JP2658406B2 - Manufacturing method of electrical equipment - Google Patents

Manufacturing method of electrical equipment

Info

Publication number
JP2658406B2
JP2658406B2 JP1173380A JP17338089A JP2658406B2 JP 2658406 B2 JP2658406 B2 JP 2658406B2 JP 1173380 A JP1173380 A JP 1173380A JP 17338089 A JP17338089 A JP 17338089A JP 2658406 B2 JP2658406 B2 JP 2658406B2
Authority
JP
Japan
Prior art keywords
resin composition
silica sand
parts
thermosetting resin
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1173380A
Other languages
Japanese (ja)
Other versions
JPH0340309A (en
Inventor
光雄 小原
雅博 鈴木
克彦 安
泰典 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1173380A priority Critical patent/JP2658406B2/en
Publication of JPH0340309A publication Critical patent/JPH0340309A/en
Application granted granted Critical
Publication of JP2658406B2 publication Critical patent/JP2658406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気機器の製造方法に関し、さらに詳しくは
熱伝導率に優れ、耐クラック性が大幅に改善された電気
機器の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an electric device, and more particularly, to a method for manufacturing an electric device having excellent thermal conductivity and greatly improved crack resistance.

〔従来の技術〕[Conventional technology]

従来、電気機器の絶縁処理方法としては、プラスチッ
クまたは金属ケースに電気機器をセットし、無機フィラ
ーと熱硬化性樹脂組成物の均一混合物を常圧または減圧
下で注入して硬化するポッティング法が知られている。
2. Description of the Related Art Conventionally, as a method of insulating an electric device, a potting method is known in which an electric device is set in a plastic or metal case, and a uniform mixture of an inorganic filler and a thermosetting resin composition is injected under normal pressure or reduced pressure to be cured. Have been.

しかし、この方法では作業性の面から混合する無機フ
ィラーの添加量に限界があるため、製品価格が高くなる
欠点がある。また熱硬化性樹脂組成物が硬化する際に体
積収縮を生じるため硬化物にクラックが生じ、内蔵され
ている電気部品やケースに剥離やクラックが発生し易
く、また熱伝導率が悪いために電気機器の温度が高くな
り、使用する温度が制限されるなどの問題がある。さら
に熱硬化性樹脂組成物と無機フィラーを混合して真空下
で脱泡した後に注入作業を行うため、熱硬化性樹脂組成
物の硬化時間の長いものを使用する必要があり、従って
注入後の硬化時間も長くなり、作業工程の合理化、省エ
ネルギー化に限界がある。
However, in this method, there is a limit to the amount of the inorganic filler to be mixed from the viewpoint of workability, so that there is a disadvantage that the product price increases. In addition, when the thermosetting resin composition cures, volume shrinkage occurs, causing cracks in the cured product, easily causing peeling or cracking in the built-in electric components and case, and also having poor thermal conductivity, resulting in an electric current. There is a problem that the temperature of the device becomes high and the temperature used is limited. Furthermore, in order to perform the injection work after mixing the thermosetting resin composition and the inorganic filler and defoaming under vacuum, it is necessary to use a thermosetting resin composition having a long curing time, and therefore, after the injection. The curing time becomes longer, and there is a limit to the rationalization of the work process and energy saving.

〔発明が解決しようとする課題〕 本発明の目的は、前記従来技術の欠点をなくし、硬化
性、耐クラック性および熱伝導率に優れた電気機器の製
造方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for manufacturing an electric device which eliminates the drawbacks of the above-described conventional technology and has excellent curability, crack resistance and thermal conductivity.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、電気部品、電子部品または回路基板が収納
されたケース内に、予めAFS粒度が7〜75であるシリカ
サンド(A)を充填した後、熱硬化性樹脂組成物(B)
を、前記シリカサンド(A)に対する重量比が(A):
(B)=1.0:0.4〜0.2となるように注入し、硬化させる
ことを特徴とする電気機器の製造方法に関する。
The present invention provides a thermosetting resin composition (B) after previously filling silica sand (A) having an AFS particle size of 7 to 75 into a case containing an electric component, an electronic component, or a circuit board.
Having a weight ratio of (A) to the silica sand (A):
(B) = 1.0: 0.4 to 0.2 is injected and cured, and relates to a method for manufacturing an electric device.

本発明に用いられるシリカサンド(A)は、AFS粒度
が7〜75のものである。本発明においてシリカサンドと
は、天然硅砂でSiO2の含有量が90重量%以上のものを意
味する。AFS流度はJIS Z2602−1976によって測定され
る。該AFS粒度が7未満では、粒子が粗いため単位容積
当たりの充填量が少なくなり、熱硬化性樹脂組成物を注
入した際、シリカサンド(充填剤)間の空隙部分が多く
なりクラックが発生し、また充填剤が各部品または素子
間の間隙部分に入らないために熱硬化樹脂組成物を注
入、硬化した際の硬化物の線膨脹係数が全体として不均
一となり、ヒートサイクル時に部品または素子との間に
剥離やクラックが発生する。またAFS粒度が75を超える
と、粒子が微粒子のため単位容積当たりの充填剤量が多
くなるが、熱硬化性樹脂組成物のシリカサンドへの含浸
性が悪くなり、部分的に熱硬化性樹脂組成物が含浸せ
ず、各部品または素子間で絶縁不良が生じる。
The silica sand (A) used in the present invention has an AFS particle size of 7 to 75. In the present invention, silica sand means natural silica sand having a SiO 2 content of 90% by weight or more. AFS flow rate is measured according to JIS Z2602-1976. If the AFS particle size is less than 7, the filling amount per unit volume is small because the particles are coarse, and when the thermosetting resin composition is injected, voids between silica sands (filler) increase and cracks occur. Also, since the filler does not enter into the gaps between the parts or elements, the thermosetting resin composition is injected, and the linear expansion coefficient of the cured product when cured becomes non-uniform as a whole. Separation and cracks occur during the process. When the AFS particle size exceeds 75, the amount of filler per unit volume increases because the particles are fine particles, but the impregnating property of the thermosetting resin composition into the silica sand is deteriorated, and the thermosetting resin is partially removed. The composition is not impregnated, resulting in poor insulation between components or elements.

前記シリカサンド(A)としては、例えばトウチュウ
社製商品名パール4号、パール6号、三河珪砂V−3な
どが用いられる。
As the silica sand (A), for example, Pearl No. 4, Pearl No. 6, manufactured by Tochu Co., Ltd., and Mikawa Silica Sand V-3 are used.

本発明に用いられる熱硬化性樹脂組成物(B)には特
に制限はないが、硬化性に優れたポリウレタン樹脂組成
物、エポキシ樹脂組成物、不飽和ポリエステル樹脂組成
物、シリコーン樹脂組成物などが好ましく用いられる。
The thermosetting resin composition (B) used in the present invention is not particularly limited, but a polyurethane resin composition, an epoxy resin composition, an unsaturated polyester resin composition, a silicone resin composition, and the like having excellent curability can be used. It is preferably used.

前記ポリウレタン樹脂組成物には、例えばポリヒドロ
キシ化合物とイソシアネート化合物との反応によって得
られるポリウレタン樹脂が用いられる。このポリヒドロ
キシ化合物としては、ポリエステルポリオール、ポリエ
ーテルポリオール、アクリルポリオール、ヒマシ油また
はその誘導体、トール油誘導体などが用いられる。また
イソシアネート化合物としては、2,4−トリレンジイソ
シアネート、ジフェニルメタン4,4′−ジイソシアネー
ト、ポリメチレンポリフェニルポリイソシアネート、こ
れらの誘導体などが用いられる。
As the polyurethane resin composition, for example, a polyurethane resin obtained by a reaction between a polyhydroxy compound and an isocyanate compound is used. As the polyhydroxy compound, polyester polyol, polyether polyol, acrylic polyol, castor oil or its derivative, tall oil derivative and the like are used. Examples of the isocyanate compound include 2,4-tolylene diisocyanate, diphenylmethane 4,4'-diisocyanate, polymethylene polyphenyl polyisocyanate, and derivatives thereof.

前記エポキシ樹脂組成物としては、例えば分子内に少
なくとも1個のエポキシ基を有するエポキシ樹脂と硬化
剤を含む組成物が用いられる。該硬化剤としては、脂肪
族ポリアミンまたはその誘導体、芳香族ジアミンまたは
その誘導体、ビススピロ環ジアミンまたはその誘導体、
酸無水物と第3級アミンまたはイミダゾール化合物の混
合物、ポリアミド樹脂、イミダゾール化合物、フッ化ほ
う素のアミン錯体などが用いられる。
As the epoxy resin composition, for example, a composition containing an epoxy resin having at least one epoxy group in a molecule and a curing agent is used. Examples of the curing agent include an aliphatic polyamine or a derivative thereof, an aromatic diamine or a derivative thereof, a bisspirocyclic diamine or a derivative thereof,
A mixture of an acid anhydride and a tertiary amine or an imidazole compound, a polyamide resin, an imidazole compound, an amine complex of boron fluoride, or the like is used.

前記不飽和ポリエステル樹脂組成物としては、例えば
不飽和多塩基酸またはその無水物および飽和多塩基酸ま
たはその無水物と、グリコール類とのエステル化物に、
ビニルモノマー等の架橋剤および硬化剤である過酸化物
を添加したものが用いられる。
As the unsaturated polyester resin composition, for example, an esterified product of an unsaturated polybasic acid or an anhydride thereof and a saturated polybasic acid or an anhydride thereof, and a glycol,
Those to which a crosslinking agent such as a vinyl monomer and a peroxide as a curing agent are added are used.

前記シリコーン樹脂組成物としては、例えばシロキサ
ン結合を有するシリコーンポリマーと、アルキシド樹
脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、
ウレタン樹脂などの熱硬化性樹脂とを共重合または混合
したものに、パーオキサイドなどの硬化剤および白金化
合物などの硬化開始剤を添加したものが用いられる。
As the silicone resin composition, for example, a silicone polymer having a siloxane bond, an alkoxide resin, an acrylic resin, an epoxy resin, a polyester resin,
A resin obtained by copolymerizing or mixing a thermosetting resin such as a urethane resin with a curing agent such as a peroxide and a curing initiator such as a platinum compound is used.

前記熱硬化性樹脂組成物には、特性を向上させるため
に可撓化剤、反応性希釈剤、非反応性希釈剤、カップリ
ング剤などを配合し、また難燃性を付与するためにハロ
ゲン化合物、リン化合物等の難燃剤を配合することがで
きる。
The thermosetting resin composition is blended with a flexibilizing agent, a reactive diluent, a non-reactive diluent, a coupling agent and the like in order to improve properties, and a halogen in order to impart flame retardancy. A flame retardant such as a compound or a phosphorus compound can be blended.

前記熱硬化性樹脂組成物(B)は、前記シリカサンド
(A)1.0に対する重量比が0.4〜0.2の範囲となるよう
に用いられる。該重量比が0.2未満では熱硬化性樹脂組
成物が電気機器の中に充填されたシリカサンド全体に充
分に含浸できず、下部に未含浸部分が生じ、各部品また
は素子間に絶縁不良を発生する。また重量比が0.4を超
えると熱硬化性樹脂組成物が電気機器の上部に残り、シ
リカサンドが沈降するために、熱伝導率が悪く、硬化物
の上下部の線膨脹係数が大幅に異なり、ヒートサイクル
時に部品または素子との間に剥離やクラックがする。
The thermosetting resin composition (B) is used so that the weight ratio to the silica sand (A) 1.0 is in the range of 0.4 to 0.2. If the weight ratio is less than 0.2, the thermosetting resin composition cannot sufficiently impregnate the entire silica sand filled in the electric device, and an unimpregnated portion is formed at a lower portion, and insulation failure occurs between parts or elements. I do. Also, if the weight ratio exceeds 0.4, the thermosetting resin composition remains on the upper part of the electrical equipment, and the silica sand is settled, so that the thermal conductivity is poor, and the linear expansion coefficients of the upper and lower parts of the cured product are significantly different. Peeling or cracking occurs between components or elements during a heat cycle.

本発明の電気機器の製造方法では、シリカサンド
(A)を充填した後に熱硬化性樹脂組成物(B)が注入
される。例えば、まず電気部品、電子部品または回路基
板を収納したケース内に、予め100℃で1時間以上乾燥
した、粒度分布がAFS粒度7〜75の範囲にあるシリカサ
ンド(A)を充填し、80℃以上の温度で予備乾燥し、充
分に脱湿する。次に熱硬化性樹脂組成物(B)の所定量
を充分に混合し、10mmHg以下の減圧下で巻き込んだ気泡
を除去した後、常圧でシリカサンド上に注入するか、ま
たはシリカサンドへの不浸性を向上させ、硬化物中の気
泡を少なくするため、真空槽の中で5〜20mmHgの真空度
下で注入する。その後、常圧に戻して所定の硬化温度の
炉に投入し、硬化させる。
In the method for manufacturing an electric device according to the present invention, the thermosetting resin composition (B) is injected after the silica sand (A) is filled. For example, first, silica sand (A) having an AFS particle size in the range of 7 to 75 and previously dried at 100 ° C. for 1 hour or more is filled in a case containing electric components, electronic components, or a circuit board. Pre-dry at a temperature of at least ℃ and dehumidify sufficiently. Next, a predetermined amount of the thermosetting resin composition (B) is sufficiently mixed, and air bubbles entrained under a reduced pressure of 10 mmHg or less are removed. In order to improve the impregnating property and reduce the bubbles in the cured product, the mixture is injected in a vacuum chamber at a degree of vacuum of 5 to 20 mmHg. Thereafter, the pressure is returned to normal pressure, and the mixture is put into a furnace having a predetermined curing temperature to be cured.

このようにして得られる電気機器は、ケース内の充填
剤に熱硬化性樹脂組成物が均一に充分に含浸され、その
硬化物には気泡がなく、部品、素子、基板などとよく密
着したものであり、従来のポッティング法、すなわち熱
硬化性樹脂組成物と充填剤とを予め混合した後にケース
内に注入して硬化する方法によった場合の含浸性および
密着性とほとんど差がないものである。また従来のポッ
ティング法では、混合時の粘度および注入作業性の点か
ら、シリカサンド(A)1.0に対する熱硬化性樹脂組成
物(B)の使用割合は重量比で0.4が限度であるが、本
発明の方法によればシリカサンドの量を多くできるた
め、トータルコストの低減が可能であり、また硬化時の
硬化収縮が小さく、硬化物の熱伝導率およびヒートサイ
クル時のクラック性が向上し、電気機器の性能が大幅に
向上する。
The electric device obtained in this way is one in which the filler in the case is uniformly and sufficiently impregnated with the thermosetting resin composition, and the cured product has no air bubbles and is in close contact with components, elements, substrates, etc. The conventional potting method, that is, there is almost no difference between the impregnating property and the adhesion when the thermosetting resin composition and the filler are mixed in advance and then injected into the case and cured. is there. In the conventional potting method, the weight ratio of the thermosetting resin composition (B) to silica sand (A) 1.0 is limited to 0.4 in terms of viscosity and mixing workability at the time of mixing. According to the method of the present invention, since the amount of silica sand can be increased, the total cost can be reduced, and the curing shrinkage during curing is small, and the thermal conductivity of the cured product and the cracking property during a heat cycle are improved, The performance of electrical equipment is greatly improved.

本発明における電気機器としては、プラスチックまた
は金属のケースに、電気部品や電子部品を収納したトラ
ンス、ソレノイドコイル、高圧トランス、電磁クラッ
チ、安定器、モジュール、イグナイター、コントローラ
ー、レギュレーター、エアバックセンサー等の電気機
器、セラミック基板、プリント基板等の回路板を内蔵し
た電気機器などが挙げられる。
Examples of the electric device in the present invention include a transformer or solenoid coil, a high-voltage transformer, an electromagnetic clutch, a ballast, a module, an igniter, a controller, a regulator, an airbag sensor, etc., in which a plastic or metal case contains electric and electronic components. Examples include electric equipment, electric equipment including a circuit board such as a ceramic substrate and a printed circuit board, and the like.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。下記例中の
「部」は重量部を意味する。
Hereinafter, the present invention will be described with reference to examples. "Parts" in the following examples means parts by weight.

シリカサンドのAFS粒度は、JIS Z 2602−1976「鋳
物砂の粒度分布試験方法」に準じて測定した各粒度の百
分率Wi(%) および第1表に示した各ふるい寸法(メッシュ)のAFS
粒度係数(Si)から次のようにして求めた。
The AFS particle size of the silica sand is the percentage Wi (%) of each particle size measured according to JIS Z 2602-1976 "Testing method for particle size distribution of foundry sand". And AFS of each sieve size (mesh) shown in Table 1.
It was determined as follows from the particle size coefficient (Si).

実施例および比較例で使用したシリカサンドのAFS粒
度を第2表に示した。
Table 2 shows the AFS particle size of the silica sand used in Examples and Comparative Examples.

またモデル含浸性、モデル含浸率、沈降性、熱伝導
率、耐クラック性および線膨張係数は下記のようにして
測定した。
The model impregnation, model impregnation rate, sedimentation, thermal conductivity, crack resistance, and coefficient of linear expansion were measured as follows.

(1)モデル含浸率:直径50mmのポリエチレン製ビーカ
にシリカサンドを加振しながら充填後秤量してシリカサ
ンドの重量(Wo g)を求める。次に熱硬化性樹脂組成物
を注入し、10mmHgの減圧下で10分間放置し、常圧、80℃
/3時間で硬化させる。ついでポリエチレン製ビーカから
硬化物を取り出し下部の熱硬化製樹脂組成物が含浸され
ず硬化物から分離されるシリカサンドの重量(W1g)を
求め、次式からモデル含浸性を算出した。
(1) Model impregnation rate: A silica beaker is charged into a beaker made of polyethylene having a diameter of 50 mm while vibrating while vibrating, and then weighed to obtain the weight (Wo g) of the silica sand. Next, the thermosetting resin composition was injected, and the mixture was left under reduced pressure of 10 mmHg for 10 minutes.
Cure in 3 hours. Then, the cured product was taken out from the polyethylene beaker, the weight (W 1 g) of the silica sand separated from the cured product without being impregnated with the lower thermosetting resin composition was determined, and the model impregnation was calculated from the following equation.

モデル含浸率は、熱硬化性樹脂組成物が充填剤中に含
浸した割合を求めるものであり、未含浸部の充填剤が少
なければ、モデル含浸率が高くなり、含浸性に優れるこ
とを示す。
The model impregnation rate is a value obtained by impregnating the filler with the thermosetting resin composition. If the amount of the filler in the non-impregnated portion is small, the model impregnation rate is high, indicating that the impregnating property is excellent.

(3)モデル沈降性:直径50mmのポリエチレン製ビーカ
に、サンドシリカを加振しながら充填する。次に熱硬化
性樹脂組成物を注入し、10mmHgの減圧下で10分間放置
し、常圧、80℃/3時間で硬化させ、外観を次のようにし
て観察した。
(3) Model sedimentation: Sand silica is filled into a polyethylene beaker having a diameter of 50 mm while vibrating. Next, the thermosetting resin composition was injected, left under a reduced pressure of 10 mmHg for 10 minutes, cured at 80 ° C. for 3 hours under normal pressure, and the appearance was observed as follows.

○:充填剤の分離、沈降なし ×:充填剤の分離、沈降あり (4)熱伝導率:(3)と同じ方法で注型して直径50m
m、厚さ10mmの円板状の試験片を作製し、熱伝導率測定
器(ダイナテック社製)で熱伝導率(cal/cm・sec・
℃)を求めた。
:: no separation of the filler, no sedimentation ×: separation of the filler, sedimentation (4) Thermal conductivity: 50 m in diameter cast by the same method as (3)
m, a disk-shaped test piece with a thickness of 10 mm was prepared, and the thermal conductivity (cal / cm · sec.
° C).

(5)耐クラック性:(3)と同じ方法で注型して試験
片を作製し、JIS C 2105「電気絶縁用無溶剤液状レ
ジン試験方法」の耐クラック性試験に準じて試験した。
クラック試験片は5個とし、所定の冷熱サイクルを行
い、サイクルごとにクラック発生の有無を確認し、最初
にクラックが発生したサイクル数を記載した。
(5) Crack resistance: A test piece was prepared by casting in the same manner as in (3), and the test piece was tested according to the crack resistance test of JIS C 2105 “Testing method for solvent-free liquid resin for electrical insulation”.
The number of crack test pieces was five, and a predetermined cooling / heating cycle was performed. The presence or absence of cracks was confirmed for each cycle, and the number of cycles in which cracks occurred first was described.

(6)線膨脹係数:熱伝導率の測定試験片を用いて5mm
×5mm×2mmの試験片を切り出し、TMA熱物理試験機(理
学電気社製)を用いて線膨脹係数(℃-1)を求めた。
(6) Coefficient of linear expansion: 5 mm using a test piece for measuring thermal conductivity
A test piece of × 5 mm × 2 mm was cut out, and the coefficient of linear expansion (° C. −1 ) was determined using a TMA thermophysical tester (manufactured by Rigaku Corporation).

実施例1〜3 ビスフェノールA型エポキシ樹脂(油化シェル社製エ
ピコート828)80部に反応性希釈剤(長瀬チバ製DY−02
2、ジグリシジルエーテル系希釈剤)20部を混合したエ
ポキシ樹脂(a)と、メチルテトラヒドロ無水フタル酸
(日立化成社製HN−2200)100部および2−エチル−4
−メチルイミダゾール(四国化成社製キュアゾール2E4M
Z)2部を混合した硬化剤(b)とを、重量比で(a)
/(b)=100/85の割合で混合し、エポキシ樹脂組成物
(B−1)を得た。
Examples 1 to 3 A reactive diluent (DY-02 manufactured by Chise Nagase) was added to 80 parts of a bisphenol A type epoxy resin (Epicoat 828 manufactured by Yuka Shell Co., Ltd.).
2, an epoxy resin (a) mixed with 20 parts of a diglycidyl ether-based diluent), 100 parts of methyltetrahydrophthalic anhydride (HN-2200 manufactured by Hitachi Chemical Co., Ltd.) and 2-ethyl-4
-Methyl imidazole (Curesol 2E4M manufactured by Shikoku Chemicals)
Z) a curing agent (b) in which 2 parts are mixed, and (a)
/ (B) = 100/85 to obtain an epoxy resin composition (B-1).

このエポキシ樹脂組成物(B−1)100部と、第2表
に示すシリカサンド(A−1)、(A−2)および(A
−3)をそれぞれ350部用いて試験片を作製し、上記の
試験法に従って熱伝導率、線膨張係数および耐クラック
性を測定し、さらに所定の方法でモデル含浸率およびモ
デル沈降性を測定した。結果を第3表に示したが、各シ
リカサンドへのモデル含浸性およびモデル沈降性は良好
であり、熱伝導率も高く、線膨脹係数も小さく耐クラッ
ク性も良好であった。
100 parts of this epoxy resin composition (B-1) were mixed with silica sands (A-1), (A-2) and (A) shown in Table 2.
A test piece was prepared using 350 parts of each of -3), and the thermal conductivity, the coefficient of linear expansion, and the crack resistance were measured in accordance with the above test method, and the model impregnation rate and the model settling property were measured by a predetermined method. . The results are shown in Table 3. As a result, the model impregnating property and the model settling property in each silica sand were good, the thermal conductivity was high, the linear expansion coefficient was small, and the crack resistance was good.

実施例4 ビスフェノールA型エポキシ樹脂(旭電化工業社製、
アデカレジンEP−4000)80部に可撓化剤(アデカレジン
ED−506)20部を混合したエポキシ樹脂(c)と、変性
芳香族ポリアミン(アデカEH−531、硬化剤)(d)と
を、重量比で(c)/(d)=100/40となるように混合
し、エポキシ樹脂組成物(B−2)を得た。
Example 4 Bisphenol A type epoxy resin (manufactured by Asahi Denka Kogyo Co., Ltd.
Adeka Resin EP-4000) 80 parts of flexible agent (Adeka Resin)
ED-506) An epoxy resin (c) mixed with 20 parts and a modified aromatic polyamine (ADEKA EH-531, curing agent) (d) were obtained by weight ratio (c) / (d) = 100/40. The resulting mixture was mixed to obtain an epoxy resin composition (B-2).

このエポキシ樹脂組成物(B−2)100部と、シリカ
サンド(A−1)350部とを用いて実施例1と同様にし
て各種特性を測定した。結果を第3表に示したが、各シ
リカサンドへのモデル含浸性およびモデル沈降性は良好
であり、熱伝導率も高く、線膨脹係数も小さく耐クラッ
ク性も良好であった。
Various characteristics were measured in the same manner as in Example 1 using 100 parts of this epoxy resin composition (B-2) and 350 parts of silica sand (A-1). The results are shown in Table 3. As a result, the model impregnating property and the model settling property in each silica sand were good, the thermal conductivity was high, the linear expansion coefficient was small, and the crack resistance was good.

実施例5 ヒドロキシ化合物としてヒマシ油(e)およびイソシ
アネート化合物(f)としてポリメチレンポリフェニル
ポリイソシアネート(日本ポリウレタンMR−100)を、
重量比で(e)/(f)=100/34となるように混合して
ポリウレタン樹脂組成物(B−3)を得た。
Example 5 Castor oil (e) as a hydroxy compound and polymethylene polyphenyl polyisocyanate (Nippon Polyurethane MR-100) as an isocyanate compound (f),
The polyurethane resin composition (B-3) was obtained by mixing so that (e) / (f) = 100/34 in weight ratio.

このポリウレタン樹脂組成物(B−3)100部と、シ
リカサンド(A−1)350部とを用いて実施例1と同様
にして各種特性を測定した。結果を第3表に示したが、
各シリカサンドへのモデル含浸性およびモデル沈降性は
良好であり、熱伝導率も高く、線膨脹係数も小さく耐ク
ラック性も良好であった。
Various characteristics were measured in the same manner as in Example 1 using 100 parts of this polyurethane resin composition (B-3) and 350 parts of silica sand (A-1). The results are shown in Table 3,
The model impregnating property and the model settling property in each silica sand were good, the thermal conductivity was high, the coefficient of linear expansion was small, and the crack resistance was good.

実施例6 無水マレイン酸98部、無水フタル酸148部およびジエ
チレングリコール223部を190〜200℃で酸価が50になる
まで反応させたエステル化合物に、スチレンモノマ152
部を加えて約20ポアズの不飽和ポリエステル(g)を得
た。この不飽和ポリエステル(g)とメチルエチルケト
ンパーオキサイド(h)とを、重量比で(g)/(h)
=100/1となるように混合し、不飽和ポリエステル樹脂
組成物(B−4)を得た。
Example 6 To an ester compound obtained by reacting 98 parts of maleic anhydride, 148 parts of phthalic anhydride and 223 parts of diethylene glycol until the acid value becomes 50 at 190 to 200 ° C., styrene monomer 152 was added.
To about 20 poise of unsaturated polyester (g). The unsaturated polyester (g) and methyl ethyl ketone peroxide (h) were prepared by weight ratio of (g) / (h)
= 100/1 to obtain an unsaturated polyester resin composition (B-4).

この不飽和ポリエステル樹脂組成物(B−4)100部
と、シリカサンド(A−1)350部とを用いて実施例1
と同様にして各種特性を測定した。結果を第3表に示し
たが、各シリカサンドへのモデル含浸性およびモデル沈
降性は良好であり、熱伝導率も高く、線膨脹係数も小さ
く耐クラック性も良好であった。
Example 1 using 100 parts of this unsaturated polyester resin composition (B-4) and 350 parts of silica sand (A-1)
Various characteristics were measured in the same manner as described above. The results are shown in Table 3. As a result, the model impregnating property and the model settling property in each silica sand were good, the thermal conductivity was high, the linear expansion coefficient was small, and the crack resistance was good.

実施例7 信越化学社製シリコーン樹脂、RTVゴムKE−106(i)
と触媒としてCRT−RG(信越化学製)(j)とを、重量
比で(i)/(j)=100/1となるように混合してシリ
コーン樹脂組成物(B−5)を得た。
Example 7 Silicone resin manufactured by Shin-Etsu Chemical Co., Ltd., RTV rubber KE-106 (i)
And CRT-RG (manufactured by Shin-Etsu Chemical Co., Ltd.) (j) as a catalyst were mixed at a weight ratio of (i) / (j) = 100/1 to obtain a silicone resin composition (B-5). .

シリコーン樹脂組成物(B−5)100部と、シリカサ
ンド(A−1)350部とを用いて実施例1と同様にして
各種特性を測定した。結果を第3表に示したが、各シリ
カサンドへのモデル含浸性およびモデル沈降性は良好で
あり、熱伝導率も高く、線膨脹係数も小さく耐クラック
性も良好であった。
Various characteristics were measured in the same manner as in Example 1 using 100 parts of the silicone resin composition (B-5) and 350 parts of silica sand (A-1). The results are shown in Table 3. As a result, the model impregnating property and the model settling property in each silica sand were good, the thermal conductivity was high, the linear expansion coefficient was small, and the crack resistance was good.

比較例1 実施例1と同様の方法で得たエポキシ樹脂組成物(B
−1)100宇と、AFS粒度が80.1であるシリカサンド(A
−4)350部とを用いて実施例1と同様にして各種特性
を測定した。結果を第3表に示したが、モデル含浸性が
悪く、シリカサンド中に樹脂の未含浸部分が見られ、耐
クラック性に劣った。
Comparative Example 1 An epoxy resin composition (B) obtained in the same manner as in Example 1
-1) 100 units and silica sand with AFS particle size of 80.1 (A
-4) Various characteristics were measured in the same manner as in Example 1 using 350 parts. The results are shown in Table 3. As a result, the impregnating property of the model was poor, and the resin-unimpregnated portion was found in the silica sand, and the crack resistance was poor.

比較例2 実施例3と同様の方法で得たポリウレタン樹脂組成物
(B−3)100部と、AFS粒度が6.1であるシリカサンド
(A−5)350部とを用いて実施例1と同様にして各種
特性を測定した。結果を第3表に示したが、モデル沈降
性が悪く、充填剤の分離、沈降が見られ、耐クラック性
に劣った。
Comparative Example 2 Same as Example 1 using 100 parts of the polyurethane resin composition (B-3) obtained in the same manner as in Example 3 and 350 parts of silica sand (A-5) having an AFS particle size of 6.1. And various characteristics were measured. The results are shown in Table 3. As a result, the model sedimentation property was poor, separation and sedimentation of the filler were observed, and the crack resistance was poor.

比較例3 実施例1と同様の方法で得たエポキシ樹脂組成物(B
−1)100部に対してシリカサンド(A−1)150部(す
なわち、(A−1)に対する(B−1))の比率が0.6
7)を用いて実施例1と同様にして各種特性を測定し
た。結果を第3表に示したが、モデル沈降性が悪く、充
填剤の分離、沈降が見られ、線膨脹係数も大きく、耐ク
ラック性に劣った。
Comparative Example 3 An epoxy resin composition (B) obtained in the same manner as in Example 1
-1) The ratio of 150 parts of silica sand (A-1) to 100 parts (that is, (B-1) to (A-1)) is 0.6.
Various characteristics were measured in the same manner as in Example 1 using 7). The results are shown in Table 3. As a result, the model sedimentation was poor, separation and sedimentation of the filler were observed, the coefficient of linear expansion was large, and the crack resistance was poor.

比較例4 実施例1と同様の方法で得たエポキシ樹脂組成物(B
−1)100部と、シリカサンド(A−1)550部(すなわ
ち、(A−1)に対する(B−1)の比率が0.18)とを
用いて実施例1と同様にして各種特性を測定した。結果
を第3表に示したが、モデル含浸性が悪く、シリカサン
ド中に樹脂の未含浸部分が見られた。
Comparative Example 4 An epoxy resin composition (B) obtained in the same manner as in Example 1
-1) Various properties were measured in the same manner as in Example 1 using 100 parts and 550 parts of silica sand (A-1) (that is, the ratio of (B-1) to (A-1) was 0.18). did. The results are shown in Table 3. The impregnating property of the model was poor, and unimpregnated portions of the resin were found in the silica sand.

比較例5 実施例2と同様の方法で得たエポキシ樹脂組成物(B
−2)100部にシリカサンド(A−1)200部を配合し、
常温で撹拌機を用いてシリカサンド(A−1)がエポキ
シ樹脂組成物(B−2)に充分混合するまで撹拌した。
次に混合物を用いて実施例1と同様にして各種特性を測
定した。結果を第3表に示したが、熱伝導率が低く、線
膨脹係数も大きく、耐クラック性に劣った。
Comparative Example 5 An epoxy resin composition (B) obtained in the same manner as in Example 2
-2) 200 parts of silica sand (A-1) is blended with 100 parts,
The mixture was stirred at room temperature using a stirrer until the silica sand (A-1) was sufficiently mixed with the epoxy resin composition (B-2).
Next, various characteristics were measured in the same manner as in Example 1 using the mixture. The results are shown in Table 3, which showed that the thermal conductivity was low, the coefficient of linear expansion was large, and the crack resistance was poor.

〔発明の効果〕 本発明の電気機器の製造方法によれば、熱伝導率に優
れ、かつ耐クラック性に優れた電気機器を得ることがで
きるとともに、従来の方法に較べて材料費および工程費
の大幅な低減を図ることができる。
[Effects of the Invention] According to the method for manufacturing an electric device of the present invention, it is possible to obtain an electric device having excellent thermal conductivity and excellent crack resistance, and material costs and process costs as compared with conventional methods. Can be significantly reduced.

フロントページの続き (72)発明者 岡田 泰典 茨城県日立市東町4丁目13番1号 日立 化成工業株式会社山崎工場内 (56)参考文献 特開 昭58−29858(JP,A) 特開 昭63−297436(JP,A)Continuation of front page (72) Inventor Yasunori Okada 4-3-1-1, Higashicho, Hitachi City, Ibaraki Pref. Hitachi Chemical Co., Ltd. Yamazaki Factory (56) References JP-A-58-29858 (JP, A) JP-A-63 −297436 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気部品、電子部品または回路基板が収納
されたケース内に、予めAFS粒度が7〜75であるシリカ
サンド(A)を充填した後、熱硬化性樹脂組成物(B)
を、前記シリカサンド(A)に対する重量比が(A):
(B)=1.0:0.4〜0.2となるように注入し、硬化させる
ことを特徴とする電気機器の製造方法。
1. A thermosetting resin composition (B) after previously filling silica sand (A) having an AFS particle size of 7 to 75 into a case containing an electric component, an electronic component or a circuit board.
Having a weight ratio of (A) to the silica sand (A):
(B) = 1.0: A method for manufacturing an electric device, wherein the injection is performed so as to satisfy 0.4 to 0.2 and the mixture is cured.
JP1173380A 1989-07-05 1989-07-05 Manufacturing method of electrical equipment Expired - Fee Related JP2658406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1173380A JP2658406B2 (en) 1989-07-05 1989-07-05 Manufacturing method of electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1173380A JP2658406B2 (en) 1989-07-05 1989-07-05 Manufacturing method of electrical equipment

Publications (2)

Publication Number Publication Date
JPH0340309A JPH0340309A (en) 1991-02-21
JP2658406B2 true JP2658406B2 (en) 1997-09-30

Family

ID=15959324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1173380A Expired - Fee Related JP2658406B2 (en) 1989-07-05 1989-07-05 Manufacturing method of electrical equipment

Country Status (1)

Country Link
JP (1) JP2658406B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174653A (en) * 1991-12-24 1993-07-13 Hitachi Chem Co Ltd Manufacture of electric appliance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829858A (en) * 1981-08-13 1983-02-22 Nitto Electric Ind Co Ltd Resin composition for sealing electronic component
JPS63297436A (en) * 1987-05-28 1988-12-05 Mitsubishi Kasei Corp Sealant polymer composition for ic

Also Published As

Publication number Publication date
JPH0340309A (en) 1991-02-21

Similar Documents

Publication Publication Date Title
US4851481A (en) Epoxy resin composition
US5880179A (en) Molded products for high voltage apparatus comprising brominated epoxy resins
US8545977B2 (en) Polymer concrete electrical insulation
CA2416020C (en) Volume-modified casting compounds based on polymeric matrix resins
EP1978049A1 (en) Curable Epoxy Resin Composition
US20040070109A1 (en) Method for the production of a fiber-reinforced product based on epoxy resin
JP2740990B2 (en) Low thermal expansion resin composition for pressure molding
JPH07733B2 (en) Epoxy resin composition
JP2658406B2 (en) Manufacturing method of electrical equipment
CN113025042A (en) Method for improving interface compatibility of ceramic polymer composite material
KR100771331B1 (en) Epoxy resin composition and printed circuit board using the same
CN114015349B (en) Enameled wire anti-aging coating
CN111087763A (en) Epoxy resin composition for moisture-proof type plastic and preparation method thereof
CN111936538A (en) Thermosetting resin composition, prepreg, metal foil with resin, laminate, printed wiring board, and semiconductor package
JP3018730B2 (en) Manufacturing method of electrical equipment
EP0614470B1 (en) Phosporous containing resin
JP3227823B2 (en) Manufacturing method of electrical equipment
JPH07241859A (en) Manufacture of electric appliance
JPH07246625A (en) Manufacture of electrical apparatus
JP4517182B2 (en) Epoxy resin composition for casting
EP0356195B1 (en) Cracking resistant resin-sealed coil
JPS59117106A (en) Manufacture of fly-back transformer
JPH05174653A (en) Manufacture of electric appliance
JPH0434908A (en) Resin molded electrical apparatus
JPH07214577A (en) Manufacture of electric equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees