the conventional pitch design method, the maximum pitch length/
The minimum pitch length ratio β and the total pitch number N are determined.

タイヤ騒音を改良するにはNiβとも大きいほどよいが
、騒音の他の特性からβ=1.3〜1.8 、N=40
〜90の範囲で選ばれることが望ましい。仮に、N=5
7、β= 1.54を選ぶ。
To improve tire noise, the larger Niβ is, the better; however, considering other characteristics of noise, β = 1.3 to 1.8, N = 40.
It is desirable that the number is selected within the range of 90 to 90. If N=5
7. Choose β=1.54.

■ ついで、タイヤの外径とN1βから各ピッチの長さ
を決定する。ここで、外径りが6001のタイヤについ
て計算すると、D×π十N=33.07よりこれを整数
化して中間ピッチの長さを33 mmとする。
■ Next, determine the length of each pitch from the tire outer diameter and N1β. Here, when calculating for a tire with an outer diameter of 6001, this is converted into an integer from D×π10N=33.07, and the length of the intermediate pitch is set to 33 mm.

■ つぎに、ピッチの種類数を決める。種類数は、前述
したように3〜8種類である。
■ Next, decide on the number of pitch types. The number of types is 3 to 8 as described above.

ここでは、5種類とする。Here, there are five types.

■ β= 1.54、中間ピッチ長=33mmで5種類
のピッチ長さを設計する場合、最長〜中間および中間〜
最短ピッチの差をkとして、(33+ k)/(33−
k)  =β=1°54からに=7を得て、最長40、
最短26を得る。残りの3種類のものは適当に間を埋め
るようにして結局、40.36.33.29.26 m
mのピッチ長を選ぶ。
■ When designing 5 types of pitch lengths with β = 1.54 and intermediate pitch length = 33 mm, the maximum to intermediate and intermediate to
Letting k be the difference in the shortest pitch, (33+ k)/(33-
k) = β = 1° Get = 7 from 54, maximum 40,
Get the shortest score of 26. For the remaining three types, I filled in the gaps appropriately and ended up with 40.36.33.29.26 m.
Select a pitch length of m.

■ ピンチ配分の基準となるものとして、各ピッチの配
分比率α五は、まず、5種類のピッチがあることから、
(115)=0.2により基準の配分、すなわち第7図
に示すように各ピンチが等しく配分されるべきMM’線
が決められる。
■ As a standard for pinch distribution, the distribution ratio α5 for each pitch is firstly calculated based on the fact that there are five types of pitches.
(115)=0.2 determines the standard distribution, that is, the MM' line on which each pinch should be equally distributed as shown in FIG.

■ つぎに、第7図に示すように、最長ピッチ長と最短
ピッチ長との間の中点とMM’線との交点C1と、A1
もしくはElとによって、短いピッチはど配分を多くす
るLL’線を定める。A1点は最短ピッチ長26 mm
の縦線上にあり、等配分α=0.2よりも13.5%高
く、α−0,227によって与えられる。最長ピッチ長
40 mmの場合でLL’線を定める場合には、最長ピ
ッチ長40 mmの縦線上にあり、等配分α=0.2よ
りも12.5%低く、α=0.175によって与えられ
る81点とC1点とを結んで得られる。
■ Next, as shown in Figure 7, the intersection C1 between the midpoint between the longest pitch length and the shortest pitch length and the MM' line, and A1
Alternatively, an LL' line is determined based on El and the short pitch increases the distribution. Point A1 has the shortest pitch length of 26 mm
, which is 13.5% higher than the equal distribution α=0.2 and given by α−0,227. When determining the LL' line when the longest pitch length is 40 mm, it is on the vertical line of the longest pitch length of 40 mm, is 12.5% lower than equal distribution α = 0.2, and is given by α = 0.175. It is obtained by connecting the 81 points given by C1 to the C1 point.

■ このように、LL’線は最短もしくは最長ピッチに
おけるαを等配分よりも0%〜80%増・減して決めら
れるが、傾きが左下りであっては(最短ピッチで減、最
長ピッチで増)、より長いピッチの影響が大きすぎてピ
ッチ周波数のうち低周波数側で大きなピークを発生して
しまう。一方、80%超の傾きをつけると、より短いピ
ッチの影響が強すぎてピッチ周波数のうち高周波数側で
大きなピークを発生してしまう。
■ In this way, the LL' line is determined by increasing or decreasing α at the shortest or longest pitch by 0% to 80% compared to equal distribution, but if the slope is downward to the left (decreasing at the shortest pitch, decreasing at the longest pitch) (increased), the influence of longer pitches is too great, and a large peak occurs on the low frequency side of the pitch frequency. On the other hand, if the slope is more than 80%, the influence of shorter pitches will be too strong and a large peak will occur on the high frequency side of the pitch frequency.

■ このようにしてLL’線が決められると、各ピッチ
長とLL’線との交点から第2の基準配分を得る。第5
図に示されるように、長さの短いものから順にA、B、
C,D、Eとすれば、Al、B1.C1,DI、81点
としてαの値は次のように定まる(α五は第2の基準配
分)。第2の基準配分に対して10%超のずれがあると
騒音低減効果はない。
(2) Once the LL' line is determined in this way, a second reference distribution is obtained from the intersection of each pitch length and the LL' line. Fifth
As shown in the figure, A, B,
If C, D, E, Al, B1. Assuming C1, DI, and 81 points, the value of α is determined as follows (α5 is the second standard distribution). If there is a deviation of more than 10% from the second standard distribution, there will be no noise reduction effect.

!L A 1 0.227 81 0.218 C10,200 D 1 0.190 E 1 0.175 ■ つぎに、低い周波数に着目して最長・最短ピンチの
割合を減じ、中間ピッチの割合を増す。最長ピッチにお
いてE 1 =0.175から14.3%減じてE 2
 =0.15、最短ピッチにおいてA 1 =0.22
7から9.7%減じてA 2 =O。
! L A 1 0.227 81 0.218 C10,200 D 1 0.190 E 1 0.175 ■Next, paying attention to low frequencies, reduce the ratio of the longest and shortest pinches and increase the ratio of intermediate pitches. E 1 = 0.175 at the longest pitch, reduced by 14.3% to E 2
=0.15, A 1 =0.22 at the shortest pitch
A 2 = O by subtracting 9.7% from 7.

205、また、中間ピッチはC1=0.200から12
.5%増してC2=0.225とした。
205, and the intermediate pitch is C1=0.200 to 12
.. It was increased by 5% to make C2=0.225.

[相] このように最短・最長ピッチでは4%〜30%
第2の基準配分よりも減じ、中間ピッチでは4%〜30
%増すことによって低い周波数の脈動性を改善できる。
[Phase] In this way, the shortest and longest pitches are 4% to 30%
Reduced from the second standard distribution, 4% to 30 at intermediate pitches
%, the pulsatility of low frequencies can be improved.

4%未満では脈動性の改善効果が実質的に得られず、3
0%超ではピッチ周波数における分散が不十分となる。
If it is less than 4%, the effect of improving pulsatility cannot be obtained substantially;
If it exceeds 0%, the dispersion at the pitch frequency will be insufficient.

■ 残りの2種のピッチについては、各々の両隣りの増
減値の中間をとるようにして設計する。すなわち、ピッ
チBではピッチAが9.7%減、ピッチCが12.5%
増であるので増減なし、また、ピッチDではピッチCが
12.5%増、ピッチEが14.3%減であるので5.
3%増として、各ピッチ配分α正を下記の通りに決定し
た(α盈°はα直の調整値)。なお、α五の総合計が1
.0にならない場合には、各αiを比例させて調整する
- The remaining two types of pitches are designed to take the middle value between the increase and decrease values on both sides of each pitch. That is, at pitch B, pitch A is reduced by 9.7%, and pitch C is reduced by 12.5%.
Since it is an increase, there is no increase or decrease.Also, in pitch D, pitch C increases by 12.5% and pitch E decreases by 14.3%, so 5.
Assuming a 3% increase, each pitch distribution α positive was determined as follows (α 0° is the adjustment value of α direct). In addition, the total sum of α5 is 1
.. If it does not become 0, each αi is adjusted proportionally.

(木頁以下余白) !L    −シー゛ A 2  0.205    0.205482  0
.218    0.2184C20,2250,22
55 D 2  0.200    0.2004[相] 上
記■で決定されたα8′を用いて、各ピンチの個数は次
のように求めることができる。
(Left space below the wooden page)! L-C A 2 0.205 0.205482 0
.. 218 0.2184C20,2250,22
55 D 2 0.200 0.2004 [Phase] The number of each pinch can be determined as follows using α8' determined in (2) above.

Ni=周長×αi/ピッチ長P1 したがって、ピッチ長、αi 、N4 、Nu ’(N
iの整数化)は下記のようになる。この結果、当初仮に
定めたトータルピッチ数57よりも僅かに多いトータル
ピンチ数で各ピンチの個数配分が決定される。
Ni=perimeter×αi/pitch length P1 Therefore, pitch length, αi, N4, Nu'(N
(conversion of i into an integer) is as follows. As a result, the number distribution of each pinch is determined to be a total number of pinches that is slightly larger than the total number of pitches, 57, which was initially tentatively determined.

(本頁以下余白) 旦ヱ± 互」j」1加畦 −り一  −犯一 ΣL゛A
       26    0.2054 14.9 
15B       29    0.21B4 14
.2 14C330,225512,913 D       36    0.2004 10.5
 10E       40    0.1503  
7.1  70 ここで、各ピッチの調整を行う。すな
わち、上記0で決められた各ピッチの個数配分ではΣ(
P、 XNi ) /π=593.6であり、これはタ
イヤ周長(600ms)に一致しないので(593,6
<600 ) 、ピッチ長を比例して調整する。600
÷593.6 =1.0108であるので、これを当初
仮に決めた各ピッチ長に乗じて最終のピッチ長さを得る
。その値を下記に示す。
(Left space on this page)
26 0.2054 14.9
15B 29 0.21B4 14
.. 2 14C330,225512,913 D 36 0.2004 10.5
10E 40 0.1503
7.1 70 Here, each pitch is adjusted. In other words, in the distribution of the number of pitches determined by 0 above, Σ(
P, XNi )/π=593.6, which does not match the tire circumference (600ms), so
<600), adjust the pitch length proportionally. 600
Since ÷593.6 = 1.0108, the final pitch length is obtained by multiplying each pitch length tentatively determined at the beginning. The values are shown below.

Pioはピッチ長P、を調整したものである。Pio is the adjusted pitch length P.

(本頁以下余白) ピッチ −く1j」I直轄 ヱL′ 工LA     
26   26.30.2092B     29  
 29.30.2175C3333,40,2303 D     36   36.40.1930E   
  40   40.40.1500以下に実施例を示
す。
(Left space below this page) Directly under the control of Pitch-ku1j'I ヱL' Engineering LA
26 26.30.2092B 29
29.30.2175C3333,40,2303 D 36 36.40.1930E
40 40.40.1500 Examples are shown below.

実施例 外径600 mm、タイヤサイズ165SR13のスチ
ールラジアルタイヤ(本発明タイヤ、比較タイヤ)につ
き、騒音の脈動幅(dB)および騒音のフィーリングに
つき評価した。この結果を表2に示す。
A steel radial tire (inventive tire, comparison tire) with a diameter of 600 mm and a tire size of 165SR13 was evaluated for noise pulsation width (dB) and noise feeling. The results are shown in Table 2.

立の 重 のi  法: JASOC606−73タイヤ騒音試験方法に準する方
法、すなわち直径3000mmのスチールドラム上でタ
イヤを50 km/hで転勤させ(空気圧、リムサイズ
、荷重はJATMA標準条件)、脈動性の評価をOA値
(100〜2000 )1zのバンドパスフィルターを
通過した騒音のオーバーオール値)のタイヤ1回転内の
変動幅で評価した。
Tire noise test method: A method based on JASOC606-73 tire noise test method, in which the tire was transferred at 50 km/h on a steel drum with a diameter of 3000 mm (air pressure, rim size, and load were JATMA standard conditions), and pulsation was measured. was evaluated based on the variation range of the OA value (100 to 2000) (overall value of noise passing through a 1z band-pass filter) within one rotation of the tire.

(本頁以下余白) 表2から判るように、比較タイヤ1は、最短・最長ピッ
チの配分が多いため、ピンチノイズの分散および低次の
脈動性が強く実用に耐えない。比較タイヤ2は、大きい
ピッチはど配分が多くなっているため、やはり同様に実
用に耐えない。比較タイヤ3は、各ピッチの配分がほぼ
等分であり、α−0,2±10%の範囲にあるのでピン
チノイズの分散が比較的良好で低次の脈動も改善され、
実用に耐える。
(Margins below this page) As can be seen from Table 2, Comparative Tire 1 has a large distribution of shortest and longest pitches, so pinch noise dispersion and low-order pulsation are strong, making it unsuitable for practical use. Comparative tire 2 has a large pitch and a large number of grooves, so it is similarly unsuitable for practical use. In Comparative Tire 3, the distribution of each pitch is approximately equal and within the range of α-0.2 ± 10%, so the pinch noise is relatively well dispersed and low-order pulsation is also improved.
Durable in practical use.

本発明タイヤ1は、短いピッチはど配分が多く、Aピッ
チでは等配分よりも25%多く、Eピッチでは等配分よ
りも25%少なく、A−Eピッチまで徐々に少なく配分
されている。したがって、ピッチノイズの分散・脈動性
とも比較タイヤ3よりもさらに改善されている。
The tire 1 of the present invention has a large distribution of short pitches, with A pitch being 25% more than equal distribution, E pitch being 25% less than equal distribution, and gradually decreasing from A to E pitch. Therefore, both pitch noise dispersion and pulsation properties are further improved compared to Comparative Tire 3.

本発明タイヤ2は、Aピッチで等配分よりも13%多く
、Eピッチで等配分よりも13%少なくした配分から、
さらにCピッチの割合を13%増し、A、Eピッチの割
合を10〜14%減じて配分したものである。このため
ピッチノイズは比較的良好に保たれ、脈動性は最も大幅
に改善されている。
The tire 2 of the present invention has a distribution that is 13% more than the equal distribution on the A pitch and 13% less than the equal distribution on the E pitch,
Furthermore, the proportion of C pitch is increased by 13%, and the proportion of A and E pitches is decreased by 10 to 14%. Therefore, pitch noise is kept relatively good, and pulsation is improved most significantly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、ピッチの長さに従ってピッチの剛
性が大きくなり、各ピッチから発生するピッチ振動がピ
ッチの大きさと共に変動するようなタイヤ騒音において
、ピッチの配列法は各々のピッチの配分割合が重要な問
題であり、本発明では、各ピッチ配分を等分にするかも
しくは短いピッチはど多く配分するか又は最長・最短ピ
ッチの配分を減することによりピッチノイズの分散と脈
動性の改善とをはかることが可能となる。
As explained above, in tire noise where the rigidity of the pitch increases with the length of the pitch and the pitch vibration generated from each pitch changes with the size of the pitch, the method of arranging the pitches is based on the distribution ratio of each pitch. is an important problem, and in the present invention, it is possible to improve pitch noise dispersion and pulsation by dividing each pitch into equal parts, by determining how many short pitches are distributed, or by reducing the distribution of the longest and shortest pitches. It becomes possible to measure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、  (b)、第2図(a)、(b)、第
3図(a)、(b)、および第4図(a)、  (b)
はそれぞれピッチ配列と、フーリエ解析を実施したとき
の次数とその次数に対応する振幅との関係を示した説明
図である。 第5図、第6図、および第7図はそれぞれピッチ長さと
ピッチの構成割合αiとの関係を示した説明図である。 第8図(a)および第9図(a)はそれぞれピッチ配列
を示す説明図、第8図(b)および第9図(b)はそれ
ぞれフーリエ解析を実施したときの次数とその次数に対
応する振幅との関係を示した説明図である。 1・・・斜線部分、2・・・振動波形。 代理人 弁理士 小 川 信 −
Figure 1 (a), (b), Figure 2 (a), (b), Figure 3 (a), (b), and Figure 4 (a), (b)
are explanatory diagrams each showing the relationship between the pitch array, the order when Fourier analysis is performed, and the amplitude corresponding to the order. FIG. 5, FIG. 6, and FIG. 7 are explanatory diagrams showing the relationship between pitch length and pitch composition ratio αi, respectively. Figures 8(a) and 9(a) are explanatory diagrams showing the pitch arrangement, respectively, and Figures 8(b) and 9(b) respectively correspond to the order and its order when performing Fourier analysis. FIG. 1...Shaded area, 2...Vibration waveform. Agent Patent Attorney Nobuo Ogawa −

Claims (1)

【特許請求の範囲】[Claims] 異なる長さをもつ3〜8種類のピッチでトレッド表面の
1周を構成し、これらピッチの種類のうちi番目の種類
のピッチの長さをP_iとすると共に該ピッチがタイヤ
1周に出現する総個数をN_iとし、各ピッチ種類の構
成割合α_iをα_i=(P_i×N_i)/タイヤ全
周とし、NPをピッチ長さの種類数とした場合において
、(1)横軸をピッチ長さとしかつ縦軸をα_iとして
、最長ピッチの長さのαを(1/NP)×0.2〜(1
/NP)の間に定めると共に最短ピッチの長さのαを(
1/NP)〜(1/NP)×1.8の間に定め、これら
のα間を連結してLL’線を形成し、このLL’線に対
してαを±10%増減して得られる範囲内にα_iが存
在すること、又は(2)横軸をピッチ長さとしかつ縦軸
をα_iとして、上記(1)で定めたLL’線に対して
最長ピッチと最短ピッチのαがLL’線によって決まる
ものよりも4〜30%小さく、また、最長ピッチの次に
短いピッチと最短ピッチの次に長いピッチのαがLL’
線によって決まるものよりも4〜30%大きくして決ま
るα間を連結して折れ線11’を形成し、この折れ線l
l’に対してαを±10%増減して得られる範囲内にα
_iが存在することを特徴とする空気入りタイヤ。
Three to eight types of pitches with different lengths constitute one circumference of the tread surface, and among these pitch types, the length of the i-th type of pitch is P_i, and this pitch appears in one circumference of the tire. When the total number is N_i, the composition ratio α_i of each pitch type is α_i = (P_i × N_i) / total tire circumference, and NP is the number of pitch length types, (1) the horizontal axis is the pitch length and The vertical axis is α_i, and the longest pitch length α is (1/NP) x 0.2 to (1
/NP) and set the shortest pitch length α to (
1/NP) to (1/NP) x 1.8, connect these α's to form the LL' line, and increase or decrease α by ±10% with respect to this LL' line. (2) If the horizontal axis is the pitch length and the vertical axis is α_i, the longest pitch and the shortest pitch α are LL' with respect to the LL' line defined in (1) above. 4 to 30% smaller than that determined by the line, and α of the next shortest pitch after the longest pitch and the next longest pitch after the shortest pitch is LL'
A polygonal line 11' is formed by connecting α determined by 4 to 30% larger than that determined by the line, and this polygonal line l
α within the range obtained by increasing or decreasing α by ±10% with respect to l'
A pneumatic tire characterized by the presence of __i.
JP63112544A 1988-05-11 1988-05-11 Pneumatic tire Expired - Lifetime JP2665931B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63112544A JP2665931B2 (en) 1988-05-11 1988-05-11 Pneumatic tire
US07/725,109 US5309964A (en) 1988-05-11 1991-07-03 Pneumatic tire having tread pattern arrayed for reduced noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112544A JP2665931B2 (en) 1988-05-11 1988-05-11 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH01285406A true JPH01285406A (en) 1989-11-16
JP2665931B2 JP2665931B2 (en) 1997-10-22

Family

ID=14589307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112544A Expired - Lifetime JP2665931B2 (en) 1988-05-11 1988-05-11 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2665931B2 (en)

Also Published As

Publication number Publication date
JP2665931B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
US5027875A (en) Pneumatic tire having reduced tread pattern noise
CA1203463A (en) Reduction of the travel noise of tires
US9597928B2 (en) Tire with tread pattern having pre-selected variations in lug stiffnesses to improve tire noise
US5062461A (en) Pneumatic tire having a tread pattern for reducing noise
US5383506A (en) Pneumatic tire having reduced noise
US5125444A (en) Pneumatic tire generating musical pattern sound
US5309964A (en) Pneumatic tire having tread pattern arrayed for reduced noise
US5753057A (en) Pneumatic tire having pitch sequencing
JPH01285406A (en) Pneumatic tire
JP2665932B2 (en) Pneumatic tire
AU699455B2 (en) Pneumatic tire having improved pitch sequencing
JP4311788B2 (en) Pneumatic tire
JP2796241B2 (en) Pneumatic tire
EP0850143B1 (en) Pneumatic tire having improved pitch sequencing
JP2665933B2 (en) Pneumatic tire
JPS582844B2 (en) pneumatic tires
AU699495B2 (en) Pneumatic tire having pitch sequencing
JPH02293203A (en) Automobile tire
JPH05608A (en) Pneumatic tire
JPH09123709A (en) Pneumatic tire
JPH02189204A (en) Rib tire of low noise
JPS6088607A (en) Low noise tire
JP3408775B2 (en) Pneumatic tire
JP2022042833A (en) Tire design method and tire manufacturing method
JPS59230809A (en) Low noise tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term