JP2665737B2 - Production method of fine particle inorganic filler dispersion - Google Patents

Production method of fine particle inorganic filler dispersion

Info

Publication number
JP2665737B2
JP2665737B2 JP61122908A JP12290886A JP2665737B2 JP 2665737 B2 JP2665737 B2 JP 2665737B2 JP 61122908 A JP61122908 A JP 61122908A JP 12290886 A JP12290886 A JP 12290886A JP 2665737 B2 JP2665737 B2 JP 2665737B2
Authority
JP
Japan
Prior art keywords
dispersion
inorganic filler
particulate inorganic
organic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61122908A
Other languages
Japanese (ja)
Other versions
JPS62279838A (en
Inventor
浩 井上
貫三 田端
泰次 楢原
義和 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61122908A priority Critical patent/JP2665737B2/en
Publication of JPS62279838A publication Critical patent/JPS62279838A/en
Application granted granted Critical
Publication of JP2665737B2 publication Critical patent/JP2665737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 [発明の分野] 本発明は、微粒子状無機フィラー分散液の製造法に関
する。さらに詳しくは本発明は、粘度(常温、即ち25℃
での粘度)が0.1〜10センチポイズの範囲にあるような
低粘度の有機分散媒体と該有機分散媒体に対して20重量
%以下の一次粒子径が0.1μm以下の凝集塊状の微粒子
状無機フィラーとを混合して得られた混合物からフィラ
ーの凝集状態が低下した微粒子状無機フィラー分散液を
製造する方法に関する。 [発明の背景] 微粒子状の二酸化チタン、シリカなどの微粒子状無機
フィラーを有機分散媒体中に分散させて微粒子状無機フ
ィラー分散液を調製する場合、従来ではボールミル、サ
ンドミルなどの機械式分散装置が用いられてきた。すな
わち、微粒子状無機フィラーと有機分散媒体との混合物
を上記のような機械式分散装置に導入し、これにより分
散液を得る方法が一般的に利用されてきた。 通常の粉末の分散は上記のような機械式分散装置を用
い、所望の均一度になるまで分散操作を行なうことによ
り容易に実現できる。しかしながら、本発明者の検討に
よると、一次粒子径が極度に小さい微粒子状の粉末を粘
度が0.1〜10センチポイズの範囲にあるような低粘度の
有機溶媒に分散する場合には、上記のような機械式分散
装置を用いた通常の分散操作では、充分な分散が困難で
あることがわかった。 すなわちたとえば一次粒子径が0.1μm以下の二酸化
チタン、シリカなどの微粒子状無機フィラーは、通常の
粉末状態では二次粒子、三次粒子などの凝集塊として存
在しており、この微粒子状無機フィラーの凝集塊は通常
の分散操作によっては殆ど凝集がほどけることなく、ほ
ぼそのままの凝集塊として分散液に導入される。このた
め、そのような凝集体を単に分散した分散液の調製には
従来の分散方法は充分に有効であるが、凝集体の凝集状
態が明らかに低下した分散液を得るためには従来の分散
方法は有効とはいえない。勿論、従来の機械式分散装置
を用いた分散方法を利用した場合であっても、その分散
条件(たとえば、付与するせん断応力、分散時間)など
を通常の程度より過酷にすることによって分散の程度を
向上させることは可能であるが、その分散の向上は僅か
であって、充分とはいえない。またそのような過酷な条
件にて機械式分散操作を行なった場合、分散装置からの
摩耗粉末の混入が無視できない量となるとの問題もあ
る。 上記の微粒子状無機フィラーの分散操作における凝集
体の解離の不充分さは、特に無機フィラーの量が少ない
場合に顕著になる。すなわち、たとえば無機フィラーの
量が分散媒体に対して20重量%程度以下のように少ない
場合には、機械式分散操作により無機フィラー凝集体に
付与されるせん断応力が低いレベルにとどまるため、凝
集体の解離はますます困難になる。 上記のような一次粒子径の小さな微粒子状無機フィラ
ーは、たとえばプラスチックフィルムに充填され、その
表面を適度な状態の粗面とする(換言すれば、その表面
に適度な大きさの凹凸を形成する)ために利用される。
微粒子状無機フィラーが充填されたプラスチックフィル
ムは、たとえば微粒子状無機フィラーの有機溶媒分散液
を調製したのち、この分散液に重合体、重合体前駆体、
重合体の製造原料などを添加し、必要に応じて重合化な
どの反応処理を行なったのち、得られた無機フィラー分
散重合体溶液を製膜してプラスチックフィルムとしてい
る。この場合において、無機フィラーとして一次粒子径
の非常に小さな微粒子状無機フィラーを用いても、その
凝集状態がほどけることなく分散液に導入された場合に
は、そのフィラーはプラスチックフィルム内にも同等な
凝集状態で導入されるため、プラスチックフィルムの表
面に形成される凹凸が大きなものとなり、その充填目的
に適合しなくなる。 [発明の構成] 本発明は、少なくとも一部が凝集状態にある微粒子状
無機フィラーを、その凝集状態をほどきながら有機分散
媒体に分散して高い分散性を有する分散液を製造するた
めの方法を提供することを目的とする。 本発明は特に、少なくとも一部が凝集状態にある微粒
子状無機フィラーを用いて低い濃度の微粒子状無機フィ
ラーの有機溶媒分散液を製造する方法であって、その凝
集状態をほどきながら有機分散媒体に分散して高い分散
性を有する分散液を製造する方法を提供することを目的
とする。 すなわち、本発明は、粘度が0.1〜10センチポイズ(2
5℃)の範囲にある有機分散媒体と、該有機分散媒体に
対して20重量%以下の一次粒子径が0.1μm以下の凝集
塊状の微粒子状無機フィラーとを混合して得られた混合
物からフィラー分散液を調製するに際して、該混合物に
予め回転子を利用する機械式分散操作を施したのち、更
に超音波分散操作を施すことを特徴とする微粒子状無機
フィラー分散液の製造法にある。 次に、本発明について詳しく説明する。 本発明において分散対象とされる微粒子状無機フィラ
ーは、一次粒子径が0.1μm以下の凝集塊状の微粒子状
無機フィラーであり、その例としては、微粒子状の銅粉
末、亜鉛粉末、アルミニウム粉末、鉄粉末、コバルト粉
末、ニッケル粉末などの金属粉末、微粒子状の二酸化チ
タン粉末、二酸化ケイ素(シリカ)粉末、酸化マグネシ
ウム粉末、酸化アルミニウム(アルミナ)粉末、酸化亜
鉛粉末などの無機酸化物粉末、微粒子状の窒化ケイ素粉
末、窒化チタン粉末などの無機窒化物粉末、炭化ケイ素
粉末、炭化チタン粉末、炭化タングステン粉末などの無
機炭化物粉末、および微粒子状の炭酸カルシウム粉末、
硫酸カルシウム粉末、硫酸バリウム粉末のなど無機塩粉
末を挙げることができる。これらの微粒子状無機フィラ
ーは二種以上組合せて使用されてもよい、 本発明で用いられる有機分散媒体(有機溶媒)は粘度
(常温、即ち25℃での粘度)が0.1〜10センチポイズの
範囲にあるような低粘度の有機分散媒体である限り、特
に限定されるものではなく、たとえばアルコール系溶
媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、
炭化水素系溶媒、ハロゲン化炭化水素系溶媒、アミド系
溶媒などの各種の公知の有機溶媒が単独もしくは組合せ
て用いられる。また有機溶媒は、水と混合された水性溶
媒であってもよい。 なお、本発明は、使用する有機分散媒体がアミド系溶
媒、たとえばN,N−ジメチルホルムアミド、N,N−ジメチ
ルアセトアミド、N−メチルピロリドンなどである場合
に特に有効である。 本発明の分散液の製造法は、まず、有機分散媒体と該
有機分散媒体に対して20重量%以下の微粒子状無機フィ
ラーとを混合しと混合物を得たのち、これに特定の分散
操作を施すことにより実施する。なお、本発明の分散液
の製造法は特に、有効分散媒体と該有機分散媒体に対し
て1〜15重量%の微粒子状無機フィラーとを混合した混
合物から所望の分散液を調製する場合に特に有効であ
る。 有効分散媒体と微粒子状無機フィラーとの混合物は通
常の添加操作により得ることができる。なお、この混合
物には所望により公知の分散剤を添加してもよい。 上記のようにして得られた有機分散媒体と微粒子状無
機フィラーとの混合物には、次に本発明に従う機械式分
散操作が施される。 上記の回転子を用いる機械式分散操作は公知の回転子
を用いる機械式分散装置を利用して行なわれる。利用す
ることのできる機械式分散装置の例としては、ボールミ
ル、サンドミル、自動乳鉢、ロールミル、インペラーミ
ル、ホモジナイザーなどを挙げることができる。このよ
うな機械式分散装置は、一般に回転数700〜12000rpmの
条件にて回転して固体粒子の分散を行なう装置である。 本発明における機械式分散操作は主として無機フィラ
ーを有機分散媒体に粗分散するために行なわれる操作で
あり、この操作では凝集体の解離は殆ど発生しないか、
あるいは僅かに発生するのみである。従って、この分散
操作は30分間以内程度(好ましくは30秒間以上で、20分
間以下)の短い時間で実施することが望ましい。この分
散操作を長時間実施すると、分散装置の摩耗粉末が少な
からぬ量で分散液に混入することがある。 上記の機械式分散操作が施された粗分散液は未だ多量
の凝集体(二次粒子、三次粒子など)が含まれている。
そして、このような粗分散液は次に超音波分散操作によ
る処理が施されて、凝集体の量が明らかに低下した分散
液とされる。 本発明に利用される超音波分散操作は、超音波洗浄や
エマルジョンの調製などの目的にて、既に利用されてい
る操作である。このような操作は公知の超音波振動子を
用いて行なわれる。本発明における超音波分散操作は、
強い分散能力を達成するために15〜30KHz程度の低い周
波数にて行なうことが望ましい。また、超音波分散操作
は約15分間〜10時間の範囲の操作時間にて行なうことが
望ましい。なお、超音波分散操作によって分散液の液温
が上昇する傾向があるため、超音波分散操作が施される
装置は冷却下に置くことが望ましい。 [発明の効果] 低粘度の有機分散媒体に低濃度の微粒子状無機フィラ
ーを混合して得られた混合物からフィラー分散液を調製
するに際して、本発明に従って該混合物に予め機械式分
散操作を施したのち、更に超音波分散操作を施すことか
らなる二段階の分散操作を施すことによって、均一な分
散と凝集体の低減とが達成された分散液を容易に得るこ
とができる。 [実施例と比較例] [実施例1] ジメチルアセトアミド(25℃の粘度:0.92センチポイ
ズ)1140gとポリカルボン酸系分散剤12gとを容量2の
容器に入れ、ホモミキサーを用いて8000rpmの回転速度
で30秒間撹拌した。さらに一次粒子径0.03μmの二酸化
チタン48gを加えてホモミキサーを用いて8000rpmの回転
速度で15分間撹拌して予備分散した。予備分散液中の二
酸化チタンの平均粒子径は0.35μmであった。 次に上記予備分散液の100mlを容量200mlの三角フラス
コに分取し、超音波分散装置(ブランソン社製超音波洗
浄器、ウルトラクリーナ)を用いて1時間分散した。 得られたこの分散液中の二酸化チタンの平均粒子径
(堀場製作所(株)製遠心沈降式粒径分布測定装置CAPA
−500を用いて測定、以下同じ)は0.18μmであった。 [比較例1] ジメチルアセトアミド1140gとポリカルボン酸系分散
剤12gとを容量2の容器に入れ、ホモミキサーを用い
て8000rpmの回転速度で30秒間撹拌した。さらに一次粒
子径0.03μmの二酸化チタン48gを加えてホモミキサー
を用いて8000rpmの回転速度で2時間分散した。 得られた分散液中の粒子の平均粒子径は0.32μmであ
った。また、分散液はインペラーの摩耗粉により灰色に
着色していた。 [比較例2] 容量200mlの三角フラスコ内でジメチルアセトアミド9
5gとポリカルボン酸系分散剤1gとを混合した後、一次粒
子径0.03μmの二酸化チタン4gを加えて、超音波洗浄器
を用いて1時間分散した。 得られた分散液中の酸化平均粒子径は0.25μmであっ
た。 [比較例3] ジメチルアセトアミド1140gとポリカルボン酸系分散
剤12gとを容量2Lの容器に入れ、ホモミキサーを用いて8
000rpmの回転速度で30秒間撹拌した。得られた溶液100m
Lを容量300mLのビーカーに移し、これに一次粒子径0.03
μmの二酸化チタン4gを加えたのち、実施例1と同様の
超音波分散処理を施しながら、ホモミキサーを用いて80
00rpmの回転速度で15分間撹拌した。 得られた分散液中の粒子の平均粒子径は0.25μmであ
った。 [比較例4] ジメチルアセトアミド1140gとポリカルボン酸系分散
剤12gとを容量2Lの容器に入れ、ホモミキサーを用いて8
000rpmの回転速度で30秒間撹拌した。得られた溶液100m
Lを容量300mLのビーカーに移し、これに一次粒子径0.03
μmの二酸化チタン4gを加えたのち、実施例1と同様に
1時間の超音波分散処理を施し、次いでホモミキサーを
用いて8000rpmの回転速度で15分間撹拌した。 得られた分散液中の粒子の平均粒子径は0.28μmであ
った。 [実施例2] ジメチルアセトアミド1092g、ポリカルボン酸系分散
剤12g、一次粒子径0.03μmの二酸化チタン96gとを用い
た以外は実施例1と同様にして予備分散した。 超音波振動子に取り付けた深さ10mmの容器を用意し、
この容器内に上記予備分散液を循環させながら連続して
通過させることができる超音波分散器を用いて4.5時間
分散した。 得られた分散液中の二酸化チタンの平均粒子径は0.08
μmであり、粒子径0.2μm以下の粒子が大部分(99
%)であった。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a particulate inorganic filler dispersion. More specifically, the present invention relates to a method for preparing a composition having a viscosity (normal temperature, that is, 25 ° C.).
A low-viscosity organic dispersion medium having a viscosity of 0.1 to 10 centipoise in the range of 0.1 to 10 centipoise, and an agglomerated particulate inorganic filler having a primary particle diameter of 20% by weight or less based on the organic dispersion medium of 0.1 μm or less. The present invention relates to a method for producing a particulate inorganic filler dispersion in which the state of aggregation of the filler has been reduced from a mixture obtained by mixing the particles. BACKGROUND OF THE INVENTION In the case of preparing a fine inorganic filler dispersion by dispersing a fine inorganic filler such as fine titanium dioxide and silica in an organic dispersion medium, conventionally, a mechanical dispersing apparatus such as a ball mill and a sand mill is used. Has been used. That is, a method in which a mixture of a particulate inorganic filler and an organic dispersion medium is introduced into the above-described mechanical dispersion apparatus to obtain a dispersion liquid has been generally used. Ordinary powder dispersion can be easily realized by using a mechanical dispersion device as described above and performing a dispersion operation until the desired uniformity is achieved. However, according to the study of the present inventor, when the primary particle diameter is dispersed in an organic solvent having an extremely small particle size in a low-viscosity organic solvent having a viscosity in the range of 0.1 to 10 centipoise, the above-described case is considered. It has been found that it is difficult to sufficiently disperse by ordinary dispersing operation using a mechanical dispersing device. That is, for example, fine particle inorganic fillers such as titanium dioxide and silica having a primary particle diameter of 0.1 μm or less exist as aggregates of secondary particles, tertiary particles, and the like in a normal powder state. The agglomerate is introduced into the dispersion as an almost intact agglomerate with little or no loosening by a normal dispersion operation. For this reason, the conventional dispersion method is sufficiently effective for preparing a dispersion in which such aggregates are simply dispersed, but in order to obtain a dispersion in which the aggregate state of the aggregates is clearly reduced, the conventional dispersion method is required. The method is not effective. Of course, even when a conventional dispersion method using a mechanical dispersing apparatus is used, the degree of dispersion can be increased by making the dispersion conditions (eg, applied shear stress and dispersion time) more severe than usual. Can be improved, but the dispersion is only slightly improved and is not sufficient. Further, when the mechanical dispersion operation is performed under such severe conditions, there is also a problem that the mixing of the abrasion powder from the dispersion device becomes a nonnegligible amount. The insufficient dissociation of the aggregate in the dispersion operation of the fine-particle inorganic filler becomes remarkable particularly when the amount of the inorganic filler is small. That is, for example, when the amount of the inorganic filler is as small as about 20% by weight or less based on the dispersion medium, the shear stress applied to the inorganic filler aggregate by the mechanical dispersion operation is kept at a low level. Dissociation becomes more difficult. The fine-particle inorganic filler having a small primary particle diameter as described above is filled in, for example, a plastic film, and the surface thereof is formed into a moderately rough surface (in other words, the surface is formed with irregularities of an appropriate size). Used for
The plastic film filled with the particulate inorganic filler, for example, after preparing an organic solvent dispersion of the particulate inorganic filler, a polymer, a polymer precursor,
After adding a raw material for producing a polymer and performing a reaction treatment such as polymerization as required, the resulting inorganic filler-dispersed polymer solution is formed into a plastic film. In this case, even if a very small particulate inorganic filler having a primary particle diameter is used as the inorganic filler, if the aggregated state is introduced into the dispersion without unraveling, the filler is equivalent to the plastic film. Since it is introduced in an agglomerated state, the unevenness formed on the surface of the plastic film becomes large, and is not suitable for the purpose of filling. [Constitution of the Invention] The present invention provides a method for producing a dispersion having high dispersibility by dispersing at least a part of a particulate inorganic filler in an aggregated state in an organic dispersion medium while unwinding the aggregated state. The purpose is to provide. In particular, the present invention is a method for producing an organic solvent dispersion of a low-concentration particulate inorganic filler using a particulate inorganic filler that is at least partially in an aggregated state. An object of the present invention is to provide a method for producing a dispersion having high dispersibility by dispersing in water. That is, the present invention has a viscosity of 0.1 to 10 centipoise (2
5 ° C.), and a mixture obtained by mixing an organic dispersion medium having a primary particle diameter of 20% by weight or less with respect to the organic dispersion medium and an aggregated particulate inorganic filler having a primary particle diameter of 0.1 μm or less. In preparing a dispersion, there is provided a method for producing a particulate inorganic filler dispersion, which comprises subjecting the mixture to a mechanical dispersion operation using a rotor in advance, and then performing an ultrasonic dispersion operation. Next, the present invention will be described in detail. The fine particle inorganic filler to be dispersed in the present invention is an aggregated fine particle inorganic filler having a primary particle diameter of 0.1 μm or less, and examples thereof include fine particle copper powder, zinc powder, aluminum powder, and iron powder. Powders, metal powders such as cobalt powder and nickel powder, inorganic oxide powders such as fine titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, and zinc oxide powder; Inorganic nitride powder such as silicon nitride powder, titanium nitride powder, inorganic carbide powder such as silicon carbide powder, titanium carbide powder, tungsten carbide powder, and fine-particle calcium carbonate powder,
Examples thereof include inorganic salt powders such as calcium sulfate powder and barium sulfate powder. These particulate inorganic fillers may be used in combination of two or more kinds. The organic dispersion medium (organic solvent) used in the present invention has a viscosity (normal temperature, that is, a viscosity at 25 ° C.) of 0.1 to 10 centipoise. There is no particular limitation as long as the organic dispersion medium has a low viscosity, such as an alcohol solvent, a ketone solvent, an ether solvent, an ester solvent,
Various known organic solvents such as a hydrocarbon solvent, a halogenated hydrocarbon solvent, and an amide solvent are used alone or in combination. Further, the organic solvent may be an aqueous solvent mixed with water. The present invention is particularly effective when the organic dispersion medium to be used is an amide solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like. In the method for producing a dispersion of the present invention, first, an organic dispersion medium and 20% by weight or less of a particulate inorganic filler with respect to the organic dispersion medium are mixed to obtain a mixture, and then a specific dispersion operation is performed. It is performed by applying. The method for producing a dispersion of the present invention is particularly useful when a desired dispersion is prepared from a mixture of an effective dispersion medium and 1 to 15% by weight of a particulate inorganic filler with respect to the organic dispersion medium. It is valid. The mixture of the effective dispersion medium and the particulate inorganic filler can be obtained by a usual addition operation. In addition, a known dispersant may be added to this mixture if desired. The mixture of the organic dispersion medium and the particulate inorganic filler obtained as described above is then subjected to a mechanical dispersion operation according to the present invention. The mechanical dispersion operation using the above-described rotor is performed using a known mechanical dispersion device using a rotor. Examples of the mechanical dispersing device that can be used include a ball mill, a sand mill, an automatic mortar, a roll mill, an impeller mill, and a homogenizer. Such a mechanical dispersing device is generally a device that rotates at a rotation speed of 700 to 12000 rpm to disperse solid particles. The mechanical dispersion operation in the present invention is an operation mainly performed for roughly dispersing an inorganic filler in an organic dispersion medium, and in this operation, dissociation of aggregates hardly occurs,
Alternatively, it occurs only slightly. Therefore, this dispersion operation is desirably performed in a short time of about 30 minutes or less (preferably 30 seconds or more and 20 minutes or less). If this dispersion operation is performed for a long time, the abrasion powder of the dispersion device may be mixed in the dispersion in a considerable amount. The coarse dispersion subjected to the mechanical dispersion operation described above still contains a large amount of aggregates (secondary particles, tertiary particles, etc.).
Then, such a coarse dispersion is then subjected to a treatment by an ultrasonic dispersion operation to obtain a dispersion in which the amount of aggregates is clearly reduced. The ultrasonic dispersion operation used in the present invention is an operation already used for the purpose of ultrasonic cleaning, preparation of an emulsion, and the like. Such an operation is performed using a known ultrasonic transducer. Ultrasonic dispersion operation in the present invention,
It is desirable to perform at a low frequency of about 15 to 30 KHz to achieve a strong dispersion capability. The ultrasonic dispersion operation is desirably performed for an operation time in the range of about 15 minutes to 10 hours. Since the liquid temperature of the dispersion liquid tends to increase due to the ultrasonic dispersion operation, it is desirable that the apparatus to be subjected to the ultrasonic dispersion operation be placed under cooling. [Effect of the Invention] In preparing a filler dispersion from a mixture obtained by mixing a low-viscosity organic dispersion medium with a low-concentration particulate inorganic filler, the mixture was subjected to a mechanical dispersion operation according to the present invention in advance. Thereafter, by performing a two-stage dispersing operation including further performing an ultrasonic dispersing operation, it is possible to easily obtain a dispersion liquid in which uniform dispersion and reduction of aggregates are achieved. [Examples and Comparative Examples] [Example 1] 1140 g of dimethylacetamide (viscosity at 25 ° C: 0.92 centipoise) and 12 g of a polycarboxylic acid-based dispersant were placed in a container having a capacity of 2, and the rotation speed was 8,000 rpm using a homomixer. For 30 seconds. Further, 48 g of titanium dioxide having a primary particle size of 0.03 μm was added, and the mixture was preliminarily dispersed by stirring with a homomixer at a rotation speed of 8000 rpm for 15 minutes. The average particle diameter of titanium dioxide in the preliminary dispersion was 0.35 μm. Next, 100 ml of the above pre-dispersion liquid was dispensed into a 200-ml Erlenmeyer flask, and dispersed for 1 hour using an ultrasonic dispersing apparatus (an ultrasonic cleaner and an ultracleaner manufactured by Branson). The average particle diameter of titanium dioxide in the obtained dispersion (centrifugal sedimentation type particle size distribution analyzer CAPA manufactured by Horiba, Ltd.)
-500, the same applies hereinafter) was 0.18 μm. [Comparative Example 1] 1140 g of dimethylacetamide and 12 g of a polycarboxylic acid-based dispersant were placed in a container having a capacity of 2, and stirred at a rotation speed of 8000 rpm for 30 seconds using a homomixer. Further, 48 g of titanium dioxide having a primary particle diameter of 0.03 μm was added, and the mixture was dispersed with a homomixer at a rotation speed of 8000 rpm for 2 hours. The average particle size of the particles in the obtained dispersion was 0.32 μm. The dispersion was colored gray due to impeller abrasion powder. Comparative Example 2 Dimethylacetamide 9 was placed in a 200 ml Erlenmeyer flask.
After mixing 5 g and 1 g of the polycarboxylic acid-based dispersant, 4 g of titanium dioxide having a primary particle size of 0.03 μm was added, and the mixture was dispersed for 1 hour using an ultrasonic cleaner. The oxidized average particle diameter in the obtained dispersion was 0.25 μm. [Comparative Example 3] 1140 g of dimethylacetamide and 12 g of a polycarboxylic acid-based dispersant were placed in a container having a capacity of 2 L, and mixed with a homomixer.
The mixture was stirred at a rotation speed of 000 rpm for 30 seconds. The resulting solution 100m
L was transferred to a beaker with a capacity of 300 mL, and the primary particle size was 0.03
After adding 4 g of titanium dioxide having a particle diameter of 4 μm, the same ultrasonic dispersing treatment as in Example 1 was carried out, and a homomixer was used.
The mixture was stirred at a rotation speed of 00 rpm for 15 minutes. The average particle diameter of the particles in the obtained dispersion was 0.25 μm. [Comparative Example 4] 1140 g of dimethylacetamide and 12 g of a polycarboxylic acid-based dispersant were placed in a container having a capacity of 2 L, and mixed with a homomixer.
The mixture was stirred at a rotation speed of 000 rpm for 30 seconds. The resulting solution 100m
L was transferred to a beaker with a capacity of 300 mL, and the primary particle size was 0.03
After adding 4 g of titanium dioxide of μm, the mixture was subjected to an ultrasonic dispersion treatment for 1 hour in the same manner as in Example 1, and then stirred at 8000 rpm for 15 minutes using a homomixer. The average particle size of the particles in the obtained dispersion was 0.28 μm. [Example 2] Preliminary dispersion was performed in the same manner as in Example 1 except that 1092 g of dimethylacetamide, 12 g of a polycarboxylic acid-based dispersant, and 96 g of titanium dioxide having a primary particle diameter of 0.03 µm were used. Prepare a container with a depth of 10 mm attached to the ultrasonic transducer,
The preliminary dispersion was dispersed for 4.5 hours using an ultrasonic disperser capable of continuously passing the preliminary dispersion while circulating in the container. The average particle diameter of titanium dioxide in the obtained dispersion is 0.08
μm, and particles having a particle size of 0.2 μm or less are mostly (99
%)Met.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 義和 枚方市中宮北町3番10号 宇部興産株式 会社枚方研究所内 (56)参考文献 特開 昭59−91123(JP,A) 特開 昭61−37816(JP,A) 特開 昭56−55424(JP,A) 特開 昭60−223639(JP,A) 特公 昭59−1415(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yoshikazu Sasaki               3-10 Nakamiyakitamachi, Hirakata Ube Industries               Inside the company Hirakata Laboratory                (56) References JP-A-59-91123 (JP, A)                 JP-A-61-37816 (JP, A)                 JP-A-56-55424 (JP, A)                 JP-A-60-223639 (JP, A)                 Japanese Patent Publication No. 59-1415 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.粘度が0.1〜10センチポイズの範囲にある有機分散
媒体と、該有機分散媒体に対して20重量%以下の一次粒
子径が0.1μm以下の凝集塊状の微粒子状無機フィラー
とを混合して得られた混合物からフィラー分散液を調製
するに際して、該混合物に予め回転子を利用する機械式
分散操作を施したのち、更に超音波分散操作を施すこと
を特徴とする微粒子状無機フィラー分散液の製造法。 2.凝集塊状の微粒子状無機フィラーの混合量が有機分
散媒体に対して1〜10重量%の範囲にある特許請求の範
囲第1項記載の微粒子状無機フィラー分散液の製造法。 3.微粒子状無機フィラーが、微粒子状二酸化チタン粉
末、酸化ケイ素粉末、アルミナ粉末あるいは酸化マグネ
シウム粉末である特許請求の範囲第1項記載の微粒子状
無機フィラー分散液の製造法。 4.有機分散媒体がアミド系溶剤である特許請求の範囲
第1項記載の微粒子状無機フィラー分散液の製造法。 5.有機分散媒体が、N,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド、あるいはN−メチルピロリド
ンである特許請求の範囲第1項記載の微粒子状無機フィ
ラー分散液の製造法。
(57) [Claims] It was obtained by mixing an organic dispersion medium having a viscosity in the range of 0.1 to 10 centipoise and an agglomerated particulate inorganic filler having a primary particle size of 20% by weight or less based on the organic dispersion medium and 0.1 μm or less. A method for producing a particulate inorganic filler dispersion, comprising: before preparing a filler dispersion from a mixture, subjecting the mixture to a mechanical dispersion operation using a rotor in advance, and further performing an ultrasonic dispersion operation. 2. 2. The method for producing a particulate inorganic filler dispersion according to claim 1, wherein the amount of the aggregated particulate inorganic filler mixed is in the range of 1 to 10% by weight based on the organic dispersion medium. 3. 2. The method for producing a particulate inorganic filler dispersion according to claim 1, wherein the particulate inorganic filler is a particulate titanium dioxide powder, a silicon oxide powder, an alumina powder or a magnesium oxide powder. 4. The method for producing a particulate inorganic filler dispersion according to claim 1, wherein the organic dispersion medium is an amide solvent. 5. The organic dispersion medium is N, N-dimethylformamide, N, N
The method for producing a particulate inorganic filler dispersion according to claim 1, wherein the dispersion is -dimethylacetamide or N-methylpyrrolidone.
JP61122908A 1986-05-27 1986-05-27 Production method of fine particle inorganic filler dispersion Expired - Fee Related JP2665737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122908A JP2665737B2 (en) 1986-05-27 1986-05-27 Production method of fine particle inorganic filler dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122908A JP2665737B2 (en) 1986-05-27 1986-05-27 Production method of fine particle inorganic filler dispersion

Publications (2)

Publication Number Publication Date
JPS62279838A JPS62279838A (en) 1987-12-04
JP2665737B2 true JP2665737B2 (en) 1997-10-22

Family

ID=14847588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122908A Expired - Fee Related JP2665737B2 (en) 1986-05-27 1986-05-27 Production method of fine particle inorganic filler dispersion

Country Status (1)

Country Link
JP (1) JP2665737B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732538B (en) * 2011-03-03 2016-08-31 维西斯技术基金会 The thermodynamic solution of metal-oxide and metal chalcogenide and mixed-metal oxides and chalcogenide
CN104203497B (en) * 2012-02-16 2016-11-16 柯尼卡美能达株式会社 Grinding-material renovation process
WO2013122123A1 (en) * 2012-02-17 2013-08-22 コニカミノルタ株式会社 Abrasive regeneration method
US9353266B2 (en) * 2013-03-15 2016-05-31 Tronox Llc Process for manufacturing titanium dioxide pigments using ultrasonication
EP4122888A4 (en) * 2020-03-16 2024-04-24 Mitsubishi Materials Corp Inorganic filler powder, thermally conductive polymer composition, and method for manufacturing inorganic filler powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655424A (en) * 1979-10-15 1981-05-16 Toray Ind Inc Production of polyester having good particle dispersibility
JPS591415A (en) * 1982-06-28 1984-01-06 Mochida Pharmaceut Co Ltd Remedy for circulatory disease
JPS5991123A (en) * 1982-11-16 1984-05-25 Toyobo Co Ltd Preparation of particle slurry for use in polyester production
JPS6137816A (en) * 1984-07-31 1986-02-22 Toray Ind Inc Production of modified polyester

Also Published As

Publication number Publication date
JPS62279838A (en) 1987-12-04

Similar Documents

Publication Publication Date Title
JP6933699B2 (en) Method of surface modification of submicron silicon fine powder
JP3883969B2 (en) Aqueous dispersion, process for its production and use thereof
JP5710822B2 (en) Highly dispersible alkaline earth metal carbonate fine powder
JP3721497B2 (en) Method for producing polishing composition
US7704315B2 (en) Highly-filled, aqueous metal oxide dispersion
TWI257419B (en) Polishing compositions and methods for chemical-mechanical planarization
KR20010079521A (en) Dispersion of fine porous inorganic oxide particles and processes for preparing same
JP2665737B2 (en) Production method of fine particle inorganic filler dispersion
JP5201855B2 (en) Highly dispersible strontium carbonate fine powder
KR20090125166A (en) Highly dispersible fine powder of alkaline earth metal carbonate and process for producing the same
JP4199111B2 (en) Method of encapsulating inorganic components in wax
JPH06136290A (en) Production of modified inorganic powder
JP3932336B2 (en) Method for producing copper powder for conductive paste
KR20190142930A (en) Hydroxyl fullerene dispersion and method of preparing the same and polishing slurry including the same and method of manufacturing semiconductor device
JP4969076B2 (en) Method for producing fine strontium carbonate powder
JPH0615032B2 (en) Method for producing fine particle inorganic filler-dispersion liquid
JP5170437B2 (en) Method for producing soft agglomerated powder and method for producing inorganic particle-organic polymer composite paste
JP2003013106A (en) Method for manufacturing silica-coated metallic composite powder, and silica-coated metallic composite powder
JP3708985B2 (en) Alkaline alumina sol and method for producing the same
CN108102137B (en) Nanopal composition, method of preparing the same, and resin composition comprising the same
JPH0657182A (en) Production of magnetic coating material
KR100843057B1 (en) Highly-filled, aqueous metal oxide dispersion
JPH0789717A (en) Alumina sol and its production
JPH09221368A (en) Preparing method for ceramic slurry
Shiomi et al. Preparation of spherical SnO 2 particles by W/O type emulsion method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees