JP2659941B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JP2659941B2
JP2659941B2 JP61291455A JP29145586A JP2659941B2 JP 2659941 B2 JP2659941 B2 JP 2659941B2 JP 61291455 A JP61291455 A JP 61291455A JP 29145586 A JP29145586 A JP 29145586A JP 2659941 B2 JP2659941 B2 JP 2659941B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
well
potential
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61291455A
Other languages
Japanese (ja)
Other versions
JPS63144555A (en
Inventor
正樹 百冨
正志 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61291455A priority Critical patent/JP2659941B2/en
Publication of JPS63144555A publication Critical patent/JPS63144555A/en
Application granted granted Critical
Publication of JP2659941B2 publication Critical patent/JP2659941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、半導体集積回路に関し、特に電気的書き
込み消去可能な不揮発性メモリ(EEPROM)の高電圧リミ
ッタ回路に関する。
The present invention relates to a semiconductor integrated circuit, and more particularly to a high-voltage limiter circuit of a nonvolatile memory (EEPROM) capable of electrically writing and erasing.

(従来の技術) 従来より、EEPROMにおいては、メモリセルのフローテ
ィングゲートと、ドレイン間の薄い酸化膜に高電界を与
え、電子をトンネルさせて、フローティングゲートの電
荷量を変え、その“しきい値”を変えて、不揮発な記憶
を実現させている。そのために高電圧(通常20V)が必
要となる。
(Prior art) Conventionally, in an EEPROM, a high electric field is applied to a thin oxide film between a floating gate and a drain of a memory cell to tunnel electrons, thereby changing a charge amount of the floating gate, and changing its “threshold value”. To realize non-volatile storage. Therefore, a high voltage (usually 20V) is required.

最近では、外部より5Vの電源電圧を与え、チップ内部
の昇圧回路により、高電圧を発生しているため、メモリ
セルの“しきい値”を一定にし、かつ、接合破壊や酸化
膜破壊を起こさないために昇圧電位を一定にするリミッ
タ回路が必要となってくる。内部昇圧回路とリミッタ回
路接続の従来例を第2図に示す。
Recently, a 5V power supply voltage was applied from the outside, and a high voltage was generated by a booster circuit inside the chip. Therefore, the "threshold" of the memory cell was kept constant, and junction breakdown and oxide film breakdown were caused. Therefore, a limiter circuit for keeping the boosted potential constant is required. FIG. 2 shows a conventional example of connection between an internal booster circuit and a limiter circuit.

リミッタ回路には第3図に示す様にトランジスタのSu
rface Breakdown電圧を利用しているものがある。これ
はP型基板(31)上に、n+領域(32)に昇圧電位を入力
とし、Polysiゲート(33)を接地電位にすることによ
り、Surface breakdown電圧で昇圧電位をリミットしよ
うとするものである。しかし、この構造ではブレイクダ
ウン後にゲート酸化膜(34)に正孔がトラップされWalk
outするためにリミッタ電位が変化するという欠点があ
った。さらにゲート酸化膜厚がばらつくとリミッタ電位
も変化するため安定な昇圧電位を供給できないという欠
点があった。他の方法として、リミッタ回路に第4図に
示されるJunction Breakdown電圧を利用しているものが
ある。
The limiter circuit has a transistor Su as shown in FIG.
Some use rface breakdown voltage. This is intended to limit the boosted potential by the Surface breakdown voltage by inputting the boosted potential to the n + region (32) on the P-type substrate (31) and setting the Polysi gate (33) to the ground potential. is there. However, in this structure, holes are trapped in the gate oxide film (34) after breakdown, and Walk
There is a disadvantage that the limiter potential changes due to out. Further, when the thickness of the gate oxide film varies, the limiter potential also changes, so that a stable boosted potential cannot be supplied. Another method uses a junction breakdown voltage shown in FIG. 4 for the limiter circuit.

これはP型基板(41)上に、n+層(42)とp-層(43)
を形成することによりp-層の濃度を最適化し、n+層とp-
層のJunction Breakdown電圧を20V程度にし、リミッタ
電位を一定にしようとするものである。しかし、これだ
と、第5図に示す様に接合耐圧を20Vに設定しようとす
ると、熱工程の変化、p-濃度の変化に対して、接合耐圧
の変化量が大きいため、最適化するのが困難であるとい
う欠点があった。これによるとp-濃度が2.5×1016cm-3
から1.5×1016cm-3に変化するだけで耐圧が30Vから40V
と10Vも変化する。第5図はS.M.SZEらの文献(Appl.Phy
s.Lett.,8.111(1966))から引用している。
This consists of an n + layer (42) and a p - layer (43) on a P-type substrate (41).
P By forming the - to optimize the concentration of the layer, n + layer and p -
The junction breakdown voltage of the layer is set to about 20 V, and the limiter potential is made to be constant. However, in this case, if the junction withstand voltage is set to 20 V as shown in FIG. 5, the amount of change in the junction withstand voltage is large with respect to the change in the heat process and the change in the p - concentration. There is a drawback that it is difficult. According to this, the p - concentration is 2.5 × 10 16 cm -3
Withstand voltage from 30V to 40V just by changing from 1.5 × 10 16 cm -3
And 10V also changes. Figure 5 shows the literature of SMSZE et al. (Appl.Phy
s. Lett., 8.111 (1966)).

(発明が解決しようとする問題点) 本発明は上記欠点を鑑み、安定でプロセスマージンの
大きいリミッタ回路を提供し、安定な昇圧電位を供給し
ようとするものである。
(Problems to be Solved by the Invention) In view of the above drawbacks, the present invention provides a limiter circuit which is stable and has a large process margin and aims to supply a stable boosted potential.

〔発明の構成〕[Configuration of the invention]

(問題を解決するための手段) 本発明のリミッタ回路を第1図(a)に示す。P型半
導体基板(11)上に第1,第2,第3のN−well層(12,13,
14)を形成し、それぞれにp+層(15,16,17)を形成し、
それぞれのp+層の中にn+層(18,19,20)とN−well層に
電位を与えるためのn+層(21,22,23)を形成し、第1の
N−well(12)中のn+層(21,18)を高電圧の入力端(2
4)とし、第1のp+層(15)と第2のN−well(13)中
のn+層(19,22)を接続(25)し、第2のp+層(16)と
第3のN−well(14)中のn+層(20,23)を接続(26)
し、第3のp+層(17)を接地電位(27)にすることによ
り、リミッタ回路を形成する。
(Means for Solving the Problem) FIG. 1A shows a limiter circuit of the present invention. First, second, and third N-well layers (12, 13, and 13) are formed on a P-type semiconductor substrate (11).
14), forming p + layers (15, 16, 17) on each,
An n + layer (18, 19, 20) and an n + layer (21, 22, 23) for applying a potential to the N-well layer are formed in each p + layer, and a first N-well ( 12) Connect the n + layer (21,18) in the high voltage input terminal (2
4), the first p + layer (15) and the n + layer (19, 22) in the second N-well (13) are connected (25), and the second p + layer (16) is connected to the second p + layer (16). Connect the n + layer (20, 23) in the third N-well (14) (26)
Then, by setting the third p + layer (17) to the ground potential (27), a limiter circuit is formed.

(作用) 第1図(a)を用いて作用を説明する。N−well層
(12,13,14)、p+層(15,16,17)n+層(18,19,20,21,2
2,23)はそれぞれ同一工程で形成されるために濃度はす
べて同一となっている。接合耐圧はp+層とp+層中のn+
によって決まっており、それぞれ接合耐圧が7V程度にな
る様に設定されている。第5図に示す様に接合耐圧が7V
の場合には、熱工程の変化、イオン注入のドーズ量によ
る変化に対して、接合耐圧のバラツキが、第4図で20V
の接合耐圧によるバラツキよりも、はるかに小さく安定
であることがわかる。
(Operation) The operation will be described with reference to FIG. N-well layer (12, 13, 14), p + layer (15, 16, 17), n + layer (18, 19, 20, 21, 2 )
2, 23) are formed in the same step, and therefore have the same concentration. Junction breakdown voltage is determined by the n + layer of p + layer and p + layer in, it is set so that each junction breakdown voltage is about 7V. As shown in Fig. 5, the junction breakdown voltage is 7V
In the case of FIG. 4, the variation in the junction breakdown voltage with respect to the change due to the heat process and the dose due to the ion implantation is 20 V in FIG.
It can be seen that it is much smaller and more stable than the variation due to the junction withstand voltage.

またN−wellの電位とn+層の電位が同一であるため
に、p+層中のn+とN−wellがパンチスルーを行なっても
問題にならない。また同電位であるためにバイポーラト
ランジスタを形成しても問題にならない。
In addition, since the potential of the N-well and the potential of the n + layer are the same, there is no problem even if the n + and the N-well in the p + layer perform punch-through. Also, since the potentials are the same, there is no problem even if a bipolar transistor is formed.

1つあたりの接合耐圧が7Vであるため、これを3段直
列に接続しているために、リミッタ電圧は7V×3=21V
となる。したがって昇圧電位が21Vを越えると直流パス
が入力端子(24)から接地電位(27)に流れるため、昇
圧電位は21Vにliwitされる。
Since the junction breakdown voltage per one is 7V, since these are connected in series in three stages, the limiter voltage is 7V × 3 = 21V
Becomes Therefore, when the boosted potential exceeds 21V, the DC path flows from the input terminal (24) to the ground potential (27), and the boosted potential is liwitted to 21V.

第1図(b)は同図(a)のリミッタ回路と昇圧回路
の接続を示す回路図である。
FIG. 1 (b) is a circuit diagram showing the connection between the limiter circuit and the booster circuit of FIG. 1 (a).

(実施例) 本発明の実施例を第2図を参照して詳細に説明する。Embodiment An embodiment of the present invention will be described in detail with reference to FIG.

20ΩのP型基板(61)上にN−well領域(62)にリン
150KeV7.9×1012cm-2でイオン注入し、1190℃200分のア
ニールを行ないN−well層を形成する。次に素子分離を
行なうための、フィールド酸化を行なう(第2図a) 次にp+領域に40KeV2×1013cm-2でボロンイオン注入
し、さらにn+領域に40KeV5×1015cm-2でヒ素をイオン注
入し、900℃,37分のアニールを行なう。これによりp+
(63)、n+層(64)を形成する(第2図b) さらに、それぞれ層間絶縁膜を堆積し、コンタクトホ
ールを開けAl層(65)を形成する(第2図c) 最終的なそれぞれの濃度はN−well層(62)3×1016
cm-3p+層(63)2×1017cm-3,n+層(64)2×1020cm-3
である。このときのp+層(63)とn+層(64)の接合耐圧
は7Vである。昇圧回路の出力と、入力Al層(66)を接続
し、最終のp+の電位はAl層(67)により接地電位にす
る。
Phosphorus on N-well region (62) on 20Ω P-type substrate (61)
Ion implantation is performed at 150 KeV 7.9 × 10 12 cm −2 , and annealing is performed at 1190 ° C. for 200 minutes to form an N-well layer. Next, field oxidation is performed to perform element isolation (FIG. 2A). Next, boron ions are implanted into the p + region at 40 KeV2 × 10 13 cm −2 , and further into the n + region at 40 KeV 5 × 10 15 cm −2. Then, arsenic is ion-implanted, and annealing is performed at 900 ° C. for 37 minutes. This forms ap + layer (63) and an n + layer (64) (FIG. 2b). Further, an interlayer insulating film is deposited, and a contact hole is opened to form an Al layer (65) (FIG. 2). c) The final concentration of each is 3 × 10 16 in the N-well layer (62).
cm -3 p + layer (63) 2 × 10 17 cm -3 , n + layer (64) 2 × 10 20 cm -3
It is. At this time, the junction withstand voltage of the p + layer (63) and the n + layer (64) is 7V. The output of the booster circuit is connected to the input Al layer (66), and the final p + potential is set to the ground potential by the Al layer (67).

基板としてはSiを用いたが、その他Ge,GaAs,GaP等で
も同様である。
Although Si was used as the substrate, the same applies to other materials such as Ge, GaAs, and GaP.

〔発明の効果〕〔The invention's effect〕

本発明のリミッタ回路により、プロセス的にマージン
のある、かつ安定な昇圧電位を供給することができた。
With the limiter circuit of the present invention, a stable boosted potential having a margin in the process can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明のリミッタ回路の断面図、第1図
(b)は昇圧回路とリミッタ回路の接続図、第2図は本
発明の実施例の工程断面図、第3図、第4図は夫々従来
のリミッタ回路の断面図、第5図はJunction Breakdown
電圧と濃度の関係を示す図である。 図において、 1−1……P型基板、1−2,1−3,1−4……N−well、
1−5,1−6,1−7……p+層、1−8,1−9,1−10……p+
中のn+層、1−11,1−12,1−13……N−well電位を与え
るn+層、1−14,1−15,1−16……Al配線、3−1……P
型基板、3−2……n+層、3−3……Polysi Gate、3
−4……Gate SiO2、4−1……P型基板、4−2……n
+層、4−3……p-層、6−1……P型基板、6−2…
…N−well層、6−3……p+層、6−4……n+層、6−
5……Al配線、6−6……昇圧電位入力部、6−7……
接地電位。
1 (a) is a sectional view of a limiter circuit of the present invention, FIG. 1 (b) is a connection diagram of a booster circuit and a limiter circuit, FIG. 2 is a process sectional view of an embodiment of the present invention, FIG. 4 is a cross-sectional view of a conventional limiter circuit, and FIG. 5 is a junction breakdown.
FIG. 4 is a diagram illustrating a relationship between voltage and concentration. In the figure, 1-1 ... P-type substrate, 1-2,1-3,1-4 ... N-well,
1-5,1-6,1-7 ... p + layer, 1-8,1-9,1-10 ... n + layer in p + layer, 1-11,1-12,1-13 ... N + layer giving N-well potential, 1-14, 1-15, 1-16 ... Al wiring, 3-1 ... P
Mold substrate, 3-2 ... n + layer, 3-3 ... Polysi Gate, 3
-4 ...... Gate SiO 2, 4-1 ...... P -type substrate, 4-2 ...... n
+ Layer, 4-3 ... p - layer, 6-1 ... P-type substrate, 6-2 ...
... N-well layer, 6-3 ...... p + layer, 6-4 ...... n + layer, 6-
5 ... Al wiring, 6-6 ... Boost potential input section, 6-7 ...
Ground potential.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の半導体基板に第2導電型のウ
エルが形成され、このウエルの中に第1導電型層が形成
され、この第1導電型層の中に第1の第2導電型層が形
成され前記ウエルの中で前記第1導電型層の外に所定の
距離離間して、第2の第2導電型層が形成され、前記第
1、第2の第2導電型層を高電圧の入力端子とし、前記
第1導電型層を出力端子とし、この構造を単位として、
前記出力端子を次段となる前記第1、第2の第2導電型
層の入力端子と接続することにより前記構造が直列に多
段接続されていることを特徴とする半導体集積回路。
A first conductivity type well is formed in a first conductivity type semiconductor substrate, a first conductivity type layer is formed in the well, and a first first conductivity type layer is formed in the first conductivity type layer. A second conductivity type layer is formed, a second second conductivity type layer is formed in the well outside the first conductivity type layer at a predetermined distance, and the first and second second conductivity type layers are formed. The mold layer is used as a high-voltage input terminal, and the first conductivity type layer is used as an output terminal.
A semiconductor integrated circuit, wherein the structure is connected in multiple stages in series by connecting the output terminal to the input terminals of the first and second second conductivity type layers at the next stage.
JP61291455A 1986-12-09 1986-12-09 Semiconductor integrated circuit Expired - Fee Related JP2659941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291455A JP2659941B2 (en) 1986-12-09 1986-12-09 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291455A JP2659941B2 (en) 1986-12-09 1986-12-09 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS63144555A JPS63144555A (en) 1988-06-16
JP2659941B2 true JP2659941B2 (en) 1997-09-30

Family

ID=17769088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291455A Expired - Fee Related JP2659941B2 (en) 1986-12-09 1986-12-09 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2659941B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323898U (en) * 1989-07-17 1991-03-12
JPH0323897U (en) * 1989-07-17 1991-03-12

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1468564A (en) * 1973-08-24 1977-03-30 Kelsey Hayes Co Skid controls brake system
JPS546480A (en) * 1977-06-16 1979-01-18 Nippon Denso Co Ltd Semiconductor device
JPS58217023A (en) * 1982-06-10 1983-12-16 Sony Corp Power source circuit for ic

Also Published As

Publication number Publication date
JPS63144555A (en) 1988-06-16

Similar Documents

Publication Publication Date Title
KR940009644B1 (en) Non-volatile semiconductor memory device and manufacturing method thereof
US4822750A (en) MOS floating gate memory cell containing tunneling diffusion region in contact with drain and extending under edges of field oxide
JP2555027B2 (en) Semiconductor memory device
US4701776A (en) MOS floating gate memory cell and process for fabricating same
US4804637A (en) EEPROM memory cell and driving circuitry
US3984822A (en) Double polycrystalline silicon gate memory device
JP2597719B2 (en) Nonvolatile semiconductor memory device and method of operating the same
US4816883A (en) Nonvolatile, semiconductor memory device
EP1244112A2 (en) Nonvolatile memory
KR100316089B1 (en) " EEPROM " omitted
JPS59501434A (en) How to form integrated circuit capacitors
JPS61105862A (en) Semiconductor device
US4454524A (en) Device having implantation for controlling gate parasitic action
US20020096703A1 (en) Vertically integrated flash eeprom for greater density and lower cost
US5006974A (en) On-chip high voltage generator and regulator in an integrated circuit
JP2977084B2 (en) Electrostatic discharge network with FETs having double-thin-oxide gate insulator for non-volatile memory
US5014097A (en) On-chip high voltage generator and regulator in an integrated circuit
JP3529549B2 (en) Method for manufacturing semiconductor device
JPH09181162A (en) Channel stopping method used for thick field insulating region in tripple-well structure
JPH0548632B2 (en)
US4305083A (en) Single junction charge injector floating gate memory cell
JP2659941B2 (en) Semiconductor integrated circuit
US5677876A (en) Flash EEPROM with impurity diffused layer in channel area and process of production of same
JPH10289957A (en) Semiconductor device and manufacture thereof
JPH05167078A (en) Semiconductor device and fabrication thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees