JP2656740B2 - Manufacturing method of vertical field effect transistor - Google Patents

Manufacturing method of vertical field effect transistor

Info

Publication number
JP2656740B2
JP2656740B2 JP6265570A JP26557094A JP2656740B2 JP 2656740 B2 JP2656740 B2 JP 2656740B2 JP 6265570 A JP6265570 A JP 6265570A JP 26557094 A JP26557094 A JP 26557094A JP 2656740 B2 JP2656740 B2 JP 2656740B2
Authority
JP
Japan
Prior art keywords
concentration
region
drain region
base region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6265570A
Other languages
Japanese (ja)
Other versions
JPH08125172A (en
Inventor
秀文 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP6265570A priority Critical patent/JP2656740B2/en
Publication of JPH08125172A publication Critical patent/JPH08125172A/en
Application granted granted Critical
Publication of JP2656740B2 publication Critical patent/JP2656740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は縦型電界効果トランジス
タ(以下縦型FETと記す)製造方法に関する。
The present invention relates to a process for producing a vertical field effect transistor (hereinafter referred to as vertical FET).

【0002】[0002]

【従来の技術】従来の縦型FETの第1の例は、図2に
示すように、N+ 型のシリコン基板1の上に形成したN
型のドレイン領域2と、ドレイン領域2の上にゲート絶
縁膜3を介して形成したゲート電極4と、ゲート電極4
をパターニングして行列状に配置し形成した開孔部のド
レイン領域2内に形成したP型のベース領域12と、ベ
ース領域12内に形成したN+ 型のソース領域8と、ベ
ース領域12の側面周囲を取囲んで形成した高濃度ドレ
イン領域5を備えて構成され、高濃度ドレイン領域5を
設けたことにより、ドレイン抵抗が小さくなり、オン抵
抗が低減できるという利点がある。
A first example of a conventional vertical type FET, as shown in FIG. 2, was formed on the silicon substrate 1 of the N + -type N
A drain region 2, a gate electrode 4 formed on the drain region 2 via a gate insulating film 3, and a gate electrode 4.
Of a P-type base region 12 formed in the drain region 2 of the opening formed by patterning and forming a matrix, an N + -type source region 8 formed in the base region 12, and a base region 12. The high-concentration drain region 5 is formed so as to surround the periphery of the side surface. By providing the high-concentration drain region 5, there is an advantage that the drain resistance is reduced and the on-resistance can be reduced.

【0003】なお、ゲート電極4を被覆する層間絶縁膜
9,ソース領域8およびベース領域12とコンタクトす
るソース電極10,シリコン基板1の裏面に接続するド
レイン電極11がそれぞれ形成されている(特開昭64
−57675号公報参照)。
[0003] An interlayer insulating film 9 covering the gate electrode 4, a source electrode 10 in contact with the source region 8 and the base region 12, and a drain electrode 11 connected to the back surface of the silicon substrate 1 are formed, respectively. Showa 64
-57675).

【0004】しかし、この従来例では、モータのような
誘電性負荷を用いてスイッチング動作させる場合に、ド
レイン領域2とベース領域12とソース領域8とで形成
される寄生トランジスタのために部分的に過大な電流が
流れて縦型FETが破壊され易いという問題があった。
However, in this conventional example, when a switching operation is performed using a dielectric load such as a motor, a parasitic transistor formed by the drain region 2, the base region 12, and the source region 8 partially causes the switching operation. There is a problem that an excessive current flows and the vertical FET is easily broken.

【0005】この問題を解決する方法としてベース領域
内に高濃度ベース領域を形成して寄生トランジスタのベ
ース抵抗を極力小さくして寄生トランジスタを動作させ
難くする方法(特開昭63−132481号公報参照)
がある。
As a method of solving this problem, a method of forming a high-concentration base region in the base region to minimize the base resistance of the parasitic transistor and make it difficult to operate the parasitic transistor (see Japanese Patent Application Laid-Open No. 63-132481). )
There is.

【0006】図3(a)〜(d)および図4(a),
(b)は従来の縦型FETの第2の例の製造方法を説明
するための工程順に示した断面図である。
FIG. 3A to FIG. 3D and FIG.
(B) is sectional drawing shown in order of process for demonstrating the manufacturing method of the 2nd example of the conventional vertical FET.

【0007】まず、図3(a)に示すように、N+ 型の
シリコン基板1の上にエピタキシャル成長させたN型の
ドレイン領域2の上にゲート絶縁膜3を介して形成した
ゲート電極4をパターニングして行列状に配置した開孔
部を形成する。
First, as shown in FIG. 3A, a gate electrode 4 formed via a gate insulating film 3 on an N-type drain region 2 epitaxially grown on an N + -type silicon substrate 1 is formed. Patterning is performed to form openings arranged in a matrix.

【0008】次に、図3(b)に示すように、ゲート電
極4をマスクとしてドレイン領域2の表面にN型不純物
をイオン注入しN+ 型の高濃度ドレイン領域5を形成す
る。
Next, as shown in FIG. 3B, N-type impurities are ion-implanted into the surface of the drain region 2 using the gate electrode 4 as a mask to form an N + -type high-concentration drain region 5.

【0009】次に、図3(c)に示すように、ゲート電
極4をマスクとしてP型不純物を高加速エネルギーでイ
オン注入しP型の低濃度ベース領域6を形成し、低濃度
ベース領域6の周囲に高濃度ドレイン領域5が取囲むよ
うにする。
Next, as shown in FIG. 3C, a P-type impurity is ion-implanted with high acceleration energy using the gate electrode 4 as a mask to form a P-type low-concentration base region 6, and the low-concentration base region 6 is formed. Is surrounded by the high-concentration drain region 5.

【0010】次に、図3(d)に示すように、低濃度ベ
ース領域6の中央部に選択的にP型不純物をイオン注入
してP+ 型の高濃度ベース領域7を形成する。
Next, as shown in FIG. 3D, a P + -type high concentration base region 7 is formed by selectively ion-implanting a P-type impurity into the center of the low concentration base region 6.

【0011】次に、図4(a)に示すように、高濃度ベ
ース領域7の周囲を取囲む低濃度ベース領域6の表面に
N型不純物を選択的にイオン注入しN+ 型ソース領域8
を形成する。
Next, as shown in FIG. 4A, an N-type impurity is selectively ion-implanted into the surface of the low-concentration base region 6 surrounding the periphery of the high-concentration base region 7, and an N + -type source region 8 is formed.
To form

【0012】次に、図4(b)に示すように、ゲート電
極を含む表面に層間絶縁膜9を堆積してパターニング
し、コンタクトホールを形成し、コンタクトホールのソ
ース領域8および高濃度ベース領域7と接続するソース
電極10と、シリコン基板1の裏面にドレイン電極11
とを形成して縦型FETを構成する。
Next, as shown in FIG. 4B, an interlayer insulating film 9 is deposited and patterned on the surface including the gate electrode to form a contact hole, and the source region 8 and the high concentration base region of the contact hole are formed. 7, and a drain electrode 11 on the back surface of the silicon substrate 1.
To form a vertical FET.

【0013】[0013]

【発明が解決しようとする課題】この従来の縦型FET
は、誘電性負荷に対する破壊耐量の向上のための高濃度
ベース領域を形成するために工程が増加し、複雑化する
という問題があった。
SUMMARY OF THE INVENTION This conventional vertical FET
However, there is a problem that the number of steps is increased to form a high-concentration base region for improving the breakdown strength against a dielectric load, and the process is complicated.

【0014】本発明の目的は、工程を簡略化してコスト
ダウンを実現できる縦型FETの製造方法を提供するこ
とにある。
An object of the present invention is to provide a method of manufacturing a vertical FET , which can simplify a process and realize cost reduction.

【0015】[0015]

【0016】[0016]

【課題を解決するための手段】 本発明の縦型FETの製
造方法は、一導電型半導体基板上に形成した一導電型の
ドレイン領域の上にゲート絶縁膜を介して形成した多結
晶シリコン膜をパターニングし行列状に配置した開孔部
を有するゲート電極を形成する工程と、前記開孔部周囲
の前記ゲート電極の縁に沿って前記ドレイン領域の表面
に選択的に不純物をイオン注入して拡散し環状の一導電
型高濃度ドレイン領域を形成する工程と、前記ゲート電
極をマスクとして前記開孔部の前記高濃度ドレイン領域
を含む表面に不純物をイオン注入して逆導電型の深い高
濃度ベース領域および前記高濃度ベース領域内に逆導電
型の浅い環状の低濃度ベース領域を形成し且つ前記高濃
度ベース領域の外周に沿って接する前記高濃度ドレイン
領域を形成する工程と、前記低濃度ベース領域内に選択
的に不純物をイオン注入して一導電型のソース領域を形
成する工程とを含んで構成される。
A method of manufacturing a vertical FET according to the present invention is directed to a polycrystalline silicon film formed via a gate insulating film on a drain region of one conductivity type formed on a semiconductor substrate of one conductivity type. Patterning a gate electrode having openings arranged in rows and columns, and selectively ion-implanting impurities into the surface of the drain region along the edge of the gate electrode around the openings. A step of diffusing to form an annular one-conductivity-type high-concentration drain region; and ion-implanting impurities into the surface of the opening portion including the high-concentration drain region using the gate electrode as a mask. Forming a shallow annular low-concentration base region of the opposite conductivity type in the base region and the high-concentration base region, and forming the high-concentration drain region which is in contact with the periphery of the high-concentration base region; When configured to include a step of forming the low-concentration base region selectively source region of the one conductivity type impurity ions are implanted into.

【0017】[0017]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0018】図1(a)〜(d)は本発明の一実施例の
製造方法を説明するための工程順に示した断面図であ
る。
FIGS. 1A to 1D are sectional views showing a manufacturing method according to an embodiment of the present invention in the order of steps for explaining the manufacturing method.

【0019】まず、図1(a)に示すように、N型の高
不純物濃度(N+ 型)を有する単結晶のシリコン基板1
の上にエピタキシャル成長によりN型のドレイン領域2
を形成する。次に、ドレイン領域2の表面を熱酸化して
ゲート酸化膜を形成し、ゲート酸化膜の上にCVD法に
より多結晶シリコン膜を堆積し、多結晶シリコン膜およ
びゲート酸化膜を選択的に順次エッチングしてドレイン
領域2の表面に行列状に配置した開孔部を有するゲート
絶縁膜3およびゲート電極4を形成する。次に、開孔部
の周囲のゲート電極4の縁に沿ってドレイン領域3の表
面にN型不純物を選択的にイオン注入し環状の高濃度
(N+ 型)ドレイン領域5を形成する。
First, as shown in FIG. 1A, a single-crystal silicon substrate 1 having an N type high impurity concentration (N + type) is formed.
N type drain region 2 by epitaxial growth on
To form Next, the surface of the drain region 2 is thermally oxidized to form a gate oxide film, a polycrystalline silicon film is deposited on the gate oxide film by a CVD method, and the polycrystalline silicon film and the gate oxide film are selectively sequentially formed. Etching is performed to form a gate insulating film 3 and a gate electrode 4 having openings arranged in a matrix on the surface of the drain region 2. Next, N-type impurities are selectively ion-implanted into the surface of the drain region 3 along the edge of the gate electrode 4 around the opening to form an annular high-concentration (N + -type) drain region 5.

【0020】次に、図1(b)に示すように、ゲート電
極4をマスクとして開孔部の高濃度ドレイン領域5を含
むドレイン領域2の表面にP型不純物を高加速エネルギ
ーでイオン注入し高濃度ドレイン領域5の一部の導電型
を反転させた浅い領域の(P型)低濃度ベース領域6と
深い領域の(P+ 型)高濃度ベース領域7とを同時に形
成する。ここで、低濃度ベース領域6の外周に接して環
状の高濃度ドレイン領域5が残される。
Next, as shown in FIG. 1B, a P-type impurity is ion-implanted at a high acceleration energy into the surface of the drain region 2 including the high-concentration drain region 5 in the opening using the gate electrode 4 as a mask. A shallow (P-type) low-concentration base region 6 in which a part of the high-concentration drain region 5 is inverted in conductivity type and a deep (P + -type) high-concentration base region 7 are simultaneously formed. Here, the annular high-concentration drain region 5 is left in contact with the outer periphery of the low-concentration base region 6.

【0021】次に、図1(c)に示すように、開孔部の
低濃度ベース領域6内に選択的にN型不純物をイオン注
入してN+ 型のソース領域8を形成する。
Next, as shown in FIG. 1 (c), selectively N-type impurity at a low concentration base region 6 of the opening portion by ion implantation to form an N + -type source region 8.

【0022】次に、図1(d)に示すように、全面にC
VD法によりPSG膜を堆積してパターニングし、ソー
ス領域8および低濃度ベース領域6,高濃度ベース領域
7の表面を共通に露出させるコンタクトホールを有する
層間絶縁膜9を形成する。次に、このコンタクトホール
を含む表面にスパッタ法でアルミニウム膜を堆積してソ
ース電極10を形成し、シリコン基板1の裏面に蒸着法
によりドレイン電極11を形成する。
Next, as shown in FIG.
A PSG film is deposited and patterned by the VD method to form an interlayer insulating film 9 having a contact hole for commonly exposing the surfaces of the source region 8, the low-concentration base region 6, and the high-concentration base region 7. Next, a source electrode 10 is formed by depositing an aluminum film on the surface including the contact holes by sputtering, and a drain electrode 11 is formed on the back surface of the silicon substrate 1 by vapor deposition.

【0023】[0023]

【発明の効果】以上説明したように本発明は、高濃度ド
レイン領域を形成した後、ドレイン領域と反対導電型の
不純物を高加速エネルギーでイオン注入し、深い接合面
を有する高濃度ベース領域と、高濃度ドレイン領域の一
部に導電型を反転させて形成した浅い低濃度ベース領域
を同時に形成することにより、製造工程を簡略化してコ
ストダウンおよび製造工期の短縮を実現させるという効
果を有する。
As described above, according to the present invention, after a high-concentration drain region is formed, an impurity of a conductivity type opposite to that of the drain region is ion-implanted with high acceleration energy to form a high-concentration base region having a deep junction surface. By forming a shallow low-concentration base region formed by inverting the conductivity type in a part of the high-concentration drain region at the same time, there is an effect that the manufacturing process is simplified to reduce costs and shorten the manufacturing period.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の製造方法を説明するための
工程順に示した断面図。
FIG. 1 is a cross-sectional view showing a manufacturing method according to an embodiment of the present invention in the order of steps for explaining the manufacturing method.

【図2】従来の縦型FETの第1の例を説明するための
断面図。
FIG. 2 is a cross-sectional view illustrating a first example of a conventional vertical FET.

【図3】従来の縦型FETの第2の例の製造方法を説明
するための工程順に示した断面図。
FIG. 3 is a cross-sectional view illustrating a method of manufacturing a second example of a conventional vertical FET in the order of steps for explaining the method.

【図4】従来の縦型FETの第2の例の製造方法を説明
するための工程順に示した断面図。
FIG. 4 is a cross-sectional view illustrating a method of manufacturing a second example of a conventional vertical FET in the order of steps for explaining the method.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 ドレイン領域 3 ゲート絶縁膜 4 ゲート電極 5 高濃度ドレイン領域 6 低濃度ベース領域 7 高濃度ベース領域 8 ソース領域 9 層間絶縁膜 10 ソース電極 11 ドレイン電極 12 ベース領域 Reference Signs List 1 silicon substrate 2 drain region 3 gate insulating film 4 gate electrode 5 high-concentration drain region 6 low-concentration base region 7 high-concentration base region 8 source region 9 interlayer insulating film 10 source electrode 11 drain electrode 12 base region

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一導電型半導体基板上に形成した一導電
型のドレイン領域の上にゲート絶縁膜を介して形成した
多結晶シリコン膜をパターニングし行列状に配置した開
孔部を有するゲート電極を形成する工程と、前記開孔部
周囲の前記ゲート電極の縁に沿って前記ドレイン領域の
表面に選択的に不純物をイオン注入して拡散し環状の一
導電型高濃度ドレイン領域を形成する工程と、前記ゲー
ト電極をマスクとして前記開孔部の前記高濃度ドレイン
領域を含む表面に不純物をイオン注入して逆導電型の深
い高濃度ベース領域および前記高濃度ベース領域内に逆
導電型の浅い環状の低濃度ベース領域を形成し且つ前記
高濃度ベース領域の外周に沿って接する前記高濃度ドレ
イン領域を形成する工程と、前記低濃度ベース領域内に
選択的に不純物をイオン注入して一導電型のソース領域
を形成する工程とを含むことを特徴とする縦型電界効果
トランジスタの製造方法。
1. A one conductivity type gate electrode having an opening disposed a polycrystalline silicon film formed through a gate insulating film on the patterned matrix on the drain region of the formed one conductivity type on a semiconductor substrate Forming a circular one-conductivity high-concentration drain region by selectively ion-implanting and diffusing impurities into the surface of the drain region along the edge of the gate electrode around the opening. Impurity is ion-implanted into a surface of the opening including the high-concentration drain region by using the gate electrode as a mask, and a deep high-concentration base region of a reverse conductivity type and a shallow reverse conductivity type are formed in the high-concentration base region. Forming an annular low-concentration base region and forming the high-concentration drain region in contact with the periphery of the high-concentration base region; and selectively implanting impurities into the low-concentration base region. Vertical field effect method for producing a transistor, which comprises a step of forming a source region of one conductivity type and down injection.
JP6265570A 1994-10-28 1994-10-28 Manufacturing method of vertical field effect transistor Expired - Lifetime JP2656740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6265570A JP2656740B2 (en) 1994-10-28 1994-10-28 Manufacturing method of vertical field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6265570A JP2656740B2 (en) 1994-10-28 1994-10-28 Manufacturing method of vertical field effect transistor

Publications (2)

Publication Number Publication Date
JPH08125172A JPH08125172A (en) 1996-05-17
JP2656740B2 true JP2656740B2 (en) 1997-09-24

Family

ID=17418955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6265570A Expired - Lifetime JP2656740B2 (en) 1994-10-28 1994-10-28 Manufacturing method of vertical field effect transistor

Country Status (1)

Country Link
JP (1) JP2656740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573144B2 (en) 2000-04-07 2003-06-03 Shigeki Takahashi Method for manufacturing a semiconductor device having lateral MOSFET (LDMOS)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479352B2 (en) * 2000-06-02 2002-11-12 General Semiconductor, Inc. Method of fabricating high voltage power MOSFET having low on-resistance
US6627949B2 (en) * 2000-06-02 2003-09-30 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
JP5246638B2 (en) 2007-09-14 2013-07-24 三菱電機株式会社 Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457675A (en) * 1987-08-27 1989-03-03 Nec Corp Vertical field-effect transistor
JPH05283432A (en) * 1992-03-31 1993-10-29 Nec Kansai Ltd Vertical type field-effect transistor and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573144B2 (en) 2000-04-07 2003-06-03 Shigeki Takahashi Method for manufacturing a semiconductor device having lateral MOSFET (LDMOS)

Also Published As

Publication number Publication date
JPH08125172A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP2005505921A (en) Semiconductor power device having a floating island voltage sustaining layer
JPH10189970A (en) Manufacture of semiconductor device
JP2005505918A (en) Method for manufacturing a semiconductor power device having a voltage sustaining layer having a trapezoidal trench for forming a floating island
JP2006186145A (en) Semiconductor device and manufacturing method thereof
US5712503A (en) Metal oxide semiconductor and method of making the same
JP3790282B2 (en) Bipolar transistor and manufacturing method thereof
JP2007088334A (en) Semiconductor device and its manufacturing method
JP4463888B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JPH09115923A (en) Semiconductor device and its manufacture
JP2656740B2 (en) Manufacturing method of vertical field effect transistor
JP3551251B2 (en) Insulated gate field effect transistor and method of manufacturing the same
JP3448138B2 (en) Method for manufacturing semiconductor device
JP2834058B2 (en) Method for manufacturing semiconductor device
JP3192857B2 (en) Vertical MOS semiconductor device and method of manufacturing the same
JPS6298663A (en) Semiconductor integrated circuit device
JP2778126B2 (en) Method for manufacturing semiconductor device
JP3027939B2 (en) Vertical field effect transistor and method of manufacturing the same
JP2890509B2 (en) Method for manufacturing semiconductor device
JP4508304B2 (en) Semiconductor integrated circuit device
JPH10335643A (en) Manufacture of semiconductor device
JPH11135783A (en) Mos transistor and manufacture thereof
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
JPH11102982A (en) Semiconductor integrated circuit
JPH09260520A (en) Semiconductor integrated circuit device
JPH1174366A (en) Semiconductor device and manufacture therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970506