JP2656467B2 - Plasma processing method - Google Patents

Plasma processing method

Info

Publication number
JP2656467B2
JP2656467B2 JP60086445A JP8644585A JP2656467B2 JP 2656467 B2 JP2656467 B2 JP 2656467B2 JP 60086445 A JP60086445 A JP 60086445A JP 8644585 A JP8644585 A JP 8644585A JP 2656467 B2 JP2656467 B2 JP 2656467B2
Authority
JP
Japan
Prior art keywords
processing chamber
plasma
cleaning
sample
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60086445A
Other languages
Japanese (ja)
Other versions
JPS61247031A (en
Inventor
祥二 幾原
仁昭 佐藤
昌司 沖口
朋之 河野
勇 鹿毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP60086445A priority Critical patent/JP2656467B2/en
Publication of JPS61247031A publication Critical patent/JPS61247031A/en
Application granted granted Critical
Publication of JP2656467B2 publication Critical patent/JP2656467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、処理室の真空をブレークすることなくクリ
ーニングするプラズマ処理方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a plasma processing method for cleaning a processing chamber without breaking a vacuum.

〔発明の背景〕[Background of the Invention]

真空化でガスをプラズマ化し、プラズマ構成種の優れ
た特性を利用して試料の表面加工および表面改質、ある
いは試料に反応物を薄膜形成させる技術およびその装置
が種々の分野で実用化している。特にプラズマ構成種が
物質の微細加工に適していること、あるいはプラズマ化
したある種のガスは反応性に富んでいることの理由で半
導体装置(VLSI)の製造のドライエッチングおよび気相
成長による薄膜形成に採り入れられ今では不可欠の技術
となっている。
Techniques and devices for converting a gas into a plasma under vacuum and utilizing the excellent properties of the plasma constituents to process and modify the surface of the sample, or to form a thin film of a reactant on the sample, and its devices have been put to practical use in various fields. . In particular, thin films formed by dry etching and vapor phase growth in the manufacture of semiconductor devices (VLSI) because plasma constituents are suitable for microfabrication of materials, or certain types of plasma gas are highly reactive. It has been incorporated into the formation and is now an indispensable technology.

VLSIの高集積化のためそのパターンは益々微細化し、
例えば4Mbit D−RAMでは最少加工寸法は0.7〜0.8μmに
至っている。かかる超微細な分野においては塵埃はVLSI
製造の歩留りを支配するもので大敵であり清浄な環境が
要求される。
Due to the high integration of VLSI, the pattern is getting finer,
For example, in the case of a 4 Mbit D-RAM, the minimum processing dimension has reached 0.7 to 0.8 μm. In such ultra-fine fields, dust is VLSI
It governs the production yield, is a great enemy, and requires a clean environment.

一方、特に半導体ウェハを加工するドライエッチング
装置あるいはウェハに反応物を堆積する薄膜形成装置で
は、プラズマ化したガスからの反応重合物、プラズマ化
したガスとウェハ構成成分との反応物、ウェハあるいは
プラズマに晒される試料からの飛散物等が装置構成壁表
面に堆積付着するのが実情である。これらの堆積付着物
はある時期に構成壁から剥離し、試料上に落下する塵埃
となる。(飯田、“RIEにおけるチャンバ内および試料
汚染”、セミコンダクタワールド、1984,11,P127〜13
2) 従来は、上述の堆積物を除去(いわゆるクリーニン
グ)するのに処理装置の蓋を開さ、水,アルコールある
いはアセトン等の薬液を浸した防塵布を用い人手によっ
て拭き取っている。クリーニングの頻度は試料の材質お
よび加工寸法によって異なるが、処理室内の清浄な環境
を維持するため多いものは数回のプラズマ処理毎にクリ
ーニングを実施する必要がある。クリーニング作業は第
1に処理装置を停止し、装置の真空を破って大気に開放
するため装置の構成材料が大気のガスおよび水分を吸着
したり、薬液の湿分を吸着するため、再度真空状態を得
るのに長時間を要し、処理装置の稼動率を引き下げ、第
2に装置構成材料への吸着成分が微妙に処理特性を狂わ
せ処理性の再現性を悪くする、という問題を有してい
た。
On the other hand, especially in a dry etching apparatus for processing a semiconductor wafer or a thin film forming apparatus for depositing a reactant on a wafer, a reaction polymer from a plasma gas, a reactant of a plasma gas with a wafer component, a wafer or a plasma. The fact is that the scattered matter from the sample exposed to the mist accumulates and adheres to the surface of the device configuration wall. At some point, these deposits will separate from the component walls and become dust that falls on the sample. (Iida, "In-chamber and sample contamination in RIE," Semiconductor World, 1984, 11, pp. 127-13
2) Conventionally, in order to remove the above-mentioned deposits (so-called cleaning), the lid of the processing apparatus is opened and the dust is wiped by hand using a dust-proof cloth soaked with a chemical such as water, alcohol or acetone. The frequency of cleaning depends on the material and processing dimensions of the sample, but the cleaning must be performed every few plasma treatments to maintain a clean environment in the processing chamber. First of all, the cleaning operation is performed by shutting down the processing apparatus and breaking the vacuum of the apparatus to open to the atmosphere. The constituent materials of the apparatus absorb the gas and moisture of the atmosphere and the moisture of the chemical solution. Second, it takes a long time to obtain the processing efficiency, lowers the operation rate of the processing apparatus, and secondly, has a problem that the adsorbed component to the apparatus constituent material slightly degrades the processing characteristics and deteriorates the reproducibility of the processing performance. Was.

〔発明の目的〕[Object of the invention]

本発明の目的は、処理室内での試料のプラズマ処理完
了後に処理室の真空をブレークすることなくクリーニン
グし、該クリーニング終了後は次の試料を処理できるよ
うにすることで、プラズマ処理装置の稼働率を向上でき
ると共に処理性の再現性を良くするプラズマ処理方法を
提供することにある。
An object of the present invention is to clean a processing chamber after a plasma processing of a sample in a processing chamber is completed without breaking the vacuum and to process the next sample after the cleaning is completed, thereby operating the plasma processing apparatus. An object of the present invention is to provide a plasma processing method capable of improving the efficiency and improving the reproducibility of the processability.

〔発明の概要〕[Summary of the Invention]

本発明は、大気開放可能な1つの処理室で試料が真空
下でプラズマ処理されるものであって、真空化で、前記
処理室内での所定個数の試料のプラズマ処理完了後該試
料を前記処理室外へ搬出し、前記試料が搬出された前記
処理室内を大気開放することなく該処理室内の残ガスを
排気した後に、炭素成分または水素成分からなる堆積付
着物の分解反応に適したクリーニング用の反応性ガスを
前記処理室内に供給し、該クリーニング用の反応性ガス
を真空下でプラズマ化して該プラズマにより前記処理室
内をクリーニングし、該クリーニング中の反応により発
生する酸素原子と結合された生成物の発光スペクトルの
強度低下を検出し、該検出した強度低下が予め定めてあ
った値を下回った時点でクリーニングを終了し、次の試
料を前記処理室内でプラズマ処理することを特徴とし、
処理室内での所定個数の試料のプラズマ処理完了後に処
理室の真空をブレークすることなくクリーニングできる
ようにすることで、プラズマ処理装置の稼動率を向上で
きるようにする方法である。
According to the present invention, a sample is subjected to plasma processing in a single processing chamber that can be opened to the atmosphere under vacuum, and after the plasma processing of a predetermined number of samples in the processing chamber is completed by vacuuming, the sample is processed. After the remaining gas in the processing chamber is exhausted without releasing the processing chamber from which the sample is carried out to the atmosphere, the cleaning chamber is suitable for a decomposition reaction of a deposited substance consisting of a carbon component or a hydrogen component. A reactive gas is supplied into the processing chamber, the reactive gas for cleaning is turned into plasma under vacuum, and the processing chamber is cleaned by the plasma, and the reaction gas is combined with oxygen atoms generated by a reaction during the cleaning. A decrease in the intensity of the emission spectrum of the object is detected, and cleaning is terminated when the detected decrease in intensity falls below a predetermined value, and the next sample is placed in the processing chamber. Characterized in that the plasma treatment,
In this method, the operation rate of the plasma processing apparatus can be improved by performing cleaning without breaking the vacuum in the processing chamber after the plasma processing of a predetermined number of samples in the processing chamber is completed.

〔発明の実施例〕(Example of the invention)

以下、本発明の一実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

1は処理室2内に供給する反応性ガスの流量を調整す
るガス流量制御ユニットで、2は試料をプラズマ処理例
えばエッチング処理する処理室で、3は処理室2内を所
定の圧力に減圧排気する排気装置で、4は試料電極6に
高周波電圧を印加する高周波電極で、5は処理室2側と
高周波電源4側とのインピーダンスを整合させる整合装
置で、6は処理室2内に設けられ試料を載置する試料電
極で、7は処理室2内で試料電極6に対向して設けられ
アースに接続されている対向電極で、8は特定の波長の
光を検知する分光器で、9は分光器8でとらえた光を電
気信号に変換する光電変換素子で、10は光電変換素子9
で変換された電気信号を増幅する増幅器で、11は増幅器
10で増幅された電気信号により装置の運転指示をするマ
イクロコンピュータである。
Reference numeral 1 denotes a gas flow control unit for adjusting the flow rate of a reactive gas supplied into the processing chamber 2, reference numeral 2 denotes a processing chamber for performing plasma processing on a sample, for example, etching processing, and reference numeral 3 denotes depressurizing and exhausting the processing chamber 2 to a predetermined pressure. A high-frequency electrode 4 for applying a high-frequency voltage to the sample electrode 6, a matching device 5 for matching the impedance between the processing chamber 2 and the high-frequency power supply 4 side, and 6 provided in the processing chamber 2. Reference numeral 7 denotes a sample electrode on which a sample is placed. Reference numeral 7 denotes a counter electrode provided in the processing chamber 2 so as to face the sample electrode 6 and is connected to the ground. Reference numeral 8 denotes a spectroscope for detecting light of a specific wavelength. Denotes a photoelectric conversion element for converting light captured by the spectroscope 8 into an electric signal, and 10 denotes a photoelectric conversion element 9
Is an amplifier that amplifies the electric signal converted by
This is a microcomputer that gives instructions for operating the apparatus by the electric signal amplified in step 10.

上記により構成される装置において、炭素または水素
を含む反応性ガスを用いた試料のエッチング処理が完了
したら交流電力の印加およびガスの供給を停止し、必要
に応じて処理室2内の圧力を調整した後に試料は処理室
2外へ搬出される。これらのプラズマ処理の際に種々の
反応物あるいは飛散物等が処理室構成壁表面に堆積付着
する。試料を数回エッチング処理した後に処理室2内の
クリーニングを実施する。すなわち、処理室2内の残ガ
スを十分排気した後に、炭素成分または水素成分から成
る堆積付着物の分解反応に適した反応性ガスであるO
2を、ガス流量制御ユニット1を介して処理室2に供給
し、排気装置3の排気によって処理室2内の圧力を所定
の圧力に調整し、高周波電源4に電力を投入し、整合装
置5を介して高周波電力を試料電極6に印加する。
In the apparatus configured as described above, when the etching process of the sample using the reactive gas containing carbon or hydrogen is completed, the application of the AC power and the supply of the gas are stopped, and the pressure in the processing chamber 2 is adjusted as necessary. After that, the sample is carried out of the processing chamber 2. At the time of these plasma treatments, various reactants or scattered matters accumulate and adhere to the surface of the processing chamber constituting wall. After the sample is etched several times, the inside of the processing chamber 2 is cleaned. That is, after the residual gas in the processing chamber 2 is sufficiently exhausted, O, which is a reactive gas suitable for the decomposition reaction of the deposited matter composed of the carbon component or the hydrogen component, is used.
2 is supplied to the processing chamber 2 via the gas flow control unit 1, the pressure in the processing chamber 2 is adjusted to a predetermined pressure by exhausting the exhaust device 3, power is supplied to the high frequency power supply 4, and the matching device 5 is supplied. A high frequency power is applied to the sample electrode 6 via the.

このようになすと処理室2内において試料電極6と対
向電極7との間に高周波電界によるグロー放電を生じ、
処理室2に導入されたO2はプラズマ化し、さらに反応性
の強い活性種を創り出す。この活性種は処理室2内の堆
積付着物と保応し、これを揮発性の物質に分解変換する
ため堆積付着物は徐々に除去され処理室2内はクリーニ
ングされる。
By doing so, a glow discharge is generated between the sample electrode 6 and the counter electrode 7 in the processing chamber 2 by a high-frequency electric field,
The O 2 introduced into the processing chamber 2 is turned into plasma and creates more reactive active species. This active species reacts with the deposits in the processing chamber 2 and decomposes and converts them into volatile substances, whereby the deposits are gradually removed and the inside of the processing chamber 2 is cleaned.

クリーニング中の反応により発生するプラズマ光中の
CO,CO2またはH2Oの発光スペクトルの波長光を分光器8
により分光して、光電変換素子9に導き、電気信号に変
換する。この電気信号は増幅器10により増幅されて、装
置全体を制御するマイクロコンピュータ11に入力され
る。
In the plasma light generated by the reaction during cleaning
Spectrometer 8 converts the wavelength light of the emission spectrum of CO, CO 2 or H 2 O
, And is led to the photoelectric conversion element 9 to be converted into an electric signal. This electric signal is amplified by an amplifier 10 and input to a microcomputer 11 for controlling the entire apparatus.

マイクロコンピュータ11は、放電開始後一定時間経過
した後に、増幅器10よりの出力電圧の測定を開始する。
クリーニングの進行に従い、処理室2内に残存していた
反応生成物が減少し、それに伴い、前記のCO,CO2または
H2Oの発光スペクトル強度が低下してくる。マイクロコ
ンピュータ11はこの発光スペクトル強度の低下を増幅器
10の出力電圧の低下として検出し、この電圧があらかじ
め定めてあった電圧値を下回った時点でクリーニングを
終了させる。
The microcomputer 11 starts measuring the output voltage from the amplifier 10 after a certain period of time has elapsed since the start of discharging.
As the cleaning proceeds, the reaction products remaining in the processing chamber 2 decrease, and the CO, CO 2 or
The emission spectrum intensity of H 2 O decreases. The microcomputer 11 amplifies this decrease in emission spectrum intensity.
The cleaning is terminated when the output voltage is detected as a decrease in the output voltage of 10 and becomes lower than a predetermined voltage value.

以上本一実施例によれば、次のような効果を得ること
ができる。
According to the present embodiment, the following effects can be obtained.

(1) 処理室の真空をブレークすることなくクリーニ
ングできるため、プラズマ処理装置の稼動率を向上でき
る。
(1) Since the cleaning can be performed without breaking the vacuum of the processing chamber, the operation rate of the plasma processing apparatus can be improved.

(2) 処理室の真空をブレークすることなくクリーニ
ングできるため、大気中の吸着成分の装置構成材料への
吸着が生ぜず処理特性を良好に保持でき処理性の再現性
の悪化を防止できる。
(2) Since the cleaning can be performed without breaking the vacuum of the processing chamber, the adsorption components in the atmosphere do not adsorb to the constituent materials of the apparatus, and the processing characteristics can be maintained well, and the deterioration of the reproducibility of the processing properties can be prevented.

(3) 処理室のクリーニング作業を容易に自動化でき
省力化が図れる。
(3) The cleaning work of the processing chamber can be easily automated and labor can be saved.

(4) クリーニングの終了時点を発光スペクトル強度
の測定により決定できるので、常に十分なクリーニング
が実施でき、次のエッチングに悪影響を及ぼす反応生成
物の除去が完全に行われるようになる。
(4) Since the end point of the cleaning can be determined by measuring the intensity of the emission spectrum, sufficient cleaning can always be performed, and the reaction products that adversely affect the next etching can be completely removed.

〔発明の効果〕〔The invention's effect〕

本発明によれば、処理室内での試料のプラズマ処理完
了後に処理室の真空をブレークすることなくクリーニン
グできるので、プラズマ処理装置の稼動率を向上できる
と共に処理性の再現性を良くするという効果がある。
According to the present invention, cleaning can be performed without breaking the vacuum in the processing chamber after the plasma processing of the sample in the processing chamber is completed, so that the operation rate of the plasma processing apparatus can be improved and the reproducibility of the processing performance can be improved. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例であるプラズマ処理装置の
クリーニング方法を説明する装置のブロック図である。 1……ガス流量制御ユニット、2……処理室、3……排
気装置、4……高周波電源、6……試料電極、7……対
向電極、8……分光器、9……光電変換素子、11……マ
イクロコンピュータ
FIG. 1 is a block diagram of an apparatus for explaining a cleaning method of a plasma processing apparatus according to one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Gas flow control unit, 2 ... Processing chamber, 3 ... Exhaust device, 4 ... High frequency power supply, 6 ... Sample electrode, 7 ... Counter electrode, 8 ... Spectroscope, 9 ... Photoelectric conversion element , 11 ... microcomputer

フロントページの続き (72)発明者 佐藤 仁昭 下松市大字東豊井794番地 株式会社日 立製作所笠戸工場内 (72)発明者 沖口 昌司 下松市大字東豊井794番地 日立産機エ ンジニアリング株式会社笠戸事業所内 (72)発明者 河野 朋之 下松市大字東豊井794番地 日立産機エ ンジニアリング株式会社笠戸事業所内 (72)発明者 鹿毛 勇 下松市大字東豊井794番地 株式会社日 立製作所笠戸工場内 (56)参考文献 特開 昭58−46639(JP,A) 特開 昭58−197280(JP,A) 特開 昭58−171821(JP,A) 特開 昭59−113625(JP,A) 特開 昭58−225638(JP,A)Continued on the front page (72) Inventor, Yoshiaki Sato 794, Higashi-Toyoi, Katsumatsu-shi, Japan In-house Kasado Factory, Hitachi, Ltd. (72) Inventor Tomoyuki Kono 794, Higashi-Toyoi, Katsumatsu-shi, Oita Hitachi Industrial Equipment Engineering Co., Ltd. (72) Inventor, Isamu Kage 794, Higashi-Toyoi, Kudamatsu-shi, Nishitani Kasado Plant (56) References JP-A-58-46639 (JP, A) JP-A-58-197280 (JP, A) JP-A-58-171821 (JP, A) JP-A-59-113625 (JP) , A) JP-A-58-225638 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】大気開放可能な1つの処理室で試料が真空
下でプラズマ処理されるものであって、真空化で、前記
処理室内での所定個数の試料のプラズマ処理完了後該試
料を前記処理室外へ搬出し、前記試料が搬出された前記
処理室内を大気開放することなく該処理室内の残ガスを
排気した後に、炭素成分または水素成分からなる堆積付
着物の分解反応に適したクリーニング用の反応性ガスを
前記処理室内に供給し、該クリーニング用の反応性ガス
を真空下でプラズマ化して該プラズマにより前記処理室
内をクリーニングし、該クリーニング中の反応により発
生する酸素原子と結合された生成物の発光スペクトルの
強度低下を検出し、該検出した強度低下が予め定めてあ
った値を下回った時点でクリーニングを終了し、次の試
料を前記処理室内でプラズマ処理することを特徴とする
プラズマ処理方法。
A sample is subjected to plasma processing under vacuum in one processing chamber that can be opened to the atmosphere. After the plasma processing of a predetermined number of samples in the processing chamber is completed by vacuuming, the sample is removed. After the remaining gas in the processing chamber is exhausted without opening the processing chamber to which the sample is carried out and opening the processing chamber to the atmosphere, the cleaning is suitable for the decomposition reaction of the deposited substance consisting of the carbon component or the hydrogen component. Is supplied into the processing chamber, the reactive gas for cleaning is turned into plasma under vacuum, and the processing chamber is cleaned by the plasma, and is combined with oxygen atoms generated by the reaction during the cleaning. A decrease in the intensity of the emission spectrum of the product is detected, and when the detected decrease in intensity falls below a predetermined value, the cleaning is terminated, and the next sample is placed in the processing chamber. Plasma processing method characterized by plasma treatment.
JP60086445A 1985-04-24 1985-04-24 Plasma processing method Expired - Lifetime JP2656467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086445A JP2656467B2 (en) 1985-04-24 1985-04-24 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086445A JP2656467B2 (en) 1985-04-24 1985-04-24 Plasma processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27201194A Division JP2501180B2 (en) 1994-11-07 1994-11-07 Cleaning method for plasma processing equipment

Publications (2)

Publication Number Publication Date
JPS61247031A JPS61247031A (en) 1986-11-04
JP2656467B2 true JP2656467B2 (en) 1997-09-24

Family

ID=13887115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086445A Expired - Lifetime JP2656467B2 (en) 1985-04-24 1985-04-24 Plasma processing method

Country Status (1)

Country Link
JP (1) JP2656467B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314421A (en) * 1986-07-07 1988-01-21 Matsushita Electric Ind Co Ltd Plasma chemical vapor deposition method
JPS63129630A (en) * 1986-11-20 1988-06-02 Fuji Electric Co Ltd Thin-film formation using plasma cvd
JP2662688B2 (en) * 1987-10-16 1997-10-15 株式会社 半導体エネルギー研究所 Coating method
JPH06280022A (en) * 1993-04-26 1994-10-04 Semiconductor Energy Lab Co Ltd Production of organic photosensitive material
US7534469B2 (en) 2005-03-31 2009-05-19 Asm Japan K.K. Semiconductor-processing apparatus provided with self-cleaning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125976A (en) * 1978-03-24 1979-09-29 Toshiba Corp Ion etching method
JPS58171821A (en) * 1982-03-31 1983-10-08 Matsushita Electric Ind Co Ltd Detection of contamination and purification degree in plasma processing and apparatus thereof
JPS58197280A (en) * 1982-05-11 1983-11-16 Matsushita Electric Ind Co Ltd Dry etching device
JPS59113625A (en) * 1982-12-20 1984-06-30 Matsushita Electric Ind Co Ltd Detecting method of end point of plasma etching for organic-matter coating

Also Published As

Publication number Publication date
JPS61247031A (en) 1986-11-04

Similar Documents

Publication Publication Date Title
KR100478663B1 (en) Method of and apparatus for cleaning semiconductor device
JPH07153746A (en) Dry etching chamber cleaning method
EP0871211A3 (en) Plasma treatment method and manufacturing method of semiconductor device
JP2626913B2 (en) Silicon surface treatment method
JP2656467B2 (en) Plasma processing method
JP3122228B2 (en) Process equipment
KR20020070820A (en) Apparatus and method for semiconductor wafer etching
JPS6240728A (en) Dry etching device
JP2501180B2 (en) Cleaning method for plasma processing equipment
JPH0555184A (en) Cleaning method
JPS57201016A (en) Cleaning method for semiconductor manufacturing apparatus
JPS5839377B2 (en) Silicon wafer processing method
JPH0533816B2 (en)
JP3207638B2 (en) Semiconductor manufacturing apparatus cleaning method
JPH1140502A (en) Method for dry-cleaning semiconductor manufacturing apparatus
JP3404434B2 (en) Cleaning method for microwave plasma device
JPS62130524A (en) Plasma processing apparatus
JP3020065B2 (en) Semiconductor manufacturing apparatus cleaning method and semiconductor manufacturing apparatus
JPS61216327A (en) Plasma processing and processor thereof
JPH05198515A (en) Semiconductor treatment device and semiconductor pretreatment device
JP2558273B2 (en) Surface cleaning method
JPS635526A (en) Dry etching device
JPH07201832A (en) Equipment for manufacturing semiconductor
KR100217324B1 (en) A cleaning method of etching chamber
JPS6019139B2 (en) Etching method and mixture gas for plasma etching

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term